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KRULL DIMENSION OF DIFFERENTIAL OPERATOR 
RINGS II: THE INFINITE CASE 

T.H. LENAGAN 

In a recent paper [2], Goodearl and Warfield have considered the 
problem of computing the Krull dimension of the differential operator 
ring R[0; <5], when R is a commutative Noetherian ring with a derivation 
ö. They have given a reasonably complete description in the case that 
K.dim(/?) is finite, but have only obtained partial results in the infinite 
case. Here we obtain a description of the infinite case that parallels the 
results of Goodearl and Warfield in the finite case. The notations and 
definitions of [2] will be used here and the reader is recommended to 
have a copy of that paper at hand since the proofs in this paper rely 
heavily on the methods of [2]. 

Throughout the paper, R will be a commutative Noetherian ring and 
d a derivation on R. The differential operator ring R[0; ö] will be denoted 
by T. 

The major result of [2] shows that if R has finite Krull dimension n 
then K.dim(T) = n except when there is a maximal ideal M of height 
n with ô(M) E M or char(/?/A/) > 0, in which case K.dim(r) = n 4- 1. 
Example 4.7 of [2] shows that the maximal ideals of R do not control 
the Krull dimension of T in the case that K.dim(/?) is infinite. It will 
be shown here that if K.dim(/?) = 7] + n, where rj is a limit ordinal and 
n a natural number, then it is the prime ideals M such that K.6im(R/M) = r] 
that control the Krull dimension of T. For this reason we begin with a 
careful analysis of the limit ordinal case. 

I would like to thank Ken Goodearl for his helpful comments. 

THEOREM 1. Let x be a non-zero divisor in R. Let Rx and Rc denote the 
localisations at the denominator sets {xn\n = 0, 1, 2, . . .} and C = {1 — 
xr\reR} of R. 

(i) {xn} and C are denominator sets in T, and ö extends to the localisa
tions of R by the quotient rule; so that there are natural isomorphisms 
Tx ^ Rx[0; Ö] and Tc ^ Rc[0; <?]. 

(ii) 777̂  diagonal map from T to Tx © Tc is a faithfully flat embedding. 
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(iii) K.dim(7?c) is not a limit ordinal. 

PROOF, (i) This is immediate from [2, Proposition 1.1]. 
(ii) The map is flat; so suppose that K is a maximal right ideal of T 

with Kx = Tx and Kc = Tc. Then \.xn e K, for some n, and 1.(1 — xr) e 
K, for some r e R. Suppose that n has been chosen to be as small as 
possible. If n > 0 then x"-1 = xn.r + (1 — xr)xn~l 6 ^ , a contradiction. 
Thus n = 0 and 1 e K, therefore K = T. Hence the map is faithfully 
flat. 

(iii) If x is a unit of R then Rc is the zero ring, in which case K.dim(ZÊc) 
= — 1. Otherwise, the image of x in Rc is a nonzero divisor in Rc, 
and an easy calculation shows that it is in the Jacobson radical of Rc. 
Thus, by [4, Theorem 2.4], K.dim(Rc) is not a limit ordinal. 

COROLLARY 2. Let K.dim(R) = a be a limit ordinal and d-K.dim(R) = 
ß < a. Suppose that M is a finitely generated T-module such that Mx is 
a finitely generated Rx-module. Then K.dimr(Af) < a. 

PROOF. K.dim(7?c)^K.dim(#) = a. However, by Theorem 1, K.dim(Rc) 
7* a\ so K.dimtRc) < a. Now Tc s Rc[0; ö], so that K.dim(rc) g 
K.dim(/?c) 4* 1 < a, since a is a limit ordinal. 

Because the map T -• Tx ® Tc is faithfully flat, the map N -+ Nx® Nc 

of the lattice of T-submodules of M preserves strict inclusions. Hence 

K.dimr(M) ^ K.dimTx@Tc(MjC©Mc) = max{K.dimrx(MJ,K.dimrc(Mc)}. 

Now 

K.dimTc(Mc) ^ K.dim(7c) < a, 

and, by [2, Theorem 1.6] 

K.dimTx(Mx) ^ ô-K.dim(Rx) ^ g-K.dim(Ä) = ß < a. 

