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ON FUNCTIONS WITH WEIERSTRASS BOUNDARY 
POINTS EVERYWHERE 

D. M. CAMPBELL AND J. S. HWANG 

In this paper we answer a conjecture of the second author by 
proving that any meromorphic function in the unit disc with radial 
limits on at most a set of measure zero must have Weierstrass 
points at each point of \z\ = 1. Given any tangential set D and any 
closed proper subset E of \z\ = 1, an analytic function / i s con
structed such that a) if E has measure zero, then / has no finite or 
infinite radial limits and the restricted cluster set CDCd^(A exp(/0)) is 
uniformly bounded for all exp(/0) in E% b) if E has capacity zero 
then/has no finite or infinite radial limits on the complement of E 
but CflcnO; exp(/0)) = {0} for all exp(/0) in E. 

Introduction. While answering some open questions due to J. L. Doob 
[3] the second author introduced the class k(0), the set of Bloch functions 
which have no finite radial limits at any point of the unit disc. The second 
author conjectured [5] that for any / in k(Q) and for any Ô in [0, 2K] the 
cluster set of /at eid is the entire complex plane, that is, that every point 
of |z| = 1 is a Weierstrass point. 

In this paper we prove that any meromorphic function with radial 
limits on at most a set of measure zero must have Weierstrass points at 
every point of \z\ = 1. This answers the conjecture in the affirmative 
for a class of functions much more general than k(0). This result is a 
corollary to the more general theorem 1 in which we prove that the 
presence of a dense set of Weierstrass points implies that every point 
of \z\ = 1 is a Weierstrass point which extends the claims of the con
jecture to functions which may have radial limits on sets whose measure 
is greater than zero. 

In theorems 3 and 4 we show how to construct analytic functions 
which have no finite or infinite radial limits but for which the restricted 
cluster set is bounded or degenerate. The technique makes use of Mer-
gelyan's theorem, Blaschke products, and a construction due to A. 
Lohwater and G. Piranian. 

DEFINITIONS. I f / i s an arbitrary complex valued function (not neces
sarily even continuous) defined in \z\ < 1, then the cluster set of /a t the 
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boundary point exp(/0) is C(f exp(/0)), the set of complex numbers w 
for which there is a sequence {zn} in \z\ < 1 with zn -• exp(/0) and/(zM) -» 
w. 

If E is a subset of |z| < 1, then the cluster set o f / a t the point exp(/0) 
restricted to E is CE(f exp(/0)), the set of w for which there is a sequence 
{z]n in E with zn -> exp(/0) and/(zw) -• w. If CE(fi exp(/0)) is the entire 
complex plane for every Stolz angle .Eat exp(/0), then exp(/0) is said to 
be a Plessner point. If CE(f exp(/0)) is a single point for every symmetric 
Stolz angle E at exp(/0), then exp(/0) is said to be a Fatou point. If 
C(f exp(/0)) is the entire complex plane, then exp(/0) is said to be a Weier-
strass point [2, p. 149]. 

Functions with Weierstrass points everywhere on |z| = 1. 

THEOREM 1. If f(z) is meromorphic in |z| < 1 and has a dense set of 
Weierstrass points, then every point of \z\ = 1 is a Weierstrass point. 

PROOF. Let exp(/0) be an arbitrary point of \z\ = 1 and let v be an 
arbitrary complex number. Since / has a dense set of Weierstrass points 
we can choose points exp(/0w) and zn such that 

|exp(/0n) - exp(/0)| < I/«, 

\zn - exp(/0M)| < \/n9 

\f(zn) - v| < \ln. 

Thus zn -• exp(/0) and f(zn) -> v. This proves that the cluster set of / 
at exp(/0) is the entire complex plane and concludes the proof of theorem 
1. 

COROLLARY 2. Iff(z) is meromorphic in \z\ < 1 and the set of points of 
\z\ = 1 at which f has finite or infinite radial limits has measure zero, then 
every point of \z\ = \ is a Weierstrass point. 

