COEFFICIENT BOUNDS FOR QUOTIENTS OF STARLIKE FUNCTIONS

H. SILVERMAN

Abstract

For functions of the form $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ whose coefficients satisfy the inequality $\sum_{n=2}^{\infty}(n-\alpha)\left|a_{n}\right| \leqq 1-\alpha$, $0 \leqq \alpha \leqq 1$, we investigate bounds for the coefficients of $F(z)=$ $w f(z) /(w-f(z))$ when $w \notin f(|z|<1)$. A sharp upper bound for the second coefficient independent of w is obtained, along with a conjecture on the bounds for the remaining coefficients.

Denote by S the family of functions of the form $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ analytic and univalent in $\Delta=\{z:|z|<1\}$. Such functions are said to be in K if they map Δ onto convex domains and in $S^{*}(\alpha)$, the family of functions starlike of order α, if they satisfy $\operatorname{Re}\left\{z f^{\prime}(z) / f(z)\right\}>\alpha$ for $z \in \Delta$. If $f \in S$ and $w \notin f(\Delta)$ it is known that $F(z)=w f(z) /(w-f(z))$ is also in S. In [1] Hall proved that $F(z)$ has bounded coefficients if $f \in K$ by first showing that $\left|z^{2} f^{\prime}(z) / f^{2}(z)\right|>4 / \pi^{2}$ for f in K. In fact, he essentially showed that $F(z)$ will have bounded coefficients whenever $z^{2} f^{\prime}(z) / f^{2}(z)$ is bounded away from zero. We state this as a Lemma.

Lemma 1. Let G be a subfamily of S with $\left|z^{2} f^{\prime}(z) / f^{2}(z)\right| \geqq B>0$ for all $f \in G$, and set $F(z)=w f(z) /(w-f(z))$ for $w \notin f(\Delta)$. Then there exists a constant A, independent of f and w, such that the modulus of the coefficients of F are bounded above by A.

Proof. A computation shows $z^{2} F^{\prime}(z) / F^{2}(z)=z^{2} f^{\prime}(z) / f^{2}(z)$, so that $\left|z^{2} F^{\prime}(z) / F^{2}(z)\right| \geqq B$ or, equivalently, $|F(z)| \leqq(r / B) \mid\left(z F^{\prime}(z) / F(z) \mid\right.$. By the Koebe distortion theorem, $|F(z)| \leqq(r / B)((1+r) /(1-r)) \leqq(2 / B)(1-r)$. But Spencer has shown [3] that a function in S has bounded coefficients if its modulus is bounded above by $K /(1-r)$ for some absolute constant K, which completes the proof.

A function f is said to be in $S^{*}(\alpha, M)$ if $f \in S^{*}(\alpha)$ and $|f| \leqq M$ in Δ.

[^0]We show that such functions satisfy the conditions of Lemma 1 if α is positive.

Theorem 1. If $f \in S^{*}(\alpha, M), \alpha>0$, and $w \notin f(\Delta)$, then for $F(z)=w f(z) /$ $(w-f(z))$ there exists a constant A, independent of w and f, such that the modulus of the coefficients of F are bounded above by A.

Proof. Since

$$
\left|\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}\right|=\left|\frac{z}{f(z)}\right|\left|\frac{z f^{\prime}(z)}{f(z)}\right| \geqq \frac{\alpha}{M}>0
$$

the result follows from Lemma 1.
Remark. Theorem 1 cannot be improved to allow $\alpha=0$. If we take $f(z)=z-z^{2} / 2$ and $w=1 / 2$, then

$$
\begin{equation*}
F(z)=z+\sum_{n=2}^{\infty}\left(\frac{n+1}{2}\right) z^{n} \tag{1}
\end{equation*}
$$

We will investigate a special family of bounded starlike functions $z+\sum_{n=2}^{\infty} a_{n} z^{n}$, those for which $\sum_{n=2}^{\infty} n\left|a_{n}\right| \leqq 1$. It is known [2] that such functions are in $S^{*}(\alpha)$ if

$$
\begin{equation*}
\sum_{n=2}^{\infty}(n-\alpha)\left|a_{n}\right| \leqq 1-\alpha \tag{2}
\end{equation*}
$$

Lemma 2. If $f \in S$ and

$$
F_{w}(z)=\frac{w f(z)}{w-f(z)}=z+\sum_{n=2}^{\infty} c_{n}(w) z^{n}
$$

then the $w \notin f(\Delta)$ for which $\left|c_{n}(w)\right|$ is maximal must be a boundary point of $f(\Delta)$.