Therefore K.dim(M) < a. 

Using the above result, we are able to generalize [2, Proposition 4.2] 
to arbitrary ordinals. 

THEOREM 3. Let R be a commutative Noetherian differential ring and 
let P be a prime ideal of R such that a = K.dim(R/P) = TJ 4- n, where 
7] is a limit ordinal and n is a natural number. If <5-K.dim(Ä) < yj then 
K.dimT(TIPT) = K.dim(R/P). 

NOTE. Proposition 4.2 of [2] is the above in the case that <5-K.dim(#) 
is finite. The proof given here follows the proof of [2, Proposition 4.2] 
closely, but uses Corollary 2 above to deal with the case of arbitrary limit 
ordinals. 

PROOF. By [2, Proposition 1.2], K.dim(TIPT) ^ a. The reverse inequality 
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is proved by showing that K.dimT(A) < a, for any proper 7-module 
factor A of T/PT. The proof of this by induction on a, beginning at 
a = 7]. The inductive step is proved exactly as in [2, Proposition 4.2] 
with statements 4K.dim( ) is finite' replaced by 'K.dim( ) < rf\ so we 
present only the case a = y. 

Without loss of generality, assume that no T-submodule of A has Krull 
dimension less than TJ. If A = 0 we are finished. Otherwise, by [2, Proposi
tion 2.3], we may assume that A is annihilated by a power of P, that there 
exists x e R\P such that Ax is a finitely generated ^-module and that x 
is a non zero divisor modulo annR(A). Now, annR(A) is a 5-ideal of R, 
since A is a jH-module, and, applying Corollary 2 to A viewed as a 
T/annT(A) — module, 

K.dimT(A) = K.dimr/annr(i4)(y4) < TJ. 

COROLLARY 4. // ^ js a limit ordinal such that <5-K.dim(/?) < TJ while 
K.dim(/?) ^ rj then K.dim(/?[0; S\) = K.dim(/?). 

PROOF. Set T = R[0; 5]. Let Ph . . . , P„ be the minimal prime ideals 
of R. If K.dimiR/Pi) < rj, for some /, then K.dim(T/PtT) < TJ [2, Prop
osition 1.2], so K.dim(T/P{T) < K.dim(R). If K.dim(R/Pt) ^ TJ, then 
K.dim(7yP,T) = K.d\m(R/Pt) ^ K.dim(/?), by Theorem 3. 

Therefore, K.dim(T) = max{K.dimr(r//^T)} ^ K.dim(R). The reverse 
inequality is [2, Proposition 1.2]. 

Specializing this to the limit ordinal case gives the following result. 

COROLLARY 5. //' rj is a limit ordinal and K.dim(/?) = rj, then 
K.dim(R[0; d]) = TJ unless <5-K.dim(/?) = V in which case K.dim(R[0; 5]) 
= 7] + 1. 

PROOF. If 5-K.dim(/?) = rj then K.dim(/?[0; Ô]) = 71 + 1 by [2, Prop
osition 1.3]. 

Goodearl and Warfield have conjectured that when K.dim(/?) is in
finite then K.d\m(R[0; ö]) = max{5-K.dim(/?) 4- 1, K.dim(tf)}, and 
Corollary 5 shows that this is the case if R has limit ordinal Krull dimen
sion. However, the conjecture is not true in general, as the following 
example shows. 

EXAMPLE 6. Let A be a commutative Noetherian ^-algebra with Krull 
dimension &, the first limit ordinal, for example [5, p. 203]. Let K be the 
field of fractions of A and K the algebraic closure of K. Let x, y be com
muting indeterminates over K and let R = A[x, y]9 Ri = K[x, y] and 
R2 = K[x, y]\ so that R ü R\ E R2 ar»d ^2 1S a n integral extension of 
Rx. Let 5 be the derivation on R2 (and so also by restriction on Rx and 
/?) given by 
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Set T = R[0; 8\. Note that K.dim(/Q = co + 2; so K.dim(r) ^ co + 3. 
We show that 5-K.dim(Ä) = co + 1 and K.dim(T) = co + 3, so that 
K.dim(r) # max{K.dim(fl), <5-K.dim(#) + 1). 

