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EXTENSIONS OF SEVERAL SUMMATION 
FORMULAE OF RAMANUJAN USING THE 

CALCULUS OF RESIDUES 

PETER J. FORRESTER 

1. Introduction. Using the theory of modular transformations, Berndt 
[1, 2] has recently generalized many of Ramanujan's summation formulae, 
showing them to be particular examples within a large class of similar 
results. Berndt's approach is of further interest for the fact that most of 
the large number of summation theorems contained in [1] and [2] are 
consequences of a few main theorems which thus provides a unification of 
many summation theorems that had in the past been established using a 
variety of unrelated methods. 

Our aim in this paper is similar to that of Berndt in that Ramanujan's 
summation formulae will be rederived and generalized using a few main 
theorems. However, as our chief tool will be Cauchy's theorem, our ex
tensions will mostly be in a different direction to that of Berndt. To il
lustrate the extensions obtained here, consider Ramanujan's formula 

* 4 M + 1 - BJM+2 ( L 1 ) S e2nn _ 1 2(4M + 2) ' 

where Bj denotes the yth Bernoulli number, and M is used here and 
throughout to denote any positive integer. We will show (1.1) results 
from the same summation formula as do previously unknown sums such 
as 

(l 2) y« M4(2M+i)-i(g-ttn c o s h ^2iun + g*»cos *J 2 Tun) = B 
^ sinh fl7*(cosh ̂ J~2 %n — cos ̂ ~2 rcn) 4Ç 

r4(2M+l) 

4(2M+1) 

(take k = 2, 4 in (2.15) to obtain (1.1), (1.2) respectively). 
A curious result deducible immediately from (1.1) is 

W4AH-1 Too V-4M+1 
n k x dx. ™ fi^w: e2xx _ J 

We shall deduce (1.3) without using (1.1). From this derivation we dis
cover other equalities between series and integrals, of which 
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_°° t „ p—2xn l*oo p—2icx 
(1.4) V w4M+i c o s m * = 2 I x4^+i cos TUX -J-r dx 

ißi smh %n Jo smh %x 

is typical (take / = 1, 2 in (3.8) to obtain (1.3), (1.4) respeciively). 

2. One-dimensional summation formulae. We will formulate our main 
summation theorem immediately. 

THEOREM 2.1. Suppose the following hypotheses are satisfied: 
(i)/(z) is an even function with a countably infinite number of zeros, all 

simple, except maybe at the origin where higher order zeros are allowed, 
and l/f(z) is analytic except for poles occurring at the zeros off We label 
the zeros z0 ( = 0, if appropriate), ±zh ±z2, . . . . 

(ii) Ifw = e%i/k{k an integer > 1), then the zeros off(w/z) ( / = 0 , 1 , 
. . . , k — I) do not intersect, except maybe at the origin. 

(iii) There exists a sequence of contours TK such that as K -• oo, TK is 
unbounded in all directions, and l/IT/=o/(w/z) = 0(e~clzi) (c > 0) on 
rK for all K large enough. 

Let NQ be the smallest integer such that 

limz2^o-i /nV(u><z) = 0; 
Z-+0 I /=0 

the existence of NQ following from hypothesis (i). Then 

oo k-1 

(2.1) s z2/"-i//'oan/(w%)) = o, 
for all integers N ^ N0. 

PROOF. Consider the integral 

/k-i i^^LK
z2kN-l/w^d-

By hypothesis (iii) 

(2.2) lim IK = 0. 
K->oo 

By hypotheses (i) and (ii) the poles of the integrand are simple for N ^ N0 

and occur at ±w2k~/zn, n = 1, 2, . . . , with corresponding residue 

Hence by Cauchy's residue theorem, 

oo k-l 

(2.3) lim IK = 2* 2 z™-imzn)<J[fWzn)), N ^ N0. 
K-*oo n=l /=1 

Equating (2.3) and (2.2), (2.1) is immediate. 



