DUALITY FOR INFINITE HERMITE SPLINE INTERPOLATION

T.N.T. GOODMAN

1. Introduction. Let $x = (x_i)_{-\infty}^{\infty}$, $\xi = (\xi_i)_{-\infty}^{\infty}$ be non-decreasing sequences in **R** satisfying

(1)
$$|\{i \mid x_i = t\}| + |\{i \mid \xi_i = t\}| \le n + 1,$$

where |S| denotes the number of elements in a set S.

For a positive integer n, we denote by (n, x, ξ) the problem of interpolating data at x by spline functions of degree n with knots at ξ . To make this precise we define for each integer i,

(2)
$$\mu_i = |\{k < i \mid x_k = x_i\}|, \nu_i = |\{k < i \mid \xi_k = \xi_i\}|.$$

Then the space of spline functions of degree n with knots at ξ is defined to be

$$\zeta_n(\xi) := \{ f: (\xi_{-\infty}, \xi_{\infty}) \to \mathbf{R} \mid \text{ for any integer } i \text{ with } \xi_i < \xi_{i+1}, f \text{ coincides on } (\xi_i, \xi_{i+1}) \text{ with a polynomial of degree } \leq n \text{ and } f^{(j)} \text{ is continuous at } \xi_i, 0 \leq j \leq n - \nu_i - 1 \},$$

where $\xi_{\pm\infty} = \lim_{i \to \pm \infty} \xi_i$.

We shall say (n, x, ξ) is *solvable* if for any bounded sequence $(y_i)_{-\infty}^{\infty}$ in **R** there is a unique bounded spline f in $\zeta_n(\xi)$ satisfying

$$(3) f^{(\mu_i)}(x_i) = y_i (i \in \mathbb{Z}).$$

For this to make sense we must have $x_i \in (\xi_{-\infty}, \xi_{\infty})$ $(i \in \mathbb{Z})$.

We note that condition (1) ensures that we do not interpolate at a discontinuity. Defining

$$\Delta x_i = \min\{x_j - x_i \mid x_j > x_i\},\,$$

we define the global mesh ratio of x as

(5)
$$\sup \{ \Delta x_i / \Delta x_j \mid i, j \in \mathbf{Z} \}.$$

A similar definition holds for ξ . We shall prove the following.

THEOREM. If the global mesh ratios of x and ξ are finite and if (n, x, ξ) is solvable, then (n, ξ, x) is solvable.

We remark that this result is known if x and ξ are periodic [4], and also for the corresponding problem when x and ξ are finite [5]. Indeed in both these cases the duality extends to more general Birkhoff spline interpolation. Finally we note that if n is odd and x is strictly increasing with finite global mesh ratio, then (n, x, x) is solvable [2].

2. Proof of the theorem.

LEMMA 1. For any interval I, let $x(I) = |\{i | x_i \in I\}|$ and $\xi(I) = |\{i | \xi_i \in I\}|$. Then if (n, x, ξ) is solvable, x(I) is finite if and only if $\xi(I)$ is finite, and if they are finite then $|x(I) - \xi(I)| \le n + 1$.

PROOF. Suppose (n, x, ξ) is solvable. Take I with $\xi(I)$ finite. Then for any bounded vector $\{y_i | x_i \in I\}$ there is a spline f in $\zeta_n(\xi) | I$ with $f^{(\mu_i)}(x_i) = y_i$ whenever $x_i \in I$. But dim $\zeta_n(\xi) | I \le \xi(I) + n + 1$ and so x(I) is finite with $x(I) \le \xi(I) + n + 1$.

Next take I with x(I) finite. Let ζ denote the space of splines in $\zeta_n(\xi)$ which vanish outside I. If $\dim \zeta > x(I)$, there would be a non-trivial element f of ζ with $f^{(\mu_i)}(x_i) = 0$ for all x_i in I, and hence for all integers i. Since f is bounded this would contradict (n, x, ξ) being solvable. Thus $\dim \zeta \leq x(I)$. But $\dim \zeta \geq \xi(I) - n - 1$ and so $\xi(I)$ is finite with $\xi(I) \leq x(I) + n + 1$.

