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DUALITY FOR INFINITE HERMITE SPLINE INTERPOLATION 

T.N.T. GOODMAN 

1. Introduction. Let x = (JC/)^», £ = (&)!5» be non-decreasing sequences 
in R satisfying 

(1) I0'U- = '}I + \{i\b=t}\^n + 1, 

where \S\ denotes the number of elements in a set S. 
For a positive integer «, we denote by (n, x, f) the problem of interpolat­

ing data at x by spline functions of degree n with knots at £. To make this 
precise we define for each integer /, 

(2) fjti = \{k < i\xk = Xi] I, Vi = I {£ < 11 & = &}|. 

Then the space of spline functions of degree n with knots at £ is defined 
to be 

C«(£) := {/: (£-oo, £ J -* R I for any integer / with 

£,. < &+1,/ coincides on(&, f m )w i th a 

polynomial of degree ^ « and / ( '#) is continuous 

a t £ , 0 £j£n- Vi- 1}, 

where £±00 = limf_±00 £,-. 
We shall say (n, x, £) is solvable if for any bounded sequence (yi)-^ in 

R there is a unique bounded spline fin £„(£) satisfying 

(3) / W ( * , ) = J V ( / G Z ) . 

For this to make sense we must have x, e (£_«,, £ «,) (/ e Z). 
We note that condition (1) ensures that we do not interpolate at a dis­

continuity. Defining 

(4) âXi — min{xy — x{ \ Xj > x j , 

we define the global mesh ratio of x as 

(5) sup {AxilAxj\iJeZ}. 

A similar definition holds for £. We shall prove the following. 
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THEOREM. If the global mesh ratios of x and £ are finite and if (n, x, £) 
is solvable, then (n, £, x) is solvable. 

We remark that this result is known if x and £ are periodic [4], and also 
for the corresponding problem when x and £ are finite [5]. Indeed in both 
these cases the duality extends to more general Birkhoff spline interpola­
tion. Finally we note that if n is odd and x is strictly increasing with 
finite global mesh ratio, then (n, x, x) is solvable [2]. 

2. Proof of the theorem. 
LEMMA 1. For any interval I, let x(I) = |{/|;c,-e/}|a/w/£(/)= |{ / |£ , -s /} | . 

Then if(n, x, £) is solvable, x(I) is finite if and only if £(/) is finite, and if 
they are finite then \x(I) - £(/) | ^ n + 1. 

PROOF. Suppose (n, x, £) is solvable. Take / with £(/) finite. Then for 
any bounded vector {yt-1 x{ e /} there is a spline / in £„(£) | / with / ( / / / )(X) 
= y{ whenever x{ e I. But dim £„(£) | / ^ £(/) + n + 1 and so x(I) is finite 
withx(/) ^ £(/) +n + 1. 

Next take / with x(I) finite. Let £ denote the space of splines in £w(£) 
which vanish outside /. If dim £ > x(I), there would be a non-trivial ele­
ment f of £ w i th / ^ fo - ) = 0 for all *,• in /, and hence for all integers /. 
Since / is bounded this would contradict (n, x, £) being solvable. Thus 
dim Ç ^ x(I). But dim Ç ^ £(/) - n - 1 and so £(/) is finite with £(/) 
g x(/) + n + 1. 

We now introduce the 'normalised ^-splines' defined by 

(6) N(t\&, . . . , £,-+„+i) ••= (£;+„+i - £,-)[£,-, . . . , £,-+w+i](. - t)l, 

where as usual [£,-, . . . , £,-+n+i] / denotes the divided difference o f / a t these 
points. We shall denote N(. | £,-, . . . , £,-+n+i) by Nt-. It is well known that 
Nt- is in £„(£) and Nt{t) ^ 0 for all t, with Nt{t) > 0 if and only if £f. < t < 
£,•+„+!• Moreover any spline/in £„(£) can be expressed uniquely in the form 

oo 

(7) m = E ßjNAo 
—oo 

where the sum converges locally uniformly since locally it has only a 
finite number of non-zero terms, see [3]. Thus for any integer /, 

oo 

(8) /<«>(*,) = y,• o S N^ixdßj = Vi-
j=-co 

It is shown in [1] that there is a positive constant Cn, independent of 
£, such that for any ß = (ft-fë» e /œ, 

oo 

(9) CJ/3|LS||E/3ML^II/3IL. 
—oo 

Thus / in ÇM(£) is bounded if and only if the sequence ß of its 2?-spline 
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coefficients is bounded and so by (8), («, x, £) is solvable if and only if the 
matrix 

(10) N - W 7 ) ^ - o o , NiS := Np\Xi\ 

represents a bijective map on /TO. 