EXTENSIONS OF SEVERAL SUMMATION FORMULAE 559 

A choice of function particularly well suited to application in theorem 
2.1 is /(z) = z~vJv{z\ v > — 1, where Jv denotes the Bessel function 
of order v. For then it is known [3, Ch. 17] that all the zeros are real and 
unequal and/(z) is an even analytic function so hypotheses (i) and (ii) are 
satisfied. Furthermore, from the large z asymptotic expansion of /v(z), 
hypothesis (iii) is satisfied by selecting a circle with circumference bisecting 
the Kth and (K + l) th zero, and since at z = 0 z~vJv(z) = \ßvr{v + 1), 
NQ = 1. Recalling (d/dz){z~vJXz)} = -z~vJv+1(z\ we have from theorem 
2.1 

oo k~l 

(2.4) E zl*M+*»-yjv+1(z„)ai Jv(z„wO) = 0, 

where zn denotes that nth positive zero of /„(z). For example, when v = 
- 1/2 so that Jv = (2/#z)1/2 cos z, and k is odd, (2.4) reduces to 

( 2 5 ) g ( - ! ) * ( „ - i/2)2*M-i = o 

w=1 (*ri)/2(coshJ27r(/* - y ) s i n x }+cos{2^(" - T ) C O S ¥ } ) 

while if k is even 

(2.6) 2 
( - 1 ) * ( K - 1/2)2***-1 

cosh a/« - y Y* ft 1 ( c o s h W / i - -j-)sin Ç } 4- costai/zi - -J|-)cos ^ } ) 

When y = 1/2 so that /„(z) = (2/^z)1/2 sin z, (2.4) shows for k odd 

(2-7) I ] ^ --L-^L. = 0 
n~l IT Ì90sh{2%n sin %/\k) — cos{2^r« cos %/jk}) 

/=i 

and for k even 

(2-8) L m=n 7-^ : 0. 
n~l sinh 7cn \[ (cosh{2̂ rAz sin 7c//k} — COS{2OT cos n/jk}) 

The case k = 2 in (2.6) was stated as a problem by Ramanujan [7] (see 
also [8, p. 326]), and the cases k = 2 of (2.8) and k = 3 of (2.5) are due to 
Cauchy [3, p. 362 and p. 317 resp.] who also used the calculus of residues 
to obtain the results. 

To obtain a generalization of (1.1), we choose/(z) = sin %z\z cos 7ujuz, 
0 < ju < 1 in theorem 2.1. By subtracting then adding the term 
(— iynk(2M+i)-i c o s 7Cjun(U/=i sin %IMW') in the numerator of the result
ing equation, we deduce, if A: is odd 
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(Ä-D/2 
oo n*«jif+i)-i(- i ) » c o s ^ *J])/2^coshJ2^^m s i n ^ l - c o s h n / m c o s ^ } ) 

"" 2 J (*-l)/2 
w_1 fj (cosh{2^« sin TT///:} - COS{2OT cos %/jk}) 

/ = i 

= f ] « H 2 M + D - I ( _ j)« c o s ^ /^^ ( ÄJ7 /Vcosh{2^^ sin Ç l 

(2.9) + COSJ2 %fjn cos ^ - | J - \[ (cosh {2.7701 sin ^//A:} 

\ /(*-l)/2 

— cos {2 7ujun cos # / /&})) x ( JJ (cosh{2^« sin %/\k} 

— cos{2 %n cos 7u//k}) V1, 

while if Â: is even 
oo 

- _ _ n=l 

(£/2)-l 
*Ä(2M-fl)-l - l)wcos^r/^zsinh^/^ f] fcosh|2^r/^ sin^- > — cos12TT/^Îcos^ lì 

sinh n% J\ (c o s n{2 flr« sin n/jk] — cos{2 rc« COS n/jk}) 

OO / ( £ / 2 ) - l / J' y ï 

(2.10) = 2 « Ä < 2 M + 1 ) ~ K - 0 w c o s ^ ^ f c o s h ^ / ^ H ( ( c o s h | 2 ^ / ^ s i n ~ | 

4- cos<2^^ cos ~ lì — sinh TZT^ fT (cosh {2 #/irt sin #//&} 
\ / (A/2)-l 

-cos{2xjuncos %/\k])\ x (sinhTZTI [J (cosh{2^/^ sin #//&} 

— COS{2OT« COS 7ü/jk})\ . 

