COEFFICIENT BOUNDS FOR QUOTIENTS OF STARLIKE FUNCTIONS

H. SILVERMAN

ABSTRACT. For functions of the form $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ whose coefficients satisfy the inequality $\sum_{n=2}^{\infty} (n-\alpha)|a_n| \le 1 - \alpha$, $0 \le \alpha \le 1$, we investigate bounds for the coefficients of F(z) = wf(z)/(w - f(z)) when $w \notin f(|z| < 1)$. A sharp upper bound for the second coefficient independent of w is obtained, along with a conjecture on the bounds for the remaining coefficients.

Denote by S the family of functions of the form $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ analytic and univalent in $\Delta = \{z : |z| < 1\}$. Such functions are said to be in K if they map Δ onto convex domains and in $S^*(\alpha)$, the family of functions starlike of order α , if they satisfy $\operatorname{Re}\{zf'(z)|f(z)\} > \alpha$ for $z \in \Delta$. If $f \in S$ and $w \notin f(\Delta)$ it is known that F(z) = wf(z)/(w - f(z)) is also in S. In [1] Hall proved that F(z) has bounded coefficients if $f \in K$ by first showing that $|z^2 f'(z)|f^2(z)| > 4/\pi^2$ for f in K. In fact, he essentially showed that F(z) will have bounded coefficients whenever $z^2 f'(z)/f^2(z)$ is bounded away from zero. We state this as a Lemma.

LEMMA 1. Let G be a subfamily of S with $|z^2f'(z)|/f^2(z)| \ge B > 0$ for all $f \in G$, and set F(z) = wf(z)/(w - f(z)) for $w \notin f(\Delta)$. Then there exists a constant A, independent of f and w, such that the modulus of the coefficients of F are bounded above by A.

PROOF. A computation shows $z^2F'(z)/F^2(z) = z^2f'(z)/f^2(z)$, so that $|z^2F'(z)/F^2(z)| \ge B$ or, equivalently, $|F(z)| \le (r/B)|(zF'(z)/F(z)|$. By the Koebe distortion theorem, $|F(z)| \le (r/B)((1 + r)/(1 - r)) \le (2/B)(1 - r)$. But Spencer has shown [3] that a function in S has bounded coefficients if its modulus is bounded above by K/(1 - r) for some absolute constant K, which completes the proof.

A function f is said to be in $S^*(\alpha, M)$ if $f \in S^*(\alpha)$ and $|f| \leq M$ in Δ .

Copyright © 1983 Rocky Mountain Mathematics Consortium

¹⁹⁸⁰ Mathematical subject classification: Primary 30C45, Secondary 30C55.

Key words and phrases: Convex, starlike, univalent.

This work was done while the author was a visiting faculty member at the University of Maryland.

Received by the editors on February 23, 1982.

We show that such functions satisfy the conditions of Lemma 1 if α is positive.

THEOREM 1. If $f \in S^*(\alpha, M)$, $\alpha > 0$, and $w \notin f(\Delta)$, then for F(z) = wf(z)/(w - f(z)) there exists a constant A, independent of w and f, such that the modulus of the coefficients of F are bounded above by A.

PROOF. Since

$$\left|\frac{z^2 f'(z)}{f^2(z)}\right| = \left|\frac{z}{f(z)}\right| \left|\frac{zf'(z)}{f(z)}\right| \ge \frac{\alpha}{M} > 0,$$

the result follows from Lemma 1.

REMARK. Theorem 1 cannot be improved to allow $\alpha = 0$. If we take $f(z) = z - z^2/2$ and w = 1/2, then

(1)
$$F(z) = z + \sum_{n=2}^{\infty} \left(\frac{n+1}{2} \right) z^n.$$

We will investigate a special family of bounded starlike functions $z + \sum_{n=2}^{\infty} a_n z^n$, those for which $\sum_{n=2}^{\infty} n|a_n| \leq 1$. It is known [2] that such functions are in $S^*(\alpha)$ if

(2)
$$\sum_{n=2}^{\infty} (n-\alpha) |a_n| \leq 1 - \alpha.$$

Lemma 2. If $f \in S$ and

$$F_{w}(z) = \frac{wf(z)}{w - f(z)} = z + \sum_{n=2}^{\infty} c_{n}(w)z^{n},$$

then the $w \notin f(\Delta)$ for which $|c_n(w)|$ is maximal must be a boundary point of $f(\Delta)$.