We now introduce the 'normalised B-splines' defined by

(6)
$$N(t|\xi_i,\ldots,\xi_{i+n+1}) := (\xi_{i+n+1}-\xi_i)[\xi_i,\ldots,\xi_{i+n+1}](\cdot,t)^n_+,$$

where as usual $[\xi_i, \ldots, \xi_{i+n+1}] f$ denotes the divided difference of f at these points. We shall denote $N(.|\xi_i, \ldots, \xi_{i+n+1})$ by N_i . It is well known that N_i is in $\zeta_n(\xi)$ and $N_i(t) \ge 0$ for all t, with $N_i(t) > 0$ if and only if $\xi_i < t < \xi_{i+n+1}$. Moreover any spline f in $\zeta_n(\xi)$ can be expressed uniquely in the form

(7)
$$f(t) = \sum_{-\infty}^{\infty} \beta_j N_j(t)$$

where the sum converges locally uniformly since locally it has only a finite number of non-zero terms, see [3]. Thus for any integer i,

(8)
$$f^{(\mu_i)}(x_i) = y_i \Leftrightarrow \sum_{j=-\infty}^{\infty} N_j^{(\mu_i)}(x_i)\beta_j = y_i.$$

It is shown in [1] that there is a positive constant C_n , independent of ξ , such that for any $\beta = (\beta_i)_{-\infty}^{\infty} \in \mathcal{L}_{\infty}$,

(9)
$$C_n \|\beta\|_{\infty} \leq \|\sum_{i=0}^{\infty} \beta_i N_i\|_{\infty} \leq \|\beta\|_{\infty}.$$

Thus f in $\zeta_n(\xi)$ is bounded if and only if the sequence β of its B-spline

DUALITY 621

coefficients is bounded and so by (8), (n, x, ξ) is solvable if and only if the matrix

(10)
$$N = (N_{ij})_{i,j=-\infty}^{\infty}, \ N_{ij} = N_j^{(\mu_i)}(x_i),$$

represents a bijective map on ℓ_{∞} .

LEMMA 2. If (n, x, ξ) is solvable, then there is an integer m such that for any $i, j, N_{ij} \neq 0$ only when $m - n \leq i - j \leq m + n$, i.e., all the non-zero elements of N are contained within 2n + 1 consecutive diagonals.

PROOF. Take any i, j, k, ℓ with $i - j \le k - \ell$ and $N_{ij} \ne 0 \ne N_{k\ell}$. Then $\xi_j < x_i < \xi_{j+n+1}$, $\xi_\ell < x_k < \xi_{\ell+n+1}$. First suppose $\xi_j < \xi_{\ell+n+1}$. Then applying Lemma 1 with $I = (\xi_j, \xi_{\ell+n+1})$ gives $k - i + 1 \le \ell + n - j + n + 1$ and so $k - \ell \le i - j + 2n$. Next suppose $\xi_j \ge \xi_{\ell+n+1}$. Then Lemma 1 with $I = [\xi_{\ell+n+1}, \xi_j]$ gives $i - k - 1 \ge j - \ell - n - (n+1)$ and so again $k - \ell \le i - j + 2n$. Thus in all cases $0 \le (k - \ell) - (i - j) \le 2n$ and the result follows.

LEMMA 3. For any f in $\zeta_n(x)$, let

(11)
$$\gamma_j = ((-1)^{\mu_j}/n!)\{f^{(n-\mu_j)}(x_j^+) - f^{(n-\mu_j)}(x_j^-)\} \quad (j \in \mathbb{Z}).$$

Then for any integer i,

(12)
$$\sum_{j=-\infty}^{\infty} N^{(\mu_j)}(x_j|\xi_i, \ldots, \xi_{i+n+1}) \gamma_j = (\xi_{i+n+1} - \xi_i)[\xi_i, \ldots, \xi_{i+n+1}]f.$$

PROOF. Take f in $\zeta_n(x)$, i in \mathbb{Z} , and choose any k, ℓ with $x_k \leq \xi_i$, $\xi_{i+n+1} \leq x_{\ell}$. Then for some polynomial p of degree $\leq n$,

$$f(t) = p(t) + \sum_{j=k+1}^{\ell-1} \frac{n!}{(n-\mu_j)!} (-1)^{\mu_j} \gamma_j (t-x_j)_+^{n-\mu_j}, \ x_k \le t < x_{\ell}.$$

