KRULL DIMENSION OF DIFFERENTIAL OPERATOR RINGS II: THE INFINITE CASE

T.H. LENAGAN

In a recent paper [2], Goodearl and Warfield have considered the problem of computing the Krull dimension of the differential operator ring $R[\theta ; \delta]$, when R is a commutative Noetherian ring with a derivation δ. They have given a reasonably complete description in the case that $\mathrm{K} \cdot \operatorname{dim}(R)$ is finite, but have only obtained partial results in the infinite case. Here we obtain a description of the infinite case that parallels the results of Goodearl and Warfield in the finite case. The notations and definitions of [2] will be used here and the reader is recommended to have a copy of that paper at hand since the proofs in this paper rely heavily on the methods of [2].

Throughout the paper, R will be a commutative Noetherian ring and δ a derivation on R. The differential operator ring $R[\theta ; \delta]$ will be denoted by T.

The major result of [2] shows that if R has finite Krull dimension n then $\mathrm{K} \cdot \operatorname{dim}(T)=n$ except when there is a maximal ideal M of height n with $\delta(M) \subseteq M$ or $\operatorname{char}(R / M)>0$, in which case $K \cdot \operatorname{dim}(T)=n+1$. Example 4.7 of [2] shows that the maximal ideals of R do not control the Krull dimension of T in the case that $\mathrm{K} \cdot \operatorname{dim}(R)$ is infinite. It will be shown here that if $\mathrm{K} \cdot \operatorname{dim}(R)=\eta+n$, where η is a limit ordinal and n a natural number, then it is the prime ideals M such that $K \operatorname{dim}(R / M)=\eta$ that control the Krull dimension of T. For this reason we begin with a careful analysis of the limit ordinal case.

I would like to thank Ken Goodearl for his helpful comments.
Theorem 1. Let x be a non-zero divisor in R. Let R_{x} and R_{C} denote the localisations at the denominator sets $\left\{x^{n} \mid n=0,1,2, \ldots\right\}$ and $C=\{1-$ $x r \mid r \in R\}$ of R.
(i) $\left\{x^{n}\right\}$ and C are denominator sets in T, and δ extends to the localisations of R by the quotient rule; so that there are natural isomorphisms $T_{x} \cong R_{x}[\theta ; \delta]$ and $T_{C} \cong R_{C}[\theta ; \delta]$.
(ii) The diagonal map from T to $T_{x} \oplus T_{C}$ is a faithfully flat embedding.

[^0](iii) $\mathrm{K} \cdot \operatorname{dim}\left(R_{C}\right)$ is not a limit ordinal.

Proof. (i) This is immediate from [2, Proposition 1.1].
(ii) The map is flat; so suppose that K is a maximal right ideal of T with $K_{x}=T_{x}$ and $K_{C}=T_{C}$. Then 1. $x^{n} \in K$, for some n, and 1. $(1-x r) \in$ K, for some $r \in R$. Suppose that n has been chosen to be as small as possible. If $n>0$ then $x^{n-1}=x^{n} \cdot r+(1-x r) x^{n-1} \in K$, a contradiction. Thus $n=0$ and $1 \in K$, therefore $K=T$. Hence the map is faithfully flat.
(iii) If x is a unit of R then R_{c} is the zero ring, in which case $\mathrm{K} \cdot \operatorname{dim}\left(R_{C}\right)$ $=-1$. Otherwise, the image of x in R_{C} is a nonzero divisor in R_{C}, and an easy calculation shows that it is in the Jacobson radical of R_{C}. Thus, by [4, Theorem 2.4], K. $\operatorname{dim}\left(R_{C}\right)$ is not a limit ordinal.

Corollary 2. Let $\mathrm{K} \cdot \operatorname{dim}(R)=\alpha$ be a limit ordinal and $\delta-\operatorname{K} \cdot \operatorname{dim}(R)=$ $\beta<\alpha$. Suppose that M is a finitely generated T-module such that M_{x} is a finitely generated R_{x}-module. Then $\mathrm{K} \cdot \operatorname{dim}_{T}(M)<\alpha$.

Proof. K.dim $\left(R_{C}\right) \leqq \mathrm{K} \cdot \operatorname{dim}(R)=\alpha$. However, by Theorem 1, K. $\operatorname{dim}\left(R_{C}\right)$ $\neq \alpha$; so $\mathrm{K} \cdot \operatorname{dim}\left(R_{C}\right)<\alpha$. Now $T_{C} \cong R_{C}[\theta ; \delta]$, so that $\mathrm{K} \cdot \operatorname{dim}\left(T_{C}\right) \leqq$ $\mathrm{K} \cdot \operatorname{dim}\left(R_{C}\right)+1<\alpha$, since α is a limit ordinal.

