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EXTENSIONS OF SEVERAL SUMMATION
FORMULAE OF RAMANUJAN USING THE
CALCULUS OF RESIDUES

PETER J. FORRESTER

1. Introduction. Using the theory of modular transformations, Berndt
[1, 2] has recently generalized many of Ramanujan’s summation formulae,
showing them to be particular examples within a large class of similar
results. Berndt’s approach is of further interest for the fact that most of
the large number of summation theorems contained in [1] and [2] are
consequences of a few main theorems which thus provides a unification of
many summation theorems that had in the past been established using a
variety of unrelated methods.

Our aim in this paper is similar to that of Berndt in that Ramanujan’s
summation formulae will be rederived and generalized using a few main
theorems. However, as our chief tool will be Cauchy’s theorem, our ex-
tensions will mostly be in a different direction to that of Berndt. To il-
lustrate the extensions obtained here, consider Ramanujan’s formula

(1.1) g Mt Buyao
2 gz Z 1 T 2(@M + 2)°

where B; denotes the j* Bernoulli number, and M is used here and
throughout to denote any positive integer. We will show (1.1) results
from the same summation formula as do previously unknown sums such
as

(1.2) i": nt@M+D-Y(e=mn cosh 4/ 2 7wn + e*cos 4/ 2 wn) _ Byom+y
’ = sinh zn(cosh 4/ 2 zn — cos 4/ 2 zn) 42M +1)

(take kK = 2, 4in (2.15) to obtain (1.1), (1.2) respectively).
A curious result deducible immediately from (1.1) is

o pAMAL Lo x4M+l
(1.3) 2 gt — [ = jo g s

We shall deduce (1.3) without using (1.1). From this derivation we dis-
cover other equalities between series and integrals, of which

Received by the editors on March 25, 1982, and in revised form on September 10,

1982.
Copyright © 1983 Rocky Mountain Mathematics Consortium

557



558 P.J. FORRESTER

—27n

[ee]
1.4 ntM+1 cos gn —
(14 ,,Zz:l sinh zn

oo 21rx
=2 j XM+ cos gx €
0 sinh 7x

is typical (take » = 1, 2 in (3.8) to obtain (1.3), (1.4) respeciively).

2. One-dimensional summation formulae. We will formulate our main
summation theorem immediately.

THEOREM 2.1. Suppose the following hypotheses are satisfied:

(1) f(2) is an even function with a countably infinite number of zeros, all
simple, except maybe at the origin where higher order zeros are allowed,
and 1/f(2) is analytic except for poles occurring at the zeros of f. We label
the zeros zy (= 0, if appropriate), +z;, +z,, ... .

(ii) If w = e’k (k an integer > 1), then the zeros of f(w’z) (+ = 0,1,
... ,k — 1) do not intersect, except maybe at the origin.

(iii) There exists a sequence of contours ['y such that as K — oo, [k is
unbounded in all directions, and 1/[[%2} f(w'z) = O(e'?") (¢ > 0) on
I forall K large enough.

Let N be the smallest integer such that

k—1
lim zz"NO‘l//];[of(w’z) =0;

z—0

the existence of Ny following from hypothesis (i). Then

@1 5 -1 @) o) = o,

for all integers N = N,
Proor. Consider the integral

= L I Z2kN—-1 / = f(w'z) dz
27i ) ry /l;L ’

By hypothesis (iii)
2.2) lim I, = 0.

K—o0

By hypotheses (i) and (ii) the poles of the integrand are simple for N = N,
and occur at +w%*~z,n = 1,2, ..., with corresponding residue

k=1
VI @[T S0v2)
Hence by Cauchy’s residue theorem,
00 k—1
23) Jim ;e = 2k 2 ZNf ’(zn)(ﬂlf(W’zn)), N z No.
—00 n=1 /=

Equating (2.3) and (2.2), (2.1) is immediate.
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A choice of function particularly well suited to application in theorem
2.1 is f(z) = z7%J(z), v > —1, where J, denotes the Bessel function
of order v. For then it is known [3, Ch. 17] that all the zeros are real and
unequal and f(z) is an even analytic function so hypotheses (i) and (ii) are
satisfied. Furthermore, from the large z asymptotic expansion of J,(z),
hypothesis (iii) is satisfied by selecting a circle with circumference bisecting
the K and (K + 1)t zero, and since at z = 0 z7J(2) = 1/22I'(v + 1),
Ny = 1. Recalling (d/dz){z>J(2)} = —z*J,41(2), we have from theorem
2.1