Thus, recalling (6),

$$(\xi_{i+n+1} - \xi_i)[\xi_i, \dots, \xi_{i+n+1}]f$$

$$= \sum_{j=k+1}^{r-1} \frac{n!}{(n-\mu_j)!} (-1)^{\mu_j} \gamma_j(\xi_{i+n+1} - \xi_i) \times [\xi_i, \dots, \xi_{i+n+1}](.-x_j)_+^{n-\mu_j}$$

$$= \sum_{i=-\infty}^{\infty} \gamma_j N^{(\mu_j)}(x_j | \xi_i, \dots, \xi_{i+n+1}).$$

LEMMA 4. Take points $t_0 \le t_1 \le \cdots \le t_{n+1}$ with $t_0 < t_{n+1}$. Suppose the distinct elements of $\{t_0, \ldots, t_{n+1}\}$ are z_1, \ldots, z_m with multiplicities $\alpha_1, \ldots, \alpha_m$ respectively, and write

(13)
$$[t_0, \ldots, t_{n+1}]f = \sum_{i=1}^m \sum_{j=0}^{\alpha_i - 1} \lambda_{ij} f^{(j)}(z_i).$$

Then

(14)
$$|\lambda_{ij}| \leq {n-j \choose n-\alpha_i+1} / j! M_i^{n+1-j},$$

where $M_i = \min \{ |z_i - z_k| | k = 1, ..., m, k \neq i \}.$

PROOF. We first show that

(15)
$$\lambda_{ij} = \phi_i^{(\alpha_i - 1 - j)}(z_i)/j!(\alpha_i - 1 - j)!,$$

where $\phi_i(t) := \prod_{k \neq i} (t - z_k)^{-\alpha_k}$.

It is easily verified that for any sufficiently smooth function f, the polynomial

(16)
$$p(t) = \sum_{i=1}^{m} \frac{1}{\phi_i(t)} \sum_{i=0}^{\alpha_i-1} \frac{(t-z_i)^j}{j!} \left[\frac{d^j}{dt^j} (f(t)\phi_i(t)) \right]_{t=z_i}$$

satisfies

(17)
$$p^{(j)}(z_i) = f^{(j)}(z_i), \ j = 0, \ldots, \alpha_i - 1, i = 1, \ldots, m.$$

For $\nu = 0, \ldots, n+1$, we put $f(t) = p_{\nu}(t) := t^{\nu}$ in (16). Then (17) tells us $p(t) \equiv p_{\nu}(t)$ and equating powers of t^{n+1} gives:

$$\begin{split} \delta_{\nu,n+1} &= \sum_{i=1}^{m} \frac{1}{(\alpha_{i}-1)!} \left[\frac{d^{\alpha_{i}-1}}{dt^{\alpha_{i}-1}} \left(p_{\nu}(t) \phi_{i}(t) \right) \right]_{t=z_{i}} \\ &= \sum_{i=1}^{m} \sum_{j=0}^{\alpha_{i}-1} \frac{\phi_{i}^{(\alpha_{i}-1-j)}(z_{i})}{j!(\alpha_{i}-1-j)!} \; p_{\nu}^{(j)}(z_{i}). \end{split}$$

Comparing with (13) then gives (15).

Now
$$\phi_i'(t) = -\phi_i(t) \sum_{j \neq i} \alpha_j(t - z_j)^{-1}$$
, and so
$$\phi_i''(t) = \phi_i(t) \sum_{j \neq i} \alpha_j(t - z_j)^{-1} \sum_{k \neq i} (\alpha_k + \delta_{kj}) (t - z_k)^{-1}.$$

Repeating this procedure we see that for $\nu = 0, 1, 2, \ldots$

$$|\phi_i^{(\nu)}(t)| \le |\phi_i(t)| \frac{(n+\nu+1-\alpha_i)!}{(n+1-\alpha_i)!} \{\min_{k\neq i} |t-z_k|\}^{-\nu}.$$

Substituting into (15) gives (14).

PROOF OF THE THEOREM. We assume the global mesh ratios of x and ξ are finite and (n, x, ξ) is solvable. Without loss of generality we can number the indices of x and ξ so that, from Lemma 2, $N_{ij} \neq 0$ only when $|i-j| \leq n$. We have seen that the matrix N represents a bijection on ℓ_{∞} , which we denote by A. Since the global mesh ratio of ξ is finite, we see from (6) and Lemma 4 that N_{ij} is uniformly bounded, and hence A is a bounded map. The Open Mapping Theorem then tells us that A^{-1} is also bounded. Now it is easily seen that N^T , the transpose of N, represents a bounded map B on ℓ_1 whose adjoint is A. But it can be shown that if a bounded,

DUALITY 623

linear map on a Banach space has a boundedly invertible adjoint, then it must also be boundedly invertible. Hence B is boundedly invertible.