We propose to take the limit ju -» 1" in both (2.9) and (2.10). Since 
the right hand sides of both equations converge uniformly in ju for 0 __ fi 
_S 1 (at least) we merely put ju = 1 there. It remains to take the limit on 
the left hand sides. We do this using the following theorem. 

THEOREM 2.2. Let 77 be arbitrary, ceo > ah a; > 0 and ßs real (j = 1, 2, 
...,X).Lei 

B(ji) = 2 n*<2Ar+i>-i(- l)w cos Tu/un C(ji), 
n—\ 

where 
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X 

Then 

x 
1 + 2J rje-t'-'e 

JC(1 - k(2N + 1)), tf0 = arcot ^L/2Â: 
^ " - **v/v [ oo, otherwise 
lim £(//) = f 

wAere i7 is assumed k > 1 and fixed (not necessarily an integer), N = 0, 
1,2, . . . , and L is any positive odd integer such that L/k < 1. 

PROOF, Since <xj > 0 for each j there exists an integer N0 such that for 
n è N0, |2jf=i rje~ajneßini\ < 1. We can thus write for n ^ N0, 

oo X 

C(u) = e-̂ od-AO» + V ( - l)y e^oci-vo» ( 2 rke-a^e^n^y 
y=i k=i 

oo AT X 
+ U ( - 0y(L rke-a*ne^niy ( 2 r u T W ^ ) 

y=5 *=i *=i 

say. 

Hence 

= -̂«od-̂ )« + d(fjì) + c2( /4 

lim £(/i) = ^ n*(2^+1)-
^-^l~ n=l 

(2.11) + lim S /i*(2iV+1>-1(- l)w cos ^/i« e-«o<i-/<>» 

oo 

+ lim S «*<2w+1)-1(-l)"cos»A«(Q0<) + C2O1)). 

But the last term in (2.11) converges uniformly for 0 ^ ju ^ 1 (at least), 
and since Ci(l) = — C2(l), we have 

00 

(2.12) lim B{ß) = lim £ «H2JV+)-I(_ i)» c o s %im e-«<>W». 

Applying the Poisson summation formula to (2.12), which is valid for 
fi < 1, we have 

lim_£(/0 

(2.13) -r(k(2N+ l))hm J ^ ( a g ( i - A ) « + ( 2 s » + * ( l - ^ ^ « t w + i » « 

cos{fc(2Ar+1) artan re/ap} 
+ f(k(2N+ 1)) hm (a2(1 ^^)2 + 7 r 2 ( 1 ^^2)(M2N-M))/2' 
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where we have separated off the n = 0 term. Thus for the limit to exist 
we require cos{£(2iV + 1) artan n/cco] = 0, i.e., a0 = % cot %Lj2k. 
Assuming this condition, and using the uniform convergence with respect 
to ju of the first term in (2.13), we have 

= C(l - k(2N + 1)), 

where to obtain the last line we have used the functional equation of the 
Riemann zeta function [9, p. 269]. 

Return to (2.9) and (2.10) we see both can be written in the form of 
theorem 2.2 with aQ = 2% Ti?=\)/2sin ns\k if k is odd and aro = n + 2% 
£(*/2)-i s j n %ffo if jç is even. It is a simple exercise in summing geometric 
series to show that in both cases a0 = % cot %j2k. Hence applying theorem 
2.2 and recalling that if k is odd Ç(l - k(2N + l)) = 0 [9, p. 268] we de
duce from (2.9) 

oo 

V nk(2M+l)-l 
n=l 

(2.14) / in c o s hH s i nT) + c o s h cosf}) _ A= 0 
\ Yl (coshllnn s i n ^ j - COSJ2OTCOS T \ \ J 

while if k is even, Ç(l - k(2M + 1)) = - Bk{2M+l)jk(2M 4- 1) [9, p. 268], 
so from (2.10) we have 

CO 

Y\ nH2M+l)-\ 

I cosh7cn f\ (coshJ2 rasing} + cosi2%ncos j - \) 

sinh %n f\ (cosh<2^«sin^- > — cos<2^«cos^- >) 

= Bk(2M+1)/k(2M + 1). 

As commented in §1 the case k = 2 in (2.15) is the summation theorem 
generally attributed to Ramanujan (it was pointed out by Berndt [1] that 
(1.1) was in fact discovered by Glaisher [5]). 