PROOF. For $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, we have $c_2(w) = a_2 + (1/w)$ and

(3)
$$c_n(w) = a_n + \sum_{k=1}^{n-1} a_k c_{n-k}(w)/w \quad (a_1 = c_1 = 1).$$

An induction shows that we may write $c_n(w)$ as $c_n(w) = a_n + P_{n-2}(w)/w^{n-1}$, where $P_{n-2}(w)$ is a polynomial of degree at most n-2 whose coefficients depend only on $a_2, a_3, \ldots, a_{n-1}$. Either $C - f(|z| \le 1)$ is empty, in which case every $w \notin f(\Delta)$ is a boundary point, or $c_n(w)$ is an analytic function of w in the domain $C - f(|z| \le 1)$. In the latter case $c_n(w)$ cannot attain a maximum in the domain, and so must attain its maximum on the boundary.

We now find the maximum of the second coefficient of F when f satisfies (2).

THEOREM 2. If the coefficients of $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ satisfy the in-

628

equality $\sum_{n=2}^{\infty} (n-\alpha)|a_n| \leq 1-\alpha, \ 0 \leq \alpha \leq 1$, then for any $w \notin f(\Delta)$ the function $F(z) = wf(z)/(w - f(z)) = z + \sum_{n=2}^{\infty} c_n z^n$ will satisfy $|c_2| \leq (3-\alpha)/2$. This result is sharp, with equality for $f(z) = z - (1-\alpha)z^3/(3-\alpha)$ and $w = 2/(3-\alpha)$.

PROOF. In view of Lemma 2, it suffices to set $w = f(e^{i\theta})$ so that $c_2 = c_2(w) = a_2 + 1/f(e^{i\theta})$. With $|a_2| = p \leq (1 - \alpha)/(2 - \alpha)$ we see that

$$(3-\alpha)\sum_{n=3}^{\infty}|a_n| \leq \sum_{n=3}^{\infty}(n-\alpha)|a_n| \leq (1-\alpha)-(2-\alpha)p,$$

and $\sum_{n=3}^{\infty} |a_n| \leq ((1 - \alpha) - (2 - \alpha)p)/(3 - \alpha)$. Since $|\sum_{n=3}^{\infty} a_n e^{in\theta}| \leq \sum_{n=3}^{\infty} |a_n|$, we may write

$$|c_2| = \left| a_2 + \frac{1}{e^{i\theta} + a_2 e^{2i\theta} + Re^{ig(\theta)}} \right| = \left| \frac{1 + a_2 e^{i\theta} + a_2^2 e^{2i\theta} + a_2 Re^{ig(\theta)}}{1 + a_2 e^{i\theta} + Re^{i(g(\theta) - \theta)}} \right|,$$

where $R \leq [(1 - \alpha) - (2 - \alpha)p]/(3 - \alpha)$ and $g(\theta)$ is a real function of θ . Setting $h(\theta) = g(\theta) - \theta$, we obtain

$$\begin{aligned} |c_2| &= \left| 1 + \frac{a_2^2 e^{2i\theta} + R e^{ih(\theta)} (a_2 e^{i\theta} - 1)}{1 + a_2 e^{i\theta} + R e^{ih(\theta)}} \right| \le 1 + \frac{p^2 + (1+p)R}{1 - p - R} \\ &\le 1 + \frac{p^2 + (1+p)[(1-\alpha) - (2-\alpha)p]/(3-\alpha)}{(1-p) - [(1-\alpha) - (2-\alpha)p]/(3-\alpha)} = \frac{3 - \alpha - 2p + p^2}{2 - p}. \end{aligned}$$

This last expression attains a maximum for $0 \le p \le (1 - \alpha)/(2 - \alpha)$ when p = 0, and the theorem is proved.