Now xR + vR is a coprirne ideal of R and R/xR + yR ^ A, so 
5-K.dim(/?/x/? + yR) = co = K.dim(R/xR + yR). Hence, K.dim(r/xr + 
JJJT) = K.d\m((RlxR + j/?)[fl; 5]) = co + 1, by Corollary 5. Now, for 
any prime P of R, T/PT is a critical T-module [2, Lemma 2.1]; so the 
proper chain of prime ideals 0 ^ xR ^ xR + v/? forces a> + 1 = 
K.dim(r/jcr + yT) < K.dim(T/xT) < K.dim(r). Thus K.dim(r) ^ 
co + 3; so K.dim(r) = co + 3. 

Now <5-K.dim(fl) ^ co + 1 since <5-K.dim(/?/x/? -f v/?) = co. Suppose 
that <5-K.dim(7?) ^ co + 2. Then there exists 5-prime ideals 0 < P < Q 
of R with <5-K.dim(/?/0 = co and ô-K.dim(R/P) > co. Note that 
K.dim(R/Q) ^ <5-K.dim(/?/0 = co. Hence A f) Q = 0, for otherwise 
7?/g is a homomorphic image of (A/A f| 0 [ x , ; ] and so has finite Krull 
dimension. Thus in Rx there is a proper chain of d-prime ideals 0 < PRX 

< QRX. Since R2 is integral over Rx there is a proper chain of prime 
ideals 0 < P < Q, such that P is minimal over PR2 and Q is minimal 
over QR2. By [6, Theorem 1] P and (5 are 5-prime ideals of R2, and hence 
ô-K.dim(R2) ^ 2. However, by [2, Example 2.15], 5-K.dim(Ä2) = 1. 
Hence <5-K.dim(fl) = co + 1. 

In order to find a formula for the Krull dimension of R[d; 5] in the 
general case, it is necessary to look at arbitrary prime factor rings RjP 
with Krull dimension a limit ordinal. To retain a small amount of clarity, 
the cases of characteristic zero and characteristic non zero are presented 
separately. 

LEMMA 7. Let P be a prime ideal of R such that chav(RIP) = 0 and 
that K.dim(R/P) = 77 is a limit ordinal. 

(i) Ifö(P) g Pond ö-K.dim(RIP) = 77, then K.dim(TIPT) = 9 7 + 1 . 
(ii) Ifö(P) g P and 5-K.dim(Ä/P) < 77, then K.dim(TIPT) = 77. 

(iii) If Ô(P) 5 P, then K.dim(T/PT) = TJ. 

PROOF, (i) and (ii) are just Corollary 5 applied to the ring RjP. (iii) 
K.dim(r/PjT) ^ 77, by [2, Proposition 1.2]. An easy adaptation of the 
argument due to Hart [3, Lemma 2.4] gives the reverse inequality. 

For any ideal / of R, set 

(/: 5) = {r e R\Ön(r) e /, for all n = 0, 1, 2, . . . } . 

Then (/: d) is the largest d-ideal contained in /. 
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LEMMA 8. Let P be a prime ideal of R such that char(R/P) > 0 and that 
K.dim(R/P) = TJ. Then ¥.A\m{TjPT) = 37 + 1. 

PROOF. By [1, Lemma 13], if Q is a prime ideal containing P then 
QI(Q: S) is nilpotent. It follows that the map Q -» (Q: d) is an order 
isomorphism from the set of primes of R containing P to the set of 
5-primes of R/(P: 5). Hence 5-K.dim(R/(P: Ö)) = 37. Therefore, by [2, 
Proposition 1.3], K.dim(T/(P: d)T) = v + 1. Since P/(P: 5) is nilpotent, 
we may choose a series of ideals (P: 5) = ^ 0 = ^1 = ' * * è An = R 
such that each factor is either isomorphic to R/P or a prime homomorphic 
image of R/P. Thus there are right ideals (P: d)T ^ A{T ^ • • • :g ^WT = 
r such that each factor is isomorphic to a homomorphic image of 
T/PT. Hence rj + 1 = K.dim(77(/>: <5)r) = maxCK.dimC/^r /^r) ) ^ 
K.dim(T/PT) ^ K.dim(/?/.P) + 1 = 57 + 1 ; so K.dim(r/Pr) = 97+1. 