Proof. For $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$, we have $c_{2}(w)=a_{2}+(1 / w)$ and

$$
\begin{equation*}
c_{n}(w)=a_{n}+\sum_{k=1}^{n-1} a_{k} c_{n-k}(w) / w \quad\left(a_{1}=c_{1}=1\right) \tag{3}
\end{equation*}
$$

An induction shows that we may write $c_{n}(w)$ as $c_{n}(w)=a_{n}+P_{n-2}(w) /$ w^{n-1}, where $P_{n-2}(w)$ is a polynomial of degree at most $n-2$ whose coefficients depend only on $a_{2}, a_{3}, \ldots, a_{n-1}$. Either $C-f(|z| \leqq 1)$ is empty, in which case every $w \notin f(\Delta)$ is a boundary point, or $c_{n}(w)$ is an analytic function of w in the domain $C-f(|z| \leqq 1)$. In the latter case $c_{n}(w)$ cannot attain a maximum in the domain, and so must attain its maximum on the boundary.

We now find the maximum of the second coefficient of F when f satisfies (2).

ThEOREM 2. If the coefficients of $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ satisfy the in-
equality $\sum_{n=2}^{\infty}(n-\alpha)\left|a_{n}\right| \leqq 1-\alpha, 0 \leqq \alpha \leqq 1$, then for any $w \notin f(\Delta)$ the function $F(z)=w f(z) /(w-f(z))=z+\sum_{n=2}^{\infty} c_{n} z^{n}$ will satisfy $\left|c_{2}\right| \leqq$ $(3-\alpha) / 2$. This result is sharp, with equality for $f(z)=z-(1-\alpha) z^{3} /(3-\alpha)$ and $w=2 /(3-\alpha)$.

Proof. In view of Lemma 2, it suffices to set $w=f\left(e^{i \theta}\right)$ so that $c_{2}=$ $c_{2}(w)=a_{2}+1 / f\left(e^{i \theta}\right)$. With $\left|a_{2}\right|=p \leqq(1-\alpha) /(2-\alpha)$ we see that

$$
(3-\alpha) \sum_{n=3}^{\infty}\left|a_{n}\right| \leqq \sum_{n=3}^{\infty}(n-\alpha)\left|a_{n}\right| \leqq(1-\alpha)-(2-\alpha) p
$$

and $\sum_{n=3}^{\infty}\left|a_{n}\right| \leqq((1-\alpha)-(2-\alpha) p) /(3-\alpha)$. Since $\left|\sum_{n=3}^{\infty} a_{n} e^{i n \theta}\right| \leqq$ $\sum_{n=3}^{\infty}\left|a_{n}\right|$, we may write

$$
\left|c_{2}\right|=\left|a_{2}+\frac{1}{e^{i \theta}+a_{2} e^{2 i \theta}+R e^{i g(\theta)}}\right|=\left|\frac{1+a_{2} e^{i \theta}+a_{2}^{2} e^{2 i \theta}+a_{2} R e^{i g(\theta)}}{1+a_{2} e^{i \theta}+R e^{i(g(\theta)-\theta)}}\right|
$$

where $R \leqq[(1-\alpha)-(2-\alpha) p] /(3-\alpha)$ and $g(\theta)$ is a real function of θ. Setting $h(\theta)=g(\theta)-\theta$, we obtain

$$
\begin{aligned}
\left|c_{2}\right| & =\left|1+\frac{a_{2}^{2} e^{2 i \theta}+\operatorname{Re} e^{i \hbar(\theta)}\left(a_{2} e^{i \theta}-1\right)}{1+a_{2} e^{i \theta}+R e^{i \hbar(\theta)}}\right| \leqq 1+\frac{p^{2}+(1+p) R}{1-p-R} \\
& \leqq 1+\frac{p^{2}+(1+p)[(1-\alpha)-(2-\alpha) p] /(3-\alpha)}{(1-p)-[(1-\alpha)-(2-\alpha) p] /(3-\alpha)}=\frac{3-\alpha-2 p+p^{2}}{2-p} .
\end{aligned}
$$

This last expression attains a maximum for $0 \leqq p \leqq(1-\alpha) /(2-\alpha)$ when $p=0$, and the theorem is proved.