24 3 o1, @)L A = 0,

where z, denotes that nth positive zero of J,(z). For example, when vy =
—1/2 sothat J, = (2/xz)'/2 cos z, and k is odd, (2.4) reduces to

® —1D*(n — 1/2)2kM-1
Y o i L i O Ay R 7
/1_=[1 (cos { n(n——)snn7}+cos{ n'(n—7->cos % })

while if k is even

=0

@6 3

n=1

— (=17 (n — 1/2)2M-1
cosh 7c(n - _;_)“//12;[)1—1 (cosh{zn'( - -;—)sm ?} + cos{2n< - —;—)cos 7%/})

When y = 1/2 so that J,(z) = (2/#z)Y? sin z, (2.4) shows for k odd

(= D)mnk@M+D-1

@7 Z_: #=D7Z
=1 ] (cosh{2zn sin z/ [k} — cos{2zn cos z//k})

/=1
and for k even

(= 1)nk@M+D~1

239 Z_: - ("1 .
"=lsinhzn [ (cosh{2zn sin z/[k}—cos{2zn cos z/[k})

/=1

= 0.

The case k = 2 in (2.6) was stated as a problem by Ramanujan [7] (see
also [8, p. 326]), and the cases k = 2 of (2.8) and k = 3 of (2.5) are due to
Cauchy [3, p. 362 and p. 317 resp.] who also used the calculus of residues
to obtain the results.

To obtain a generalization of (1.1), we choose f(z) = sin zz/z cos muz,
0 < g <1 in theorem 2.1. By subtracting then adding the term
(— 1)"nk@M+D-1 cos gun([] %=1 sin zunw’) in the numerator of the result-
ing equation, we deduce, if k is odd
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(k=1)72
o MECMFID=1(—T)rcosmun ] <cosh{27r,un sin ”—k/} - cos{27mn cosz%/})
- nZ:Il =YY =

[T (cosh{2zn sin z/ [k} — cos{2zn cos n/[k})
/=1

o —1)
= Y nk@M+D-I(— 1)" cos zun <(k]'1[/2<cosh {2n:,un sin 7%}

n=1 /=1

(k=1)/2
2.9 + cos{2 T pn COS 7—%}) — I (cosh {2zun sin z//k}

/=1

(k

—1)/2

— cos {2 wun cos s/ /k})) X < [1 (cosh{2zn sin n [k}
/=1

— cos{2 zn cos w/ /k}))*l,

while if k is even

a2
n=1
o i (k21 s -y
nk@M+D-1(— )yscoswunsinh zun [ <cosh {27:/m sin7= } —cos {2 TN CosT })
=1
T &)1
sinhnz [[ (cosh{2zn sin n//k}—cos{2nncos ns[k})
/=1
o (k21 . ws
(2.10) = Zlnk‘ZM“)—l(— 1)cos nm(cosh mun [] <(cosh{27z,un sin 7?}
n= /=1
iy ) (k21 )
+ cos{2 mun Ccos —k—}>— sinh zun [[ (cosh{2zunsin zs/k}

/=1

) (k/2)-1
—cos{2 muncos ﬂ//k})) X (smh zn [ (cosh{2zun sin z//k}
/=1

— cos{2 znn cos n//k})>_l.

We propose to take the limit x4 — 1~ in both (2.9) and (2.10). Since
the right hand sides of both equations converge uniformly in g for0 < 4

<1 (at least) we merely put 4 = 1 there. It remains to take the limit on
the left hand sides. We do this using the following theorem.