Because the map $T \rightarrow T_{x} \oplus T_{C}$ is faithfully flat, the map $N \rightarrow N_{x} \oplus N_{C}$ of the lattice of T-submodules of M preserves strict inclusions. Hence $\mathrm{K} \cdot \operatorname{dim}_{T}(M) \leqq \mathrm{K} \cdot \operatorname{dim}_{T_{x} \oplus T_{C}}\left(M_{x} \oplus M_{C}\right)=\max \left\{\mathrm{K} \cdot \operatorname{dim}_{T_{x}}\left(M_{x}\right), \mathrm{K} \cdot \operatorname{dim}_{T_{C}}\left(M_{C}\right)\right\}$. Now

$$
\mathrm{K} \cdot \operatorname{dim}_{T_{C}}\left(M_{C}\right) \leqq \mathrm{K} \cdot \operatorname{dim}\left(T_{C}\right)<\alpha,
$$

and, by [2, Theorem 1.6]

$$
\mathrm{K} \cdot \operatorname{dim}_{T_{x}}\left(M_{x}\right) \leqq \delta-\mathrm{K} \cdot \operatorname{dim}\left(R_{x}\right) \leqq \delta-\mathrm{K} \cdot \operatorname{dim}(R)=\beta<\alpha
$$

Therefore $K \operatorname{dim}(M)<\alpha$.
Using the above result, we are able to generalize [2, Proposition 4.2] to arbitrary ordinals.

Theorem 3. Let R be a commutative Noetherian differential ring and let P be a prime ideal of R such that $\alpha=\mathrm{K} \cdot \operatorname{dim}(R / P)=\eta+n$, where η is a limit ordinal and n is a natural number. If $\delta-\operatorname{K} \cdot \operatorname{dim}(R)<\eta$ then $\mathrm{K} \cdot \operatorname{dim}_{T}(T / P T)=\mathrm{K} \cdot \operatorname{dim}(R / P)$.

Note. Proposition 4.2 of [2] is the above in the case that $\delta-K \cdot \operatorname{dim}(R)$ is finite. The proof given here follows the proof of [2, Proposition 4.2] closely, but uses Corollary 2 above to deal with the case of arbitrary limit ordinals.

Proof. By [2, Proposition 1.2], $\mathrm{K} \cdot \operatorname{dim}(T / P T) \geqq \alpha$. The reverse inequality
is proved by showing that $\mathrm{K} \cdot \operatorname{dim}_{T}(A)<\alpha$, for any proper T-module factor A of $T / P T$. The proof of this by induction on α, beginning at $\alpha=\eta$. The inductive step is proved exactly as in [2, Proposition 4.2] with statements ' $K . \operatorname{dim}(\quad)$ is finite' replaced by 'K.dim() $<\eta$ '; so we present only the case $\alpha=\eta$.

Without loss of generality, assume that no T-submodule of A has Krull dimension less than η. If $A=0$ we are finished. Otherwise, by [2, Proposition 2.3], we may assume that A is annihilated by a power of P, that there exists $x \in R \backslash P$ such that A_{x} is a finitely generated R_{x}-module and that x is a non zero divisor modulo $\operatorname{ann}_{R}(A)$. Now, $\operatorname{ann}_{R}(A)$ is a δ-ideal of R, since A is a T-module, and, applying Corollary 2 to A viewed as a $T / \operatorname{ann}_{T}(A)$ - module,

$$
\mathrm{K} \cdot \operatorname{dim}_{T}(A)=\mathrm{K} \cdot \operatorname{dim}_{T / \operatorname{ann} n_{T}(A)}(A)<\eta
$$

Corollary 4. If η is a limit ordinal such that $\delta-\operatorname{K} \cdot \operatorname{dim}(R)<\eta$ while $\mathrm{K} \cdot \operatorname{dim}(R) \geqq \eta$ then $\mathrm{K} \cdot \operatorname{dim}(R[\theta ; \delta])=\mathrm{K} \cdot \operatorname{dim}(R)$.