Summation formulae similar to (2.14) and (2.15) can be deduced from 
theorem 2.1 by choosing/(z) = cos %z\z sin lujuz, 0 < y. < 1, and then 
establishing the analogues of (2.9) and (2.10). To take the limit ju -• 1~ 
on the left hand side we require the following theorem: 

THEOREM 2.3. Let ys be arbitrary, a0 > ccj, a; > 0 and ß}- real (j = 1, 
2, . . . , X). Then 
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lim 2 ( - l)n(n - 1 jiyaN+D-i sin %u{n - 1/2) 

X 
e-ao(l~i/Mn-l/2) _j_ y i ~ ,e-a/(n-1/2)^^j8yGi-1/2)/ui 

y=i 

| + J] y ,e-a,in-l/2)eßj(n-l/2)t 

y=i 

(-2i-*<2^+1> -f 1)C(1 - A:(2JV + 1)), a0 = TU cot izL/2k 
oo, otherwise 

where it is assumed k > l and fixed, N = 0, l, 2, . . . , on</L w any positive 
odd integer such that L/k < 1. 

Since the proof of theorem 2.3 is substantially similar to that of theorem 
2.2 it will not be given. Employing theorem 2.3 then shows, if k is odd 

£(" - T) 

ai« (T(coshH"-T)sinfI-^M'-THF}) A 0 

while if k is even 

j y(2A/+D-i 

\(*/2)-l 

aiT) â(—TX 
J _ sinh^-|)y 

c o s h * ( « - ^ ) ^ 

= (1 - 2i-*™+»)Bki2M+1)lk(2M + 1). 

The case k = 2 of (2.17) was first derived by Glaisher [5, p. 82]. 

3. Some formulae relating infinite series to definite integrals. In this 
section we will derive the cases k = 2 of (2.15) and (2.17) from theorem 
2.1 in another way which leads us to formulae relating definite integrals 
to series. By selecting k = 2 and f(z) = z-vJv(z)lzvJ-v(fiz), 0 < ju < 1, 
v > - 1 in theorem 2.1 and then subtracting and adding z%

M+v)~l /_v(//zw) 
hiyZi) in the numerator of the resulting expression (where /„ denotes the 
Bessel function of order v of pure imaginary argument, and zn denotes 
the nth positive zero of/v), we conclude 
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- E 4(M+v)-1/-,(/^„)/,(/«„)//v+1(z„)/v(z„) 
(3.1) "=1 „ 

= E^^-'J-À^XI-ÀfJZn) - Iv(^„))IJv+l{zn)Iv{z„). 

From the asymptotic expansion of I±v [9, p. 373] I-V{x) - Iv{x) ~ {2J7cx)V2 

e~x sin %v as x -• oo. Hence the right hand side of (3.1) is convergent for 
ft > 0 while the left hand side diverges for ß ^ 1. However, we can ex
press the left hand side as a contour integral which is convergent for all 
fi > 0. Consider the contour integral 

K = -±~ P+°° ^ 4 ( M + V ) ~ 1 / - ^ K ( ^ ) dz 
liti J is—oo /v(z)/v(z) 

where 0 < e < zh z1 denoting the first positive zero of Jv, and the many-
valued function z4(M+v)_1 is made definite by selecting arg(z) to assume its 
principal value. Let zN denote the semi-circle with centre is, radius RN, 
beginning at is 4- R^ and being enscribed in the positive direction, RN 

being chosen so that zN < RN — e < zN+1. Then for 0 < ju < 1 we can 
add to the contour of integration the contour lim^oo ^wi thout changing 
the value of AT, since the integrand is 0(e~cìzì), e > 0 on zN. We now have 
a closed contour and further, the integrand is analytic within this region 
apart from simple poles at the zeros of Iv{z). Evaluating the residues at 
these poles, we have by Cauchy's theorem 

oo 

(3.2) K = - e™ £ Z^-M-I j_v{fen)Iv{^n)IJv+i^n)h{zn). 