THEOREM 2.2. Let y; be arbitrary, ag > aj, a; > 0 and B;real (j = 1,2,
...y X). Let

00

B(y) = Y, nk@N+D=1(— 1) cos mun Cu),

n=1

where
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X
e—oll—)n e~ inuebinui
+ 7€ e
Ji=1

C (/j) = v
I+ 2 ypjeemefim
j=1
Then
1 - =
lim B(y) = {C( k(2N + 1)), ap nicot 7rL/2k’
1" 0, otherwise

where it is assumed k > 1 and fixed (not necessarily an integer), N = 0,
1,2, ..., and L is any positive odd integer such that L[k < 1.

PROOF, Since a; > 0 for each j there exists an integer N, such that for
n = No, | 2%, remef™| < 1. We can thus write for n 2 N,

X
C( ﬂ) = e—aoll—wn + f: (_ 1) j e—ao(l—wn (Z Tke—aknyeﬂ,,nm) 7
J=1 k=1

[ X X
- 1)/ —agnofent)j —apnppfrnui
+ 33 (= IV, pueneiy) (3 pyeemebin
e~ + Cy(1) + Cop),

say.
Hence
. Ng—1
lim B(y) = i: nk@N+D—1
=1 n=1
(2.11) + lim nk@N+D=1(— [)» cos mun e~%1—H"

u=1~ n=No
+ lim ZN nkC@N+D-1 (1) cos wun(Cy(w) + Cop)).
u=17 n=No

But the last term in (2.11) converges uniformly for 0 < x < 1 (at least),
and since Cy(1) = — Cy(1), we have

(2.12) lirln B(y) = lim )] nk@NH=1(—1)" cos gun e~ xl=wn,
s p—1" n=1

Applying the Poisson summation formula to (2.12), which is valid for
u# < 1, we have

lim B(u)

w1

. cos{k(2N+ l)artan<@j%ln—£1#;—m>}

(2.13)  =TI'(k2N+ 1)) llm 2 @1 = %+ Qrn+a(l — )P FENFH72

n'_—OO

k(2N +1) art
+ I'(k2N + 1)) hm (aZ(ZOS{ )(2_,_7,2(1)_ mz;%zﬁ))/z’
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where we have separated off the n = 0 term. Thus for the limit to exist
we require cos{k(2N + 1) artan z/ay} = 0, i.e., @y = m cot zL/2k.
Assuming this condition, and using the uniform convergence with respect
to u of the first term in (2.13), we have

lim B() = %%{ﬁ{_» 2 cos( M2 D) cean + 1))

= {(1 — k(2N + 1)),

where to obtain the last line we have used the functional equation of the
Riemann zeta function [9, p. 269].

Return to (2.9) and (2.10) we see both can be written in the form of
theorem 2.2 with @y = 2z 1 %P2 sin z//k if k is odd and ey = 7 + 2%
Y #2-1sin g//k if k is even. It is a simple exercise in summing geometric
series to show that in both cases oy = 7 cot z/2k. Hence applying theorem
2.2 and recalling that if k is odd {(1 — k2N + 1)) = 0[9, p. 268] we de-
duce from (2.9)

0O
Z nkCM+1-1

n=1
(kﬁn/z<cosh{27m sin ) + cos {27m cos 7,";/})
(2.14) (k’_=1§/2 :/ N =0,
/];[1 <cosh{27m sin ?} — cos {27z:n cos 7 })

while if k is even, {(1 — k(M + 1)) = — B,ou+n/kQM + 1) [9, p. 268],
so from (2.10) we have

00
Z nkCM+1-1

n=1
(k/2)—1 T/
coshzn [] <cosh{2 znsin %4 } + cos {2 TN COS 5= })
/=1 k k l
(2.15) Ny Ay X oy 5 o\
sinh zn /];[1 (cos { znsin 5= % }— cos{ nncosTc-}>

= Bieu+n/k2M + 1).

As commented in §1 the case kK = 2 in (2.15) is the summation theorem
generally attributed to Ramanujan (it was pointed out by Berndt [1] that
(1.1) was in fact discovered by Glaisher [5]).