For any f in $\zeta_n(x)$ we define $\gamma(f) = (\gamma_i)_{-\infty}^{\infty}$ by (11), and $\eta(f) = (\eta_i)_{-\infty}^{\infty}$ by

(18)
$$\eta_j = (\xi_{j+n+1} - \xi_j)[\xi_j, \ldots, \xi_{j+n+1}]f.$$

Then Lemma 3 tells us

$$(19) N^T \gamma(f) = \eta(f)$$

We shall first prove uniqueness for the problem (n, ξ, x) ; that is we take any bounded element f of $\zeta_n(x)$ satisfying $f^{(\nu_i)}(\xi_i) = 0$, $i \in \mathbb{Z}$, and we shall show $f \equiv 0$. Now $N^T \gamma(f) = \eta(f) = 0$. Since N^T represents a bounded and boundedly invertible map on ℓ_1 , we can apply Theorem 3 of [2] to show that $\gamma(f)$ is either zero or increases exponentially in at least one direction. More precisely, if $\gamma(f) \neq 0$, then for some index μ and positive constants K, Λ , with $\Lambda > 1$, we have either for all $i > \mu$ or else for all $i < \mu$:

$$\sum_{2ni < j \leq 2n(i+1)} |\gamma_j| \geq K \Lambda^{|i-\mu|}.$$

For any integer i we write $\tilde{N}_i(t) = N(t|x_i, \ldots, x_{i+n+1})$. Now for integers, i, j with $x_i \leq x_j \leq x_{i+n+1}$, we see from Lemma 4 that, since the global mesh ratio of x is finite, there is a constant K_1 , independent of i and j, such that

$$|\tilde{N}_{i}^{(n-\mu_{j})}\left(x_{i}^{+}\right) - \tilde{N}_{i}^{(n-\mu_{j})}\left(x_{i}^{-}\right)| \leq K_{1}.$$

Letting $f = \sum_{-\infty}^{\infty} \beta_i \tilde{N}_i$, we then have for any integer j,

$$\begin{aligned} |\gamma_{j}| &= \left| \frac{1}{n!} \sum_{i=j-2n-1}^{j+n} \beta_{i} \{ \widetilde{N}_{i}^{(n-\mu_{j})}(x_{j}^{+}) - \widetilde{N}_{i}^{(n-\mu_{j})}(x_{j}^{-}) \} \right| \\ &\leq \frac{K_{1}}{n!} \sum_{i=j-2n-1}^{j+n} |\beta_{i}|. \end{aligned}$$

Since f is bounded, β_i is uniformly bounded and so $\gamma(f)$ cannot increase exponentially in either direction. Hence $\gamma(f) = 0$. So f is a polynomial which vanishes infinitely often and so $f \equiv 0$.

We shall next construct the fundamental functions for the problem (n, ξ, x) . Take any integer k and let $\eta = \eta(g_k)$, where g_k denotes any function satisfying $g_k^{(\nu_i)}(\xi_i) = \delta_{ik}$, $i \in \mathbb{Z}$. Choose L_k in $\zeta_n(x)$ with $\gamma(L_k) = B^{-1}\eta$. By altering L_k by a polynomial of degree $\leq n$ we may assume $L_k^{(\nu_i)}(\xi_i) = g_k^{(\nu_i)}(\xi_i)$, $i = \ell, \ldots, \ell + n$, where ℓ is any integer with $\nu_\ell = 0$. But by (19), $\eta(L_k) = N^T \gamma(L_k) = B \gamma(L_k) = \eta = \eta(g_k)$ and so $[\xi_i, \ldots, \xi_{i+n+1}](L_k - g_k) = 0$, $i \in \mathbb{Z}$. Thus for any integer $i, L_k^{(\nu_i)}(\xi_i) = g_k^{(\nu_i)}(\xi_i) = \delta_{ik}$.