On the other hand, deforming the path of integration so that it touches 
the origin, and then on the path from is — oo to 0 changing variables 
z = eKiz' (which is permissible since the integrand is one-valued in the 
cut plane from — oo to 0) we have 

(3.3) 

2*iK = (P+0° - e^ f - - ~ ) ^ _ ^ ^ dz 
VJo Jo / /v(z)/v(z) 

+ (T
£+0°_e2*,V C-i^Y™™'1 U^U^dz 

VJo Jo / JAz)W) 

where we have subtracted and added z4(M+y)_1/v(//z)/v(^z) in the numera
tor of the integrand. Consider the last integral in (3.3). Changing variables 
z = £-**/2 z\ w e see 

Jo /v(z)/v(z) 

= e 
-2„v f£+''~ z ^ > - i / X u z ) U a z ) 

Jo ~ ~Uz)IJLz) 
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Hence the last term in (3.3) can be written 

V J 0 J e+ioo/ /v(z)/v(z) 

On the path from ie + oo to e + loo the integrand is 0(e~cìz% e > 0, 
so we can add this path of integration to J without changing its value. 
But we then have a closed contour, and since the integrand is analytic 
within the enclosed region, we have by Cauchy's theorem 

(3.4) / = 0. 

Substituting (3.4) into (3.3) and then equating (3.3) and (3.2), we see we 
have the desired contour integral representation convergent for ju > 0. 
Substituting (3.1) into the resulting equation, we then have 

\Jo Jo / Jv(z)h(z) 

In particular, when JX = 1, we can collapse the contours of integration 
onto the real axis. Equating real or imaginary parts shows 

g ZJWHO-l J_v(zn)(I_v(Zn) ~ IJJZJ) 
=1 Jv+l(Zn)Uzn) 

(3.6) 

lo TJxj 
sinrcy f ~ X4(M+V)-I (/_^(X) _ / ^ ) ) ^ 

^ Jo 

We can also collapse the path of integration onto the real axis when 
v = —1/2 or 1/2 and /u is a positive odd or positive integer respectively. 
In these cases we conclude from (3.5) after some simple manipulation 

(3.7) 

and 

è i sin(*(« - 1/2)) cosh #(« - 1/2) 

_ f °° JÇ4M-3 COS(TT/?X) e-*Px , 
J o cos(nrx) cosh TTX 

, 3 gv Ä ft4M+l cosfa/Al) g-*'» _ roojc4M+l sinfa/x) g"*'* ^ 
è i COS(OT) sinh %n Jo sin(#.x)sinh %x ' 

where /> denotes an odd positive integer, and / a positive integer. We note 
that in the cases/? = 1 and / = 1 we can evaluate the integrals, reclaiming 
summation formulae (2.17) and (2.15) in the case k = 2. 

4. A second class of one-dimensional summation formulae. When M = 0, 
summation formula (1.1) assumes the modified form 
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(4.1) f ] n/(e2™ - 1) = 1/24 - l/8ar. 

This can be derived from a modified form of theorem 2.1. 

THEOREM 4.1. Suppose the three hypotheses of theorem 2.1 are satisfied, 
and let N0 be defined as in the statement of that theorem. Then 

(4-2) Tt ^TFT \ = - njzl residue at the origin of-j-^ \, 

where k is any integer > 1 and, as always, M denotes any positive integer. 

PROOF. Apply Cauchy's theorem to the integral 

^J z W 7n>' z ) > z 
lizi JrK^ 

in the limit K -> oo. 
We will restrict our attention to the cases in which z2k{N°~l)~1/Y\^Zof(w/z) 

has a simple pole at z = 0. Thus (4.2) assumes the form 

(4-3) 2 ^ = - ^ l i m ^ . 

V = l /=0 

By choosing/(z) = z~v/v(z), v > — 1, we can apply (4.3) with N0 = 1 
since z~vJv(z) = \ßvr(y + 1) # 0 for y > - 1 . Hence with this choice 
of/, (4.3) reads 

(4.4) g z^lJ^zJÏÏUv/zS) = i (2̂ (v + 1))*, 
l=w V = l / ^ * 

where zn denotes the nth positive zero of Jp. If we further specialize, 
selecting k = 2, v = 1/2 in (4.4), we see 

(4.5) £ ( - 1)w w / s i n h m = ~ V ^ 
n=l 

while y = 1/2 and A: = 3 shows 

(4.6) £ " 2 / ( l - ( - l ) w cosh TcVTn) = 1/12^2. 