LEMMA 2. If(n, x, £) w solvable, then there is an integer m such that for 
any i,j\ Nt-j 7

e 0 only when m — n ^ i — j ^ m + n, i.e., all the non-zero 
elements of N are contained within In + 1 consecutive diagonals. 

PROOF. Take any i, j , k, / with / - j g k - / and N{j ^ 0 ^ Nk/. 
Then £y < *, < £y+w+1, £, < x* < f/+ll+1. First suppose £y < £/+w+1. 
Then applying Lemma 1 with I = (£y, f/+„+i) gives k — i + I ^ / + 
n — j + n + \ and so A: — / ^ i — j + 2«. Next suppose £y =t £/+„+!• 
Then Lemma 1 with / = [£/+w+1, £y] gives / — A:— 1 =: y - / — « — 
(« + 1) and so again k — / ^ i — j + 2n. Thus in all cases 0 ^ (& — / ) 
— (/ — j) ^ 2n and the result follows. 

LEMMA 3. For any fin ^„(x), let 

(i i) 77 = ((- i W K / ^ ' W - /(M-^(*7)} ( / e z). 
Then for any integer /, 

oo 

(12) S OT(*y|£„ • • ., &+„+l) 7-y = (£,-+„+! - £,)&, • - -, £+„+l]/. 
y=-oo 

PROOF. Take/in £„(•*)> i in Z, and choose any A:, /with x* g £,., £f-+n+1 g 
A:/. Then for some polynomial p of degree ^ n, 

fit) = /KO + 2 r *!„v (-iVrX* - *,)r"', xk£t< xr 

Thus, recalling (6), 

(&-WH-1 — £i)[£i» • • • » £*+»+l]/ 

y=Ar-4-l \ n ßj)1 

CO 

y=-co 

LEMMA 4. 7tf&e /?o//if.y tQ S h ^ • • • ^ /M+1 w#/* t0 < tn+1. Suppose 
the distinct elements of {f0, . . . , tn+l) are zh ..., zm with multiplicities 
<Xi, • • -•> ocm respectively, and write 

m a,—1 

(13) [t0, ...,t„+1]f=Z £ XiiPHzt). 
i=l y=o 
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04) Uo^(„_\7+ 1 ) /yW? +w, 

where M; = min {\zt- — zk\\k = 1, . . . , w, A: # i}. 

PROOF. We first show that 

(15) hj = ^-^(zdlJKcCi - 1 - j)U 

where ^ ( 0 •= I W - ^)~a*-
It is easily verified that for any sufficiently smooth function / , the poly 

nomial 

(16) *'> - S m 5 ^ [•& (/w*»L, 
satisfies 

(17) /></>(z,) = /0)(z,), y = 0, . . . , a{ - 1, i = 1, . . . , m. 

For v = 0, . . . , / i + 1, we put / ( 0 = /?v(0 :== /" in (16). Then (17) 
tells us p(t) = pv(t) and equating powers of tn+1 gives: 

m i r da~^ ~i 

m a,—1 (k{at—l-J)(z \ 

Comparing with (13) then gives (15). 

Now $ ( 0 = - 0f.(f) 2/^,- <*/(' - zy)"1, and so 

fi{t) = &(0 E « / ' - ^y)-1 E (a* + **,) (f - z*)"1. 
/=£* tei 

Repeating this procedure we see that for y = 0, 1, 2, . . . , 

Substituting into (15) gives (14). 

PROOF OF THE THEOREM. We assume the global mesh ratios of x and £ 
are finite and (n, x, f) is solvable. Without loss of generality we can num­
ber the indices of x and £ so that, from Lemma 2, N{j ^ 0 only when 
|/ — 7*| ^ n. We have seen that the matrix N represents a bijection on /œ, 
which we denote by A. Since the global mesh ratio of £ is finite, we see from 
(6) and Lemma 4 that N{j is uniformly bounded, and hence A is a bounded 
map. The Open Mapping Theorem then tells us that A~l is also bounded. 
Now it is easily seen that NT, the transpose of N, represents a bounded 
map B on /x whose adjoint is A. But it can be shown that if a bounded, 
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linear map on a Banach space has a boundedly invertible adjoint, then it 
must also be boundedly invertible. Hence B is boundedly invertible. 