PROOF. Plessner's theorem [2, Theorem 8.2] says that for an arbitrary 
meromorphic function in \z\ < 1, almost all points of \z\ = 1 are either 
Plessner points or Fatou points. Since every Plessner point is a Weierstrass 
point, if a function has radial limits on at most a set of measure zero, 
then by Plessner's theorem, the set of Plessner (and hence Weierstrass) 
points is of measure In and therefore dense. 

Theorem 1 is stronger than Corollary 2 since there are analytic func
tions with a dense set of Weierstrass points which have radial limits 
almost everywhere [8, p. 229]. 

Of course Theorem 1 and Corollary 2 can be localized if we know that 
there is a non-degenerate arc / of \z\ = 1 on which the set of points of 
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/ a t which/has a radial limit is of measure zero or the* set of Weierstrass 
point of I is dense. 

Restricted cluster sets. We shall say that D is a tangential set if D is a 
subset of \z\ < 1 and the closure of D intersects \z\ = 1 only at z = 1. 
For example, D could be the radius from 0 to 1, a Stolz angle with vertex 
at z = 1, or a disc internally tangent to \z\ = 1 at z = 1. Let D{6) denote 
the set obtained from D by a rotation about the origin through an angle 
0 so thatZ>(0) fl {\z\ = 1} is the point exp(/0). If exp(/0) is an arbitrary 
point of the unit circle, then the restricted cluster set off with respect to 
D{6) at the point exp(/0) is the set of points w for which there is a sequence 
of points zn in D(fi) tending to exp(/0) with f(zn) -» w. The extended 
cluster set o f /w i th respect to D(0) is denoted by CD(d)(f exp(/0)). 

A tangential set D can approach \z\ — 1 so fast that there is no disc 
which is internally tangent to \z\ = 1 at 1 which contains D. For example, 
let Dn be the part of the disc \z — 1/(2«)| < 1 — 1/(2«) which lies inside 
the sector |arg z\ < \jn. Then D = [j^Li Dn is a simply connected domain 
internally tangent to |z| = 1 at z = 1 which lies in no disc internally 
tangent to \z\ = 1 at z = 1. 

If D is a tangential set, then we can always enlarge D, if necessary, 
by taking the union of D and its conjugate, and then taking the convex 
hull. The resulting set will contain Z), be simply connected, be symmetric 
with respect to the real axis, be tangential and will also contain part 
of a radius to z = 1. For the theorems of this paper there is no loss of 
generality in assuming that tangential sets are simply connected and 
contain part of the radius to z = 1. 

We shall show that for any tangential set D there is an analytic function 
/ which has no (finite or infinite) radial limits (and hence C(f exp(/0)) = 
C everywhere) but for which CD(f 1) is a bounded set. 

THEOREM 3. For any tangential set D there is an analytic function f 
which has no finite or infinite radial limit but for which CD(f 1) is bounded. 

PROOF. Let {/„} be the sequence of circular arcs defined by Jn = {|z| = 
1 - \/(n + 2): dist(z, D) ;> \/n] and let {dn} be the sequence of discs 
|z| < 1 - 2/(n 4- 2). Each Jn is disjoint from D. Furthermore, kn = 
J2n U J2n-i U ^» U ^ is compact. Finally no kn separates the plane. 

Mergelyan's theorem [7, p. 423] guarantees for every e > 0 and for 
every compact set K whose complement is connected, and for every 
complex function continuous on K and analytic in the interior of K, 
the existence of a polynomial P(z) such that |F(z) - P{z)\ < e for all 
z in K. 

By Mergelyan's theorem there is a polynomial px(z) such that 
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\Pl(z)\ < 1/2 f o r z i n e U <?i U À 

|/?i(z) — 1| < 1/2 for z in /2-

We use pi{z) to inductively define a sequence of complex functions F„, 
n ^ 2, on the compact sets kn: 

Fn{z) 

(0 for z i n a l i À 

^ ( - l ^ M ^ f o r z i n ^ . ! , 

L ( - l)*+1/>*(z) - 1 for z in/a , . 