Summation formula (4.5) was first proved by Cauchy [3, p. 361], while 
(4.6) can be found in Berndt [1, p. 163]. 

To establish (4.1) we choose/(z) = sin %z\ z cos n/uz, 0 < /u < 1, then 
after deducing the analogues of (2.9) and (2.10) and taking the limit on the 
left hand side using theorem 2.2 with N = 0, we conclude, for k odd 
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U-D/2 , 

\k-l 

Yl (coshJ2%nsinï^ j + cosJ2%ncos^l J 

,4 ?x
 n=l \ {k\[2 (coshJ2 %n sin y j - cosJ2 %n cos ^X\ 

"" 2Â:U/ 
and for A: even 

oo / cosher« ff (cosh(2tfwsin^i+cosf2rcrtcos^j j \ 

(4 8) n=l \ s i n h ^ w FT (cosW2OTsin^J- -cosr2OTCos^j j 

T 2k\7C) ' 

On choosing k = 2 in (4.8) and recalling £ 2 = 1/6, we reclaim (4.1). 
As our final conclusion from (4.3) we choose k = 2 and/(z) = z~vJv(z)/ 
(/Ltzyj_v(/uz\ 0 < ju < 1. We then have, analogous to (3.1) 

_,> v 4v"x^(^n)/^w) , i (2*r{v + \)\ 
( 4 # 9 ) ^ M J^iizMzj + 4 \ f ( - v + l ) / 

2v V 4""1 J-XßZn)(I-v(jUZn) - Iv(fiZn)) 

Recalling our analysis of the integral denoted by K in section 3, we note 
(3.2), (3.3) and (3.4) are valid for M = 0 providing v > 0 (this ensures 
the validity of deforming the contour to touch the origin). We thus have 
the contour integral representation 

- lue«* t Zn{V~l)J-Mn)IÄ^n) 

(4.10) 

\Jo Jo / Jv(z)Iv(
z) 

Substituting (4.10) in (4.9) and then choosing ß = 1 we can collapse the 
contours of integration onto the real axis, with the result 

_ sin^v fco x4*-i(/_(s) - Iv(x)) , 1 (2*Tfy + l)\2 

% Jo /,(*) * * + 4 V/X-v+l)/ 
(4, l ° = v ^r1 /-,oq/-y(zw) - /v(zw)) 

»=1 «^+I( Z H)A;( Z ») 

valid for v > 0, and where zw denotes the nth positive zero of Jv. We can 
also collapse the path of integration onto the real axis when v = 1/2 
and JU is a positive integer. In this case we conclude from (4.9) and (4.10) 
the identity 
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(4 12) f °° x sin {TC/X) e~%/x
 dx _ JL = y< n cosjx/n) e^/x 

J o sin(^rx) sinh %x 4̂ r ^ COS(TT«) sinh %n ' 

where / denotes any positive integer. Notice that when / = 1 we can 
evaluate the integral to deduce (4.1). 

5. Multidimensional summation formulae. We will now formulate some 
^-dimensional summation formulae using Cauchy's theorem. This ap-
roach to evaluating multiple series is due to Glasser and Zucker [6, p. 132], 
who proved theorem 5.1(b) below in the special case f{z) = sin z, k = 1, 
d=2. 

THEOREM 5.1. Let f be and odd function with a countably infinite number 
of zeros, all real, and suppose I If is analytic except at the zeros off Label 
the zeros z0 ( = 0 if appropriate), ±z1} ±z2, . . . . Further, suppose 
hypothesis (iii) of theorem 2.1 is satisfied. Then 

(a) if f does not have a zero at the origin, 

k oo 

Säk = E 2 e«2r-i>*«>/2* 
r = i /i,/2,...,/d=i 

(5.1) (Z2* + Z 2 * + . . . +z2*)l/2ft 

(b) iff has a first order zero at the origin, 

\d fd-2 

= 0, 

(5.2) Sd,k = f'{0)\2f\0)) (Ut/d+l-j _vk x\}{2 + fc- 1), 

where d and k are any positive integers. 