Summation formulae similar to (2.14) and (2.15) can be deduced from
theorem 2.1 by choosing f(z) = cos #z/z sin wuz, 0 < x < 1, and then
establishing the analogues of (2.9) and (2.10). To take the limit g — 1~
on the left hand side we require the following theorem:

THEOREM 2.3. Let 7; be arbitrary, ag > aj, a; > 0 and §; real (j =1,
2,...,X). Then
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lim Z] (= DHn —1 [2)@N+D-1sin gy(n — 1/2)

1= =1
e—eol-mn=1/2) 4 Z: T,e-a,'(n—l/Z)peﬁ,'(n-—l/Z);a'
X
1 + ,-21: 7 1D By n=1/2)i
(—21-k@N+D + 1)L(1 — k(2N + l)), ay = wcot wL[2k
N { 0, otherwise ’

where it is assumed k > 1 and fixed, N = 0, 1, 2, . .., and L is any positive
odd integer such that L/k < 1.

Since the proof of theorem 2.3 is substantially similar to that of theorem
2.2 it will not be given. Employing theorem 2.3 then shows, if k is odd

& EC2M+1~1
Z(n-7)
2

n=1
(Ie—l)/Z

e.16) [ M (cosh{27: n—

*=1)72
<cos {27z<n

while if k is even

)sm_} —cos {27z(n——l->cos%/}> e

kC2M+1) -1

@.17) f_::l(n—i)

sinhn( 1)“Zl_l(cosh{M("—é—)Si“%/} ‘°°S{2”< %)msf })
coshzz< >" 1 <cosh (27:<n—%>5m7}+cos{27z< ~Loos1)

= (1 — 21-FCMHD) B opryay (KM + 1).
The case k = 2 of (2.17) was first derived by Glaisher [5, p. 82].

l\’I

N‘n—t

3. Some formulae relating infinite series to definite integrals. In this
section we will derive the cases k = 2 of (2.15) and (2.17) from theorem
2.1 in another way which leads us to formulae relating definite integrals
to series. By selecting k = 2 and f(z) = z7/(2)/22/_(p2), 0 < p < 1,
v > —1lintheorem 2.1 and then subtracting and adding zi™™-1J_(uz,)
I(uz,) in the numerator of the resulting expression (where 7, denotes the
Bessel function of order v of pure imaginary argument, and z, denotes
the nth positive zero of J,), we conclude
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DI LV ER VA PR AN CATAE)
(3.1 .

= gl zg(M_HJ)_lj—v(ﬂzn)(l—v(#zn) - Iv(,uzn))/‘]v+l(zn)lv(zn)'

From the asymptotic expansion of I, [9, p. 373] I_(x) — I(x) ~ (2/zx)V/2
e~*sin zry as x — co. Hence the right hand side of (3.1) is convergent for
4 > 0 while the left hand side diverges for x = 1. However, we can ex-
press the left hand side as a contour integral which is convergent for all
> 0. Consider the contour integral

_ L j‘is+°° z4 WM+ -1 I_V(ILLZ)JV(‘L&Z) dz
- 272'1 fe—o0 I v(Z)Jv(z) ’

where 0 < ¢ < zy, z; denoting the first positive zero of J,, and the many-
valued function z¢¥+» -1 js made definite by selecting arg(z) to assume its
principal value. Let 7, denote the semi-circle with centre ig, radius Ry,
beginning at ie + Ry and being enscribed in the positive direction, Ry
being chosen so that zy < Ry — ¢ < zy43. Then for 0 < 4 < 1 we can
add to the contour of integration the contour limy.,, t5 wWithout changing
the value of K, since the integrand is O(e™'?'), ¢ > 0 on 7. We now have
a closed contour and further, the integrand is analytic within this region
apart from simple poles at the zeros of 7,(z). Evaluating the residues at
these poles, we have by Cauchy’s theorem

)

(32 K= —emv ), M J_(uz,)I(uz,) o 11(2,)L(2,).

n=1

On the other hand, deforming the path of integration so that it touches
the origin, and then on the path from ie — o to 0 changing variables
z = ez’ (which is permissible since the integrand is one-valued in the
cut plane from — oo to 0) we have

ietoo —ietoo\ Z4(M+v)—1 -
2K = <I0+ _ eg,n',,j- )Z ) J,,(IUZ)(I_,,(ILAZ) Iv(ﬂz)) dz