When $\alpha = 0$, the bound in Theorem 2 is also attained for $f(z) = z - z^2/2$ and w = 1/2, and we conjecture that the coefficients of F(z) defined by (1) are extremal for all functions $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ that satisfy the inequality $\sum_{n=2}^{\infty} n|a_n| \leq 1$.

The bounds on the coefficients of F(z) when the coefficients for f(z) satisfy the more general inequality (2), we believe, are more complicated. For $f_k(z) = z - ((1 - \alpha)/(k - \alpha))z^k$ and $w_k = (k - 1)/(k - \alpha)$ (k = 2, 3, ...), set

$$F_{k}(z) = \frac{w_{k}f_{k}(z)}{w_{k} - f_{k}(z)} = z + \sum_{n=2}^{\infty} c_{n}(\alpha, k)z^{n}$$

From (3) we see that

$$c_n(\alpha, k) = 1/w_k^{n-1} = \left(\frac{k-\alpha}{k-1}\right)^{n-1} \text{ for } n = 2, 3, \dots, k-1,$$
$$c_k(\alpha, k) = \left(\frac{k-\alpha}{k-1}\right)^{k-1} - \left(\frac{1-\alpha}{k-\alpha}\right),$$

and for $m = 1, 2, 3, \ldots$ we have, recursively,

(4)

$$c_{k+m}(\alpha, k) = c_{k+m-1}(\alpha, k) + \left(\frac{1-\alpha}{k-\alpha}\right)(c_{k+m-1}(\alpha, k) - c_m(\alpha, k)).$$

Note that $c_2(\alpha, 2) = (3 - 3\alpha + \alpha^2)/(2 - \alpha)$ and for n = 3, 4, ...,

(5)
$$c_n(\alpha, 2) = (2 - 2\alpha + \alpha^2) + \frac{(1 - \alpha)^4}{2 - \alpha} \left(\frac{1 - (1 - \alpha)^{n-3}}{\alpha} \right),$$

where $c_n(0, 2) = \lim_{\alpha \to 0} c_n(\alpha, 2) = (n + 1)/2$.

If $d_n(\alpha)$ is the maximum modulus of the *n*-th coefficient of wf(z)/(w - f(z)) taken over all f whose coefficients satisfy (2) and all $w \notin f(\Delta)$, we see from (5) that $d_n(\alpha) \ge c_n(\alpha, 2) \ge K/\alpha$ for some positive constant K. On the other hand, for large n we have form (4) that $c_n(\alpha, n) \approx e^{1-\alpha}$, which is greater than $c_n(\alpha, 2)$ when α is sufficiently close to 1. We believe that $d_n(\alpha) = c_n(\alpha, k)$ for some $k = 2, 3, \ldots, n + 1$, the choice of k being a nondecreasing function of α , with $d_n(0) = c_n(0, 2) = (n + 1)/2$.

We close with a question about the lower bounds on the coefficients of F when $f \in S$.

CONJECTURE. If $f \in S$, then there exists $a \ w \notin f(\Delta)$ such that the coefficients for $F(z) = wf(z)/(w - f(z)) = z + \sum_{n=2}^{\infty} c_n z^n$ satisfy $|c_n| \ge 1$. Equality holds for f(z) = z and w = 1.

References

1. R.R. Hall, On a conjecture of Clunie and Sheil-Small, Bull. London Math. Soc. 12 (1980), 25-28.

2. H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116.

3. D.C. Spencer, On finitely mean valent functions, Proc. London Math. Soc. (2) 47 (1941), 201-211.

DEPARTMENT OF MATHEMATICS, COLLEGE OF CHARLESTON, CHARLESTON, SC 29401