PROOF. Consider the integral 

j _ J_ f z^ , 
K ~~ 2%i )rK(z2k + fl2*)(2*-i)/2*y(^((2^-i)«-)/2*(z2* + a2k)l/2k)f(z) 

where k and X are positive integers such that X ^ k and it is assumed 
a > 0. By hypothesis (iii) of theorem 2.1, 

(5.3) lim LK = 0. 
K-+00 

Case (a). The integrand is analytic apart from poles which occur at 
z = ±zn, ±e«2r-i)/2*)*/(z2* + a2ky/2k^ y = 1, 2, . . . , k. 

The sum of the residues from the poles at z = ±zn is, in the limit 
K-* oo 

oo z2k 
( 5"4 ) 2 S i (z2,* + a2A)(2*-l)/2*/(e«2*-l)/2*),„-(z2A + ^ 1 / 2 * ) yv( zJ ' 
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while the sum of the residues from the poles at z = ± e«2r-i>*o/2* 
(z2k + a2k)1/2k equals, in the limit K -» oo 

k oo (2k i ^ 2 ^ 1 / 2 * 

(5.5) 2yZe«r-x^Zr(2tt)f(e{^iU2^ + a2k)im) • 

Equating the sum of (5.4) and (5.5) to (5.3), we have 
Ä 2z2k + <*2* 
2 J (z2* + a2ky2k-l)/2kf'(z ) ffeU2X-l)xi)/2k(z2k + 02Af)l/2£) 

* oo / 2Ar i ^2/^1/2* 

+ g e « ™ - S r(Zw)/(g(ÌA>:v24* + ̂ ^ - 0. 
By choosing a = (z2.* + z?* + • • • + z2-*)1'2*, multiplying through by 
f'(z/2) /'(z/3) • • • f'(z/j) a nd then summing over 4 from 1 to 00, we have 
after a little manipulation of the first sum 

d+l Ä (Z2* + z2*+ . . . + 2?*)1/2* 
' /> l>'2>-<0=l{flf>(2/^^«2X-l)xi)/2k(z2k + z2k + • • • + Z2-*)1'2*) 

V=i / 

(5.6) + 2 S e(0r-*>«n'* 

v fr% + z% + • • • + z?*)1/2* 

( n / ' ( ^ / ) / (e« 2 ! - - 1 "»^ 2 ^ + z2* + • • • + z2*)i'2*) 
V=l 

= 0. 

To obtain (5.1) from (5.6), multiply through by eU2x~l)1ci)/2k and then sum 
over X from 1 to k. This shows 

(5.7) ^ + _ L + * - l ) ; jSd.h = 0 

from which (5.1) is immediate. 
Case (b). We must now consider the pole of the integrand occurring at 

z = + ei(2Y-l)1ci)/2k a, Y = 1, 2, . . . , k. The sum of the residues at these 
points is 

(l/kf'(0)) £ e«Y-x™n ajf^UY-Dmm a)m 
Y=l 

If we include this extra term in the steps leading to (5.7), we see the term 
— (ll2f'(0))Sd-itk must replace zero on the right hand side of (5.7). Solving 
the resulting difference equation, we conclude 
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It is straightforward to evaluate Sltk by considering the contour integral 

~2âTJrK f{z)f{e^x-i)ici)/2kz)
 dz' 

We find 

(5.9) Su = -(l/2(/ '(0))2) (k/(2 + k - 1)). 

Substituting (5.9) in (5.8) gives (5.2). 
We will restrict our applications of theorem 5.1 to the case k = 1. 

Since/(z) = cos TÜZ/sin TU/IZ, 0 < ju < 1, satisfies the hypotheses for the 
validity of (5.1), we conclude 

coshflyz|/ + g-1/2| 
1/21 cosh^|/ + g_i/2| 

Ç (_ l ) ^ 2 + - - ^ ( n s i n^ ( / . - j . ) ) | / + g_ 

(5.10) 

= 2 £ ( -l)'i+'2+~+'< ( j j sin ^ ( / y - i - ) ) \/ + 8-1/2 
^ d + ^ i/+g_i/2i + J ' 

where the sum is over the ^/-dimensional integer lattice, and gx denotes the 
d-dimensional vector with all components x. Taking the limit ju -• 1~ 
on both sides of (5.10), we will obtain the d-dimensional analogue of (2.17) 
in the case k = 2, M = 1. To take the limit on the left hand side we first 
require some notation. Let 

_ p-2nih'/ 

denote the Epstein zeta function and its analytic continuation, where T 
is a positive definite matrix, and the sum is over the ^/-dimensional integer 
lattice, omitting / = — g if g is a liattce vector. We then have the following 
result. 