(3 3) 0 Jv(z)lv(z)
. iehoo s ~ietoo\z4 M+ —1 J ( #z) I( /uz)
+ (.f v ¢ f 0 ) 14E 16

where we have subtracted and added z4M+"-1J (uz)[(uz) in the numera-
tor of the integrand. Consider the last integral in (3.3). Changing variables
z = e ™/2 7' we see

j_ie oo 24T () ()
. L(2)I(2)

. fetico ZAMAW-1 J (ﬂz)] (#z)
= e—2miv B v Y
akand ! oL "
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Hence the last term in (3.3) can be written

b (0 \ KD TG )
<j0 + Ie-i—ioo/ Jv(z)lv(z) =7

On the path from ie + oo to ¢ + ioco the integrand is O(e™'#'), ¢ > 0,
so we can add this path of integration to J without changing its value.
But we then have a closed contour, and since the integrand is analytic
within the enclosed region, we have by Cauchy’s theorem

(34 J=0.

Substituting (3.4) into (3.3) and then equating (3.3) and (3.2), we see we
have the desired contour integral representation convergent for g > 0.
Substituting (3.1) into the resulting equation, we then have

0o LA(M+v)—1 _
2mi eviv 3 2 Tz ) Ifpiz,) = 1(pzz,))

( 3. 5) n=1 J u+1(2 n)I v(z n)
(e () 401 J (uz)(I_(uz) — I(uz))
=(Js =] ) AGIG) .

In particular, when g = 1, we can collapse the contours of integration
onto the real axis. Equating real or imaginary parts shows

3 z M J_(2,)U_(z,) — L(z,))

3.6 n=1 Jv+l(zn)lv(zn)
3.6) __ sinmy .‘-m XM -1 (I_(x) — L(x)) i
(3 0 Iv(x) '
We can also collapse the path of integration onto the real axis when
v = —1/2 or 1/2 and g is a positive odd or positive integer respectively.

In these cases we conclude from (3.5) after some simple manipulation

& (n — 1/2)™M-3sin(zp(n — 1/2)) e p»-1/2
= sin(z(n — 1/2)) cosh z(n — 1/2)

3.7 _ ro X4M=3 cos(mpx) e
o cos(zx)cosh zx
and
(.8) 5‘1 n*M+1 cos(zsn) e ™" _ j'°°x4M +1 sin(z/x) e */*
) = cos(wn) sinh zn o sin(zx)sinh zx ’

where p denotes an odd positive integer, and ~ a positive integer. We note
that in the cases p = 1 and » = 1 we can evaluate the integrals, reclaiming
summation formulae (2.17) and (2.15) in the case k = 2.

4. A second class of one-dimensional summation formulae. When M = 0,
summation formula (1.1) assumes the modified form
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@.1) 3 nf(ern — 1) = 1/24 — 1/8x.
n=1
This can be derived from a modified form of theorem 2.1.

THEOREM 4.1. Suppose the three hypotheses of theorem 2.1 are satisfied,
and let Ny be defined as in the statement of that theorem. Then

) Z2k(No—M )—1 Zz2k(N 0—M)—1
42 »—r 0 = -3 k residue at the origin of Z =\
= rE([1102) 11 /w2
=
where k is any integer > 1 and, as always, M denotes any positive integer.
ProoOF. Apply Cauchy’s theorem to the integral

1 awNo-M—-1 /T e
A (z 0 / /];[0 fw z))dz

in the limit K — oo.
We will restrict our attention to the cases in which z2*We=D=1/ T4} f(w’z)
has a simple pole at z = 0. Thus (4.2) assumes the form

22k NgD-1 1 ZZk(No—l)

(4.3) . lim
"= f(z,) (':r_li f(W’z,,)) Ko n f(w/z)

By choosing f(z) = zJ,(z), v > —1, we can apply (4.3) with Ny = 1
since z%J(z) = 1/22I'(v + 1) # 0 for v > — 1. Hence with this choice
of £, (4.3) reads

“4 Z} z” 1/Jv+1(z,,)<ﬂ Jwz )) 35 2T+ D),

where z, denotes the ath positive zero of J,. If we further specialize,
selecting k = 2, v = 1/2 in (4.4), we see

@.5) 3 (= 1y njsinh zn = —1/4z

n=1

whiley = 1/2and k = 3 shows

(4.6) 33 n2f(1— (= 1) cosh 74/ n) = 1/1272,

n=1
Summation formula (4.5) was first proved by Cauchy [3, p. 361], while
(4.6) can be found in Berndt [1, p. 163].