For any/in £„(*) we define r(f) ~ (ry)2» by (11), and V(f) » (9y)S» by 

(18) fly - (£y+w+l - fy)[fy, . . ., Ç y ^ i ] / 

Then Lemma 3 tells us 

(19) NTjif) = ,?(/) 

We shall first prove uniqueness for the problem («, f, x); that is we 
take any bounded element/of £n(x) satisfying fiVi)(£t) = 0, i e Z, and we 
shall show/ = 0. Now NTf(f) = rj(f) = 0. Since NT represents a bounded 
and boundedly invertible map on /l9 we can apply Theorem 3 of [2] 
to show that j-(f) is either zero or increases exponentially in at least one 
direction. More precisely, if f(f) ^ 0, then for some index p and positive 
constants K, A, with A > 1, we have either for all i > /u or else for all 
/ < //: 

2 \ïj\^KA^. 
2ni<j£2n(i+i) 

For any integer i we write Nt(t) = #(*!*,•, . . . , xi+n+1). Now for integers, 
/, j with xt ^ Xy g *,•+„+!, w e s e e from Lemma 4 that, since the global 
mesh ratio of x is finite, there is a constant Kh independent of i and j \ 
such that 

(20) \Njn'^ (JC+) - Np-vi (xj)\ g ATi. 

Letting/ = £-oo /3,-JV,-, we then have for any integer/ 

I" 1 *=y-2»-i 

W I i=J-2n-l 

Since / i s bounded, /3f- is uniformly bounded and so f(f) cannot increase 
exponentially in either direction. Hence y{f) = 0. So / is a polynomial 
which vanishes infinitely often and s o / = 0. 

We shall next construct the fundamental functions for the problem 
(n, £, x). Take any integer k and let yj = 7j(gk)9 where gk denotes any 
function satisfying g ^ f ö ) = 5ik, i s Z. Choose Lk in £„(x) with (̂Z,*) = 
B~l7]. By altering LÄ by a polynomial of degree ^ « we may assume 
£iv,0(£,•) = £iv,)(&X i = / , . . . , / + /i, where / is any integer with 
v, = 0. But by (19), v(Lk) = N*j{Là = Br(Lk) = 9 = ^(g,) and so 
[&> • • • > &+*ni(Lk-gk) = 0, / s Z . Thus for any integer /, Ljj^f,-) = 
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Next we make estimates on Lk{t). Suppose t is in (£,_!, £/) for / ^ k. 
Then by (12) with r(Lk) = ( r , ) ^ , 

oo 

2 N<»i\xAt, Ç/+n+1, . . . . £/+2„+i)?7 
/"=—oo 

= (£/+2»+l "" OR? £/+»-H> • • • > £/+2»+lJ^ 

= -L*(0( ' - ^ + w + i ) - 1 • • • ( * - Ç^an-i)-1. 

Recalling (6), Lemma 4 and that the global mesh ratio of £ is bounded, 
we see there is a constant J ^ independent of A: and / , such that 

/+2n 

(2i) |£*(0I g * 3 E \rj\-
j-/—n-\ 

By applying a similar argument for / in (£>_!, f/), / ^ &, we see there is 
a constant ÄT3 such that for any integers k and / , and any / in (£,_!, £,), 

/+2n 

(22) \Lh(t)\ZK3 E \rj\-
j=t-Zn-2 

Now Theorem 2 of [2] tells us that if the matrix which represents B~x 

is denoted by (bt-j), then there are positive constant K±, A, with À < 1, 
such that for all /,y, 

(23) \b<j\ è W". 

Since 7-(L )̂ = i?-137 and rj = ^(Z^), on recalling (18) we see for any 
integer i, 

oo k+n 

(24) y-,- = 2 biflli = ZI Mfy+»+i - £/)[£/> • • •> £/+>i+il£*-
/=—oo j—k—2n—l 

From (23), (24) and Lemma 4, noting that the global mesh ratio of 
£ is bounded, there is a constant K5 such that for any integers / and k. 

(25) l TV I ^ j y ™ . 

Combining (22) and (25) gives a constant f̂6 such that 

(26) |L,(OI ^ KJ}'-*Kt G [^_1? £,), fc, / e Z). 

Finally we take any bounded sequence (>>f-)-oo. By (26) the series 
Z-oo.V|£|(0 converges uniformly on bounded sets to a bounded func­
tion / . Clearly / lies in £»(*) and satisfies /(V;)(£y) = yj9 j G Z. Thus 
(«, £, x) is solvable. 

REMARK. If x and £ are strictly increasing, then the above proof can be 
easily modified to cover the possibility of x and £ having infinite global 
mesh ratios, provided there are positive constants A, a such that 

file:///rj/-
file:///rj/-
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Axijâxj £A\i- j \ * 9 ablas, ûA\i- j \ * (i, je Z, i * j). 
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