When $\alpha=0$, the bound in Theorem 2 is also attained for $f(z)=$ $z-z^{2} / 2$ and $w=1 / 2$, and we conjecture that the coefficients of $F(z)$ defined by (1) are extremal for all functions $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ that satisfy the inequality $\sum_{n=2}^{\infty} n\left|a_{n}\right| \leqq 1$.

The bounds on the coefficients of $F(z)$ when the coefficients for $f(z)$ satisfy the more general inequality (2), we believe, are more complicated. For $f_{k}(z)=z-((1-\alpha) /(k-\alpha)) z^{k}$ and $w_{k}=(k-1) /(k-\alpha)(k=2$, 3, ...), set

$$
F_{k}(z)=\frac{w_{k} f_{k}(z)}{w_{k}-f_{k}(z)}=z+\sum_{n=2}^{\infty} c_{n}(\alpha, k) z^{n}
$$

From (3) we see that

$$
\begin{align*}
& c_{n}(\alpha, k)=1 / w_{k}^{n-1}=\left(\frac{k-\alpha}{k-1}\right)^{n-1} \text { for } n=2,3, \ldots, k-1, \tag{4}\\
& c_{k}(\alpha, k)=\left(\frac{k-\alpha}{k-1}\right)^{k-1}-\left(\frac{1-\alpha}{k-\alpha}\right)
\end{align*}
$$

and for $m=1,2,3, \ldots$ we have, recursively,

$$
c_{k+m}(\alpha, k)=c_{k+m-1}(\alpha, k)+\left(\frac{1-\alpha}{k-\alpha}\right)\left(c_{k+m-1}(\alpha, k)-c_{m}(\alpha, k)\right)
$$

Note that $c_{2}(\alpha, 2)=\left(3-3 \alpha+\alpha^{2}\right) /(2-\alpha)$ and for $n=3,4, \ldots$,

$$
\begin{equation*}
c_{n}(\alpha, 2)=\left(2-2 \alpha+\alpha^{2}\right)+\frac{(1-\alpha)^{4}}{2-\alpha}\left(\frac{1-(1-\alpha)^{n-3}}{\alpha}\right), \tag{5}
\end{equation*}
$$

where $c_{n}(0,2)=\lim _{\alpha \rightarrow 0} c_{n}(\alpha, 2)=(n+1) / 2$.
If $d_{n}(\alpha)$ is the maximum modulus of the n-th coefficient of $w f(z) /$ ($w-f(z)$) taken over all f whose coefficients satisfy (2) and all $w \notin f(4)$, we see from (5) that $d_{n}(\alpha) \geqq c_{n}(\alpha, 2) \geqq K / \alpha$ for some positive constant K. On the other hand, for large n we have form (4) that $c_{n}(\alpha, n) \approx e^{1-\alpha}$, which is greater than $c_{n}(\alpha, 2)$ when α is sufficiently close to 1 . We believe that $d_{n}(\alpha)=c_{n}(\alpha, k)$ for some $k=2,3, \ldots, n+1$, the choice of k being a nondecreasing function of α, with $d_{n}(0)=c_{n}(0,2)=(n+1) / 2$.

We close with a question about the lower bounds on the coefficients of F when $f \in S$.

Conjecture. If $f \in S$, then there exists a $w \notin f(\Delta)$ such that the coefficients for $F(z)=w f(z) /(w-f(z))=z+\sum_{n=2}^{\infty} c_{n} z^{z}$ satisfy $\left|c_{n}\right| \geqq 1$. Equality holds for $f(z)=z$ and $w=1$.

References

1. R.R. Hall, On a conjecture of Clunie and Sheil-Small, Bull. London Math. Soc. 12 (1980), 25-28.
2. H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116.
3. D.C. Spencer, On finitely mean valent functions, Proc. London Math. Soc. (2) 47 (1941), 201-211.

Department of Mathematics, College of Charleston, Charleston, SC 29401

[^0]: 1980 Mathematical subject classification: Primary 30C45, Secondary 30C55.
 Key words and phrases: Convex, starlike, univalent.
 This work was done while the author was a visiting faculty member at the University of Maryland.

 Received by the editors on February 23, 1982.