To establish (4.1) we choose f(z) = sin #z/ z cos zuz, 0 < p < 1, then
after deducing the analogues of (2.9) and (2.10) and taking the limit on the
left hand side using theorem 2.2 with N = 0, we conclude, for k& odd
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(k=1)/2 y
. 1 (cosh{Z h sin % } + cos{2 Th COS 71"; })
”Zzzl"k_l S puy N L
@7 /];[1 (cosh{2 h sin ?} - cos{2 7n €os 7= })
1 1 k-1
= - %)
and for k even
(k/2)—1
o coshzn I'_[ (cosh(2 ansin %4 T )+ cos(2 TN COS 71";/»
=] e = 74 %\ !
4.8) sinh zn .l;[1 (cosh(2 TRSsin 5~ T )— cos<2 N Cos 5= »

= Bs _ L(L)H
“ %k 2%\=m) -
On choosing k = 2 in (4.8) and recalling B, = 1/6, we reclaim (4.1).

As our final conclusion from (4.3) we choose k = 2 and f(z) = z—J(2)/
(p2PJ_(uz), 0 < ¢ < 1. We then have, analogous to (3.1)

o o 2 W pz)fz) 1 (22T + 1)
+ ___

4.9) = La(Z)(z,) I'(—=v+1)
s i 2 Tz ) pz,) = Lpz,)
J1(z)1(2,)

Recalling our analysis of the integral denoted by K in section 3, we note
(3.2), (3.3) and (3.4) are valid for M = 0 providing v > O (this ensures
the validity of deforming the contour to touch the origin). We thus have
the contour integral representation

©  ,4(v—1)
— 271'1.87"." Z Zy J—v(ﬂzn) Iv(,uzn)

(4 10) n=1 v+1(zn)lv(zn)
’ _ (Its‘i‘oo _ iy 5—15“‘00\ 1] (Z,U)(I—v(luz) v(#z)) d
0 o/ J(2)1,(2)

Substituting (4.10) in (4.9) and then choosing x = 1 we can collapse the
contours of integration onto the real axis, with the result

__ singmy -“w xY(I_(x) — I(x)) dx + L <22"1’(v+ 1))

0 L(x) I'(—y +1)
- i ‘z_gty____l J -—v(zn)(l —v(zn) - v(z_g)l
n=1 Ju+1(zn)1v(zn)
valid for vy > 0, and where z, denotes the nth positive zero of J,. We can
also collapse the path of integration onto the real axis when v = 1/2
and y is a positive integer. In this case we conclude from (4.9) and (4.10)
the identity

@.11)
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4.12) jw x sin (w/x) e ™* 1 _ <& ncos(zsn) e
' o sin(zx) sinh zx 4z = £ "cos(zn) sinh zn ’

where ~ denotes any positive integer. Notice that when = 1 we can
evaluate the integral to deduce (4.1).

5. Multidimensional summation formulae. We will now formulate some
d-dimensional summation formulae using Cauchy’s theorem. This ap-
roach to evaluating multiple series is due to Glasser and Zucker [6, p. 132],
who proved theorem 5.1(b) below in the special case f(z) = sinz, k = 1,
d=2.

THEOREM 5.1. Let f be and odd function with a countably infinite number
of zeros, all real, and suppose 1/f is analytic except at the zeros of f. Label
the zeros zy (= O if appropriate), +zy, +z,, .... Further, suppose
hypothesis (iii) of theorem 2.1 is satisfied. Then

(a) if f does not have a zero at the origin,

k o
Syp = Z Z e(@Y—1)mi) /2

Y=1 /1,72 ..574=1

5.1) y (22 + 22 4 oo 4 P2 e
d : =0,
1) S(et@Y—Dmil2k(z2k 4. 72k ... ZZ/2E)
7=1

(b) if f has a first order zero at the origin,

(52) S = %(zf_—(}»ﬂﬁ:@; 1 T}+k— 1))(2 ¥ I/ﬁ -,
=J

where d and k are any positive integers.
Proor. Consider the integral

1 sz
= 27i e (ZZk + aZk)(Zk—l)/2k f(e((ZX—l)m')/Zk(ZZk + aZk)l/Zk) f(z)

LK dZ,
where k and X are positive integers such that X < k and it is assumed
a > 0. By hypothesis (iii) of theorem 2.1,
(5.3) Igl_l)l;lo Ly =0.