The function Fn(z) is continuous on k„ and analytic on the interior of k„. 
Thus by Mergelyan's theorem we can find polynomials p„{z) such that : 

(1) 

(2) 

p„(z)\ < 1/2» for z in 3n U Â 

< 1/2» for z in y2»-i, 2 ( - i ) * + i ^ ( z ) 

S ( - l ) * + i ^ ( z ) - 1 
*=1 

< 1/2" for z in J2n. 

Since the sequence of discs {<?„} expands to |z| < 1 and \p„(z)\ < \/2n 

on dn, it follows that g(z) = 2£Li( — l)w+1/?M(z) converges uniformly on 
any compact subset of \z\ < 1 and defines an analytic function. Since 
each \pn(z)\ < \/2n on D, the function g is bounded by 1 in D. Conse
quently, the points of the cluster set of g at z = 1 with respect to D are 
also bounded by 1 in modulus. 

Since D is a tangential set, a radius to exp(/0), 0 ^ 0 (mod 2n\ must 
intersect infinitely many of the arcs /2«-i °n which (1) guarantees that 
g approaches 0 and infinitely many of the arcs J2n on which (2) guarantees 
that g approaches 1. Therefore the only point at which g can have a 
radial limit is z = 1. 

Let B{z) be the Blaschke product with zeros a tz = 1 — exp( — n), for 
n = 1, 2, Then B(z) has no radial limit at z = 1 [1, p. 12] and since 
the zeros accumulate only at z = 1 the function B(z) is analytic on all 
of \z\ = 1 except z = 1 [4, p. 68]. Let M be the limsup of B(z) as z ap
proaches 1 radially. 

Set f(z) = g(z) + 2B(z)/M. The function g(z) can not have an infinite 
radial limit at z = 1 since D contains a radial segment to z = 1 and g 
is bounded on D. Furthermore, whether g does or does not have a finite 
radial limit at z = 1 the function/can not have a radial limit at z = 1. 
Finally, / can not have a finite or infinite radial limit at any of the other 
points of \z\ = 1. The restricted cluster set of / i s clearly bounded at 
z = 1. This completes the proof of the theorem. 
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Using the technique of theorem 3 we can construct additional functions 
with no radial limits but whose restricted cluster sets are bounded. 

THEOREM 4. Let D be any tangential set and E be any closed proper 
subset of \z\ = 1 and E' be the complement of E with respect to \z\ = 1. 

(a) There is an analytic function f with no finite or infinite limits on E' 
yet C(Dß)(f exp(/0)) is uniformly bounded for all exp(70) in E. 

(b) If E is of measure zero, then there is an analytic function f with no 
finite or infinite radial limits yet CD(6)(f exp(/0)) is uniformly bounded for 
all exp(/0) in E. 

(c) If E is of capacity zero, then there is an analytic function f with no 
finite or infinite radial limits on E' yet CD(d)(f exp(/0)) = {0}for all exp(/0) 
in E. 

PROOF. Let F be the union of the sets D{6) taken over all exp(/0) in 
E A consideration of the components of the open set E' shows that F 
is not the open unit disc. If we follow the proof of theorem 3, replacing 
D by F in the definition of the sequence {Jn} and in the application of 
Mergelyan's theorem, then we obtain a function g(z) with no finite or 
infinite radial limits on Ef yet with CD(d)(f exp(/0)) uniformly bounded 
by 1 for all exp(/0) in E. This completes the proof of part (a). 

A. J. Lohwater and G. Piranian [2, p. 27] showed for any closed 
set E of measure zero on \z\ = 1 there is a bounded analytic function 
h such that the radial limit exists on E' and for each exp(/0) in E 
lim inf^x \h(r exp(/0))| = 0, lim supr^x\h(r exp(/0))| = 1. Clearly the func
t i o n / ^ ) = g(z) + 2h(z) satisfies the claims of part (b). 

Finally, if J? is a closed set of capacity zero then there is an analytic 
function h{z) which tends to a finite radial limit everywhere on E' but 
which tends to 0 everywhere on E [6, p. 7]. Clearly the function f(z) = 
g(z)h(z) satisfies the claims of part (c). 
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