In order to make it easier to compare our general result with that of 
Goodearl and Warfield, we shall say that, given a limit ordinal 77, a prime 
ideal P of R is rj-maximal if K.dim(R/P) = rj. All that remains to be 
done is to rephrase Proposition 2.7 and Theorem 2.9 of [2] in terms of 
77-maximal ideals and to check that the proofs go through. 

PROPOSITION 9. Let y be a limit ordinal and let P be a prime ideal such 
that K.dim(/?/P) = yj + n, for some natural number n ^ 1. Set 

Tj + m = max{K.dim(77ör)ie prime in R and P < Q). 

Then K.d\m(T/PT) = 7] + m + 1. 

PROOF. AS in [2, Proposition 2.7]. 

THEOREM 10. Let I be an ideal of R and let TJ be a limit ordinal such that 
K.dim(/?/7) = rj + n, for some natural number n. Let 

J( — {M <\ R\M is 7]-maximal and I £ M and either 

(i) 5(M) E M and Ô-K.dim(R/M) = 7], or 

(ii) chdr(R/M) > 0}. 

Set m = max{height(Af//)|A/6^}, with m = - 1 // „# = 0 . 77?<?tf 
K.dim(T/IT) - max{^ + (w + 1), K.dim(R/I)}. 

PROOF. AS in [2, Theorem 2.9], using Lemmas 7 and 8 in place of 
[2, Lemma 2.8]. 

COROLLARY 11. Let K.d\m(R) = 97 + n, for some limit ordinal 7] 
and natural number n. Set Jt = {M <3 R\M is rj-maximal and either (i) 
d(M) g M and ô-K.dim(R/M) = TJ or (ii) char(jR/M) > 0} and set m = 
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max{height(M)|Me t//}, with m = - 1 if Jt = 0 . Then K.dim(Ä[Ö; 
(5]) = max{^ + (m + 1), K.dim 7?}. 

If R is an algebra over a field of finite characteristic then it is easy to 
see, from Lemma 8, that K.dim(R[d; ö]) — K.dim(i?) + 1. In the case 
that R is a ß-algebra we can give the following slight improvement to 
Corollary 4. 

THEOREM 12. Let R be a Q-algebra with d-K.dim(R) ^ TJ, for some 
limit ordinal rj. Suppose that K.dim(/?) > YJ. Then K.dim(i?[0; 5]) = 
K.dim(fl). 

PROOF. If K.dim/? ^ TJ + co, then Corollary 4 applies. Otherwise, 
suppose that K.dim(/?) = TJ + n, for some natural number n ^ 1. Con
sider the set M defined in Theorem 10. If.// = 0 then K.dimCK[0; 5]) = 
max{7? + ( - 1 + 1), K.dimCR)} = K.dim(^). Otherwise, let Me J?. 
Then, since char(7?/M) = 0, d-K.dim(R/M) = TJ. NOW minimal prime 
ideals of R are 5-primes; so, since <î-K.dim(/?) S TJ, M must be a minimal 
prime. Thus m = max{height(M)|M e J/} = 0 and K.dim(R[d; ö]) = 
max{?7 + 1, K.dim(R)} = K.dim(^). 

REFERENCES 

1. K.R. Goodearl, Global dimension of differential operator rings. Ill, J. Lond. Math. 
Soc. 17 (1978), 397-409. 

2. and R.B. Warfield, Jr., Krull dimension of differential operator rings, 
Proc. Lond. Math. Soc. (3) 45 (1982), 49-70. 

3. R. Hart, Krull dimension and global dimension of simple Ore-extensions, Math. 
Zeit. 121 (1971), 341-345. 

4. T.H. Lenagan, Krull dimension and invertible deals in Noetherian rings, Proc. 
Edin. Math. Soc. 20 (1976), 81-86. 

5. M. Nagata, Local Rings, New York (1962) Interscience. 
6. A. Seidenberg, Differential ideals in rings of finitely generated type, Amer. J. Math. 

89 (1967), 22-42. 

UNIVERSITY OF UTAH, SALT LAKE CITY, UT 84112 