Case (a). The integrand is analytic apart from poles which occur at
7= 4z, +e@-DOT(2 4 g22% Y =1,2, ..., k.

The sum of the residues from the poles at z = +z, is, in the limit
K— o

G4H 2 z

po=} (Zik + a2k)(2k—-l)/Zkf(e((ZX—l)/Zk)m'(z%k + aZk)l/Zk) f'(zn) ’
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while the sum of the residues from the poles at z = + e(@Y—Da)/2
(22 + a?¥)V/2k equals, in the limit K — oo

3 Y=X)mi) 'k (z2k + q2k)1/2k
(5.5) 2y§18 7 21 F'(z,) f(eRV—DxdT2K(72F 1 gZk)L/ZR) *

Equating the sum of (5.4) and (5.5) to (5.3), we have

222 + a%
"Z;l'(zgk + Q) BDTB f7(7 ) f(e XD /2H(2k + g2k)L/2F)
g (22 + q2¥)V/2h
+ ) el@=Xmd/k Z F7(z,) f(eCT—Dri 722k 1. g2R)1/2R)

Y=1 n=1
Y#X

= 0.

By choosing a = (2% + 2% + ... + zZ%)/%, multiplying through by
f'@z,)f' @z, - f'(z,) and then summing over ¢« from 1 to oo, we have
after a little manipulation of the first sum

d+1 oo (zgf + 2‘2,’; 4 e + ZZk)l/Zk
d d
- ,/4—1<H1 e, ) f(eU2X-DmD /2H(z2E 4 72 . .« . Z2H)1126)
k =)
(5.6) + e Y=X01) /k
A ,1,,2?9,,,,:1
Y2X
» (2% + 2% + ... 4 ZZ)V%

<H fi(z,) fet@r-Dmd/2h(z2 4 2% 4 ... 4 g2/

To obtain (5.1) from (5.6), multiply through by e¢@X—Dz/2k apd then sum
over X from 1 to k. This shows

G.7) (d'gl +k—l>Sd_,,=0

from which (5.1) is immediate.

Case (b). We must now consider the pole of the integrand occurring at
z= + el@-Dxdi2k q Y =1, 2, ..., k. The sum of the residues at these
points is

a /kf'(o))yZ:e((Y—X)m')/k al f(et@Y=Dx2k g),

If we include this extra term in the steps leading to (5.7), we see the term
—(1/21'(0))S -1, must replace zero on the right hand side of (5.7). Solving
the resulting difference equation, we conclude

_ —1 d—2
68 Sun=(470y) 1(‘:130 (le}'; — 1>>S1,k.
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It is straightforward to evaluate S, by considering the contour integral

27:;l j‘ — dz
i Ik f(z)f(e((ZX Dxd) /2% z) .
We find

(59 S1e = —(12(f"(0)) %/2 + k — 1)).

Substituting (5.9) in (5.8) gives (5.2).

We will restrict our applications of theorem 5.1 to the case k = 1.
Since f(z) = cos znz/sin wuz, 0 < u < 1, satisfies the hypotheses for the
validity of (5.1), we conclude

o coshzuls+g_
Z’: (= Wa(}ll Sz </j - %» |4+ 81l cosh ﬁT/I + gg_11//22|'
(5.10)

wtea (1] si 1 /+g
=2 Z/: (= 1)rrtezt-—ta <j]':llsm n:,u(/j —7» efr<1+'m/+£1/iu/21+ -

where the sum is over the d-dimensional integer lattice, and g, denotes the
d-dimensional vector with all components x. Taking the limit gz — 1~
on both sides of (5.10), we will obtain the d-dimensional analogue of (2.17)
in the case k = 2, M = 1. To take the limit on the left hand side we first
require some notation. Let

_ e—Zﬂ:ih'/ i
=L GrD. T+ )7

denote the Epstein zeta function and its analytic continuation, where T
is a positive definite matrix, and the sum is over the d-dimensional integer
lattice, omitting » = —gif gis a liattce vector. We then have the following
result.