Next we make estimates on $L_k(t)$. Suppose t is in $(\xi_{\ell-1}, \xi_{\ell})$ for $\ell \geq k$. Then by (12) with $\gamma(L_k) = (\gamma_i)_{-\infty}^{\infty}$,

$$\sum_{j=-\infty}^{\infty} N^{(\mu_j)}(x_j|t,\,\xi_{\ell+n+1},\,\ldots,\,\xi_{\ell+2n+1})\gamma_j$$

$$= (\xi_{\ell+2n+1}-t)[t,\,\xi_{\ell+n+1},\,\ldots,\,\xi_{\ell+2n+1}]L_k$$

$$= -L_k(t)(t-\xi_{\ell+n+1})^{-1}\cdots(t-\xi_{n+2n+1})^{-1}.$$

Recalling (6), Lemma 4 and that the global mesh ratio of ξ is bounded, we see there is a constant K_2 , independent of k and ℓ , such that

(21)
$$|L_k(t)| \le K_3 \sum_{j=\ell-n-1}^{\ell+2n} |\gamma_j|.$$

By applying a similar argument for t in $(\xi_{\ell-1}, \xi_{\ell})$, $\ell \leq k$, we see there is a constant K_3 such that for any integers k and ℓ , and any t in $(\xi_{\ell-1}, \xi_{\ell})$,

(22)
$$|L_k(t)| \leq K_3 \sum_{j=t-3n-2}^{j-t-2n} |\gamma_j|.$$

Now Theorem 2 of [2] tells us that if the matrix which represents B^{-1} is denoted by (b_{ij}) , then there are positive constant K_4 , λ , with $\lambda < 1$, such that for all i, j,

$$(23) |b_{ij}| \leq K_4 \lambda^{|i-j|}.$$

Since $\gamma(L_k) = B^{-1} \eta$ and $\eta = \eta(L_k)$, on recalling (18) we see for any integer i,

(24)
$$\gamma_i = \sum_{j=-\infty}^{\infty} b_{ij} \gamma_j = \sum_{j=k-2n-1}^{k+n} b_{ij} (\xi_{j+n+1} - \xi_j) [\xi_j, \ldots, \xi_{j+n+1}] L_k.$$

From (23), (24) and Lemma 4, noting that the global mesh ratio of ξ is bounded, there is a constant K_5 such that for any integers i and k.

$$|\gamma_i| \le K_5 \lambda^{|i-k|}.$$

Combining (22) and (25) gives a constant K_6 such that

$$(26) |L_k(t)| \leq K_6 \lambda^{|\ell-k|} (t \in [\xi_{\ell-1}, \xi_{\ell}), k, \ell \in \mathbb{Z}).$$

Finally we take any bounded sequence $(y_i)_{-\infty}^{\infty}$. By (26) the series $\sum_{-\infty}^{\infty} y_i L_i(t)$ converges uniformly on bounded sets to a bounded function f. Clearly f lies in $\zeta_n(x)$ and satisfies $f^{(\nu_j)}(\xi_j) = y_j$, $j \in \mathbb{Z}$. Thus (n, ξ, x) is solvable.

REMARK. If x and ξ are strictly increasing, then the above proof can be easily modified to cover the possibility of x and ξ having infinite global mesh ratios, provided there are positive constants A, α such that

DUALITY 625

$\Delta x_i/\Delta x_j \leq A|i-j|^{\alpha}, \, \Delta \xi_i/\Delta \xi_j \leq A|i-j|^{\alpha} \, (i,j \in \mathbb{Z}, \, i \neq j).$

REFERENCES

- 1. C. de Boor, *The quasi-interpolant as a tool in elementary polynomial spline theory*, in Approximation Theory (G.G. Lorentz, ed.), Academic Press, New York, 1973, 269–276.
- 2. ——, Odd-degree spline interpolation at a biinfinite knot sequence, in Approximation Theory, Bonn 1976 (R. Schaback and K. Scherer eds.), Lecture Notes Math. 556, Springer, Heidelberg, 1976, 30–53.
- 3. H.B. Curry and I.J. Schoenberg, On Polya frequency functions IV. The fundamental spline functions and their limits, J. d'Analyse Math. 17 (1966), 71–107.
- 4. T.N.T. Goodman, Solvability of cardinal spline interpolation problems, to appear in Proc. Royal Soc. Edinburgh, 79A (1983).
- 5. K. Jetter, Birkhoff interpolation by splines, in Approximation Theory II (G.G. Lorentz, C.K. Chui, L.L. Schumaker, eds.), Academic Press, New York, 1976, 405-410.

DEPARTMENT OF MATHEMATICAL SCIENCES, THE UNIVERSITY, DUNDEE DD1 4HN, SCOTLAND