THEOREM 5.2. 

ton £( - l )^ - -Wfi s i n ^ . _ 1 ))k + g _ 1 / 2 | c o s h ^ + g i / 2 l 
/*->!- / V=i \ 2 / / cosh7r|/ + g 1/2 

= (-\yz 
gl/2 

0 (/; i), 

where I denotes the identity matrix. 

PROOF. Denote 

(•n • (y 1 ^ 4 . « icoshic(i\/ + s-i/zt 
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Then proceeding as in (2.11) and (2.12) of the proof of theorem 2.2 we have 

(5.11) lim D(/u) = lim £ k + g_1/2| er**-ii»'+i-i*,e**l-ii-<f+*-vù. 

By using the rf-dimensional Poisson summation formula and then adopting 
a simple change of variables, (5.11) shows 

(5.12) lim D(u) = lim £ ( - iyi+'*+ •••" f |h| ^^a-^im &ik-®t+w\-rì dh. 

If we denote the integral in (5.12) by K and rewrite the factor £r*(1-^)lh! 

using the integral identity 

(5.13) 

we have 

-ccR = (2/ ̂ )R f °V*2'V«2/4<2 dt, 

K = —L= f °° e(-rcHi-fi)2)nfi dt f h2 ^-h^+^h-cz+i^gd-^) ^ j , 
V ^ Jo JR« 

The integral over h is now essentially of the Gaussian type, and can be 
computed immediately. We then have 

(5.14) 

£ _ d^d-l)/2 f °° t-d-2 e-7cHU+l/2ea-^)2+l/4(l-fi)2)t~2 dt 
Jo 

The integrals in (5.14) are straightforward. We find 

(5 15) K- U - ^ / 2 ^ + l \ / (dm-tf-U + (l/2)gq-,))2 \ 
p .o ; 1% ly 2 A ( ( / + (l/2)g(i-,))2 + ( l /4)( l~^)2)^3)/2; 

We note that since ((l/2)g(1_;U))
2 = (<//4)(l - ^)2 , ^ = 0 when / = 0. 

Hence, we can substitute (5.15) into (5.12), exclude the / = 0 term from 
the sum, and then take the limit by putting ju = 1. This shows 

lim D(fx) = —7y— %- W+3) »4-+1); 0 

-g -1 /2 
(/; rf + l) 

= z 
g-l/2 

0 (/; - i ) , 

where to obtain the last line we have used the functional equation of the 
Epstein zeta function [4, p. 625]. 

Applying theorem 5.2 to (5.10), we conclude 

(5.16) k + g-i /2 | 
V exp{2;zr|/ 4- g_1/2|} + 1 = (1/2) Z 

g-l/2 
0 (/; i). 
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Closed form evaluations of 

Z g-l/2 
0 (lis) 

are known in 2, 4, 6 and 8 dimensions [10]. Thus, denoting the sum in 
(5.16) by Ad, d indicating the dimension, we have the following results: 

Ax= 1/24, ^2 = (l/2tf2) 7(3/2X8(3/2), 

(5.17) ^ 4 = ( 3 / 2 ^ ( 3 / 2 ) ^ ^ ^ 

^ 8 = (105/4^(3/2)a9/2), 

where ß(s) = 2 £ o ( - l)»/(2/i + 1)* and ̂ ) = £~=o (-l)"/(/i + 1> = 
(1 - 2i-%(s). 

Finally, to illustrate (5.2), we take f(z) = Jx(z) and k = 1 to obtain 
the öf-dimensional summation formula 

g ( 4 + 4 + ••• +4)1/2 _2(-l)' 
(5.18) ^ . . „ ^ x / i ( ( ^ + z % + . . . + Z2d)v2) / f l j o ( Z / ) \ d+l' 

v=i ' 

where z^. denotes the / t h positive zero of J±. 
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