Ziﬁ‘(T? 5) Re (s) > d

THEOREM 5.2.

i o (1T si h zpls + g1l
lim )] (=1)teoet +’d< sin (/,‘ - l)) 7+ gy SOSATLI T 812l
lim, Z/: (=1 g T 5 )¢ + 8172l Coh 27 T Eoral

=(=1)¢Z

81/2
0

; 1),

where I denotes the identity matrix.

ProoOF. Denote
D(p) = (=1)4 25 (= 1)rteattea
'

4 I cosh wuls + g_1,9|
<,I.:.ll sin 75/4</j 7)|/ + g_1/2l cosh s 81l
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Then proceeding as in (2.11) and (2.12) of the proof of theorem 2.2 we have
(5.11) lim D(w) = lim Z |/ + g_1/9 e~ TU—p¢+g_1/2l grig A=) (¢+g—1/2),
p—1" 1= s .

By using the d-dimensional Poisson summation formula and then adopting
a simple change of variables, (5.11) shows

(5_12) lim D(/.t) = lim Z (__ 1)/1+/2+~--/,,j. |h| (1= hi grih-Qrtga-mw) Jh.
p—1- e R4

If we denote the integral in (5.12) by K and rewrite the factor e=*1—»h!
using the integral identity

(5.13) e~*R = (2/4/T)R j: e R g/t gy

we have

2 (=
VT Jo
The integral over h is now essentially of the Gaussian type, and can be
computed immediately. We then have

K = e(—m21—m2/4? Iy I h2 e—h2%+rih-(+1/2ga-1) Jh.
R4

= drd=172 | =d—2 ;=2 +1/2g(1- 1)+ 1/4(1—p)2)t~2
K T t e t
0

(5.14) ) .
- 2”(d+3>/2< 7+ > g (1_#)> j.o {—d—4 o~ 2 (¢ +1/28(1 - )2H1/A0—p D2 fy

The integrals in (5.14) are straightforward. We find

_1 __ d+1\( @41 —pP - (+(1/2)ga-)
(5.15) K= 5T @+3)/2 P< 5 )(«1_'_(1/2)&1_#))2+(1/4)(1 __,:;2{&4—&72')

We note that since ((1/2)gq—p)? = (d/4)(1 — @)?, K =0 when «» = 0.
Hence, we can substitute (5.15) into (5.12), exclude the » = 0 term from
the sum, and then take the limit by putting ¢ = 1. This shows

. - 0
yl_‘flll D(y) = 2l Y p(d_'z';l>zl (I;d + 1)

—8-1/2

g-1/2
0

where to obtain the last line we have used the functional equation of the
Epstein zeta function [4, p. 625].
Applying theorem 5.2 to (5.10), we conclude

(5.16) » |2 + g1, = (1/2) z'g‘ol’z ;.

7 exp{27ls + g1} + 1
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Closed form evaluations of

z{ g_01/2 I 5)

are known in 2, 4, 6 and 8 dimensions [10]. Thus, denoting the sum in
(5.16) by A,, d indicating the dimension, we have the following results:

A;=1/24, Az=(1/27%) n(3/2)8(3/2),
(-17) Ay=(3/2z39(3/2)9(5/2), As=(15/8z*)(47(3/2)8(7/2) — B(3/2)(7/2),
Ag=(105/47°)3(3/2)7(9/2),
where (s) = 21720 (—1)"/(2n + 1) and p(s) = X3 (= D)"/(n + 1y =
(I = 21=)(s).

Finally, to illustrate (5.2), we take f(z) = Jy(z) and k = 1 to obtain
the d-dimensional summation formula

& Ghot s+ rBys A1y
d b
(5.18) 1,15 ra=1 I, + zgz oo+ 22)12) <H1 JO(Z/,-)> +1
=

where z,, denotes the /% positive zero of J.
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