Proof. Set $T=R[\theta ; \delta]$. Let P_{1}, \ldots, P_{n} be the minimal prime ideals of R. If $\mathrm{K} \cdot \operatorname{dim}\left(R / P_{i}\right)<\eta$, for some i, then $\mathrm{K} . \operatorname{dim}\left(T / P_{i} T\right)<\eta$ [2, Proposition 1.2], so $\mathrm{K} \cdot \operatorname{dim}\left(T / P_{i} T\right)<\mathrm{K} \cdot \operatorname{dim}(R)$. If $\mathrm{K} \cdot \operatorname{dim}\left(R / P_{i}\right) \geqq \eta$, then $\mathrm{K} \cdot \operatorname{dim}\left(T / P_{i} T\right)=\mathrm{K} \cdot \operatorname{dim}\left(R / P_{i}\right) \leqq \mathrm{K} \cdot \operatorname{dim}(R)$, by Theorem 3.

Therefore, $\mathrm{K} \cdot \operatorname{dim}(T)=\max \left\{\mathrm{K} \cdot \operatorname{dim}_{T}\left(T / P_{i} T\right)\right\} \leqq \mathrm{K} \cdot \operatorname{dim}(R)$. The reverse inequality is [2, Proposition 1.2].

Specializing this to the limit ordinal case gives the following result.
Corollary 5. If η is a limit ordinal and $\mathrm{K} \cdot \operatorname{dim}(R)=\eta$, then $\mathrm{K} \cdot \operatorname{dim}(R[\theta ; \delta])=\eta$ unless $\delta-\mathrm{K} \cdot \operatorname{dim}(R)=\eta$ in which case $\mathrm{K} \cdot \operatorname{dim}(R[\theta ; \delta])$ $=\eta+1$.

Proof. If $\delta-\mathrm{K} \cdot \operatorname{dim}(R)=\eta$ then $\mathrm{K} \cdot \operatorname{dim}(R[0 ; \delta])=\eta+1$ by [2, Proposition 1.3].

Goodearl and Warfield have conjectured that when $\operatorname{K} \operatorname{dim}(R)$ is infinite then $\mathrm{K} \cdot \operatorname{dim}(R[\theta ; \delta])=\max \{\delta-\mathrm{K} \cdot \operatorname{dim}(R)+1, \mathrm{~K} \cdot \operatorname{dim}(R)\}$, and Corollary 5 shows that this is the case if R has limit ordinal Krull dimension. However, the conjecture is not true in general, as the following example shows.

Example 6. Let A be a commutative Noetherian Q-algebra with Krull dimension ω, the first limit ordinal, for example [5, p. 203]. Let K be the field of fractions of A and \tilde{K} the algebraic closure of K. Let x, y be commuting indeterminates over \tilde{K} and let $R=A[x, y], R_{1}=K[x, y]$ and $R_{2}=\tilde{K}[x, y]$; so that $R \subseteq R_{1} \cong R_{2}$ and R_{2} is an integral extension of R_{1}. Let δ be the derivation on R_{2} (and so also by restriction on R_{1} and R) given by

$$
\delta=2 y \frac{\partial}{\partial x}+\left(y^{2}+x\right) \frac{\partial}{\partial y} .
$$

Set $T=R[\theta ; \delta]$. Note that $\mathrm{K} \cdot \operatorname{dim}(R)=\omega+2$; so $\mathrm{K} \cdot \operatorname{dim}(T) \leqq \omega+3$. We show that $\delta-\mathrm{K} \cdot \operatorname{dim}(R)=\omega+1$ and $\operatorname{K} \cdot \operatorname{dim}(T)=\omega+3$, so that $\mathrm{K} \cdot \operatorname{dim}(T) \neq \max \{\mathrm{K} \cdot \operatorname{dim}(R), \delta-\mathrm{K} \cdot \operatorname{dim}(R)+1\}$.

Now $x R+y R$ is a δ-prime ideal of R and $R / x R+y R \cong A$, so $\delta-\mathrm{K} \cdot \operatorname{dim}(R / x R+y R)=\omega=\mathrm{K} \cdot \operatorname{dim}(R / x R+y R)$. Hence, $\mathrm{K} \cdot \operatorname{dim}(T / x T+$ $y T)=\mathrm{K} \cdot \operatorname{dim}((R / x R+y R)[\theta ; \delta])=\omega+1$, by Corollary 5. Now, for any prime P of $R, T / P T$ is a critical T-module [2, Lemma 2.1]; so the proper chain of prime ideals $0 \leqq x R \leqq x R+y R$ forces $\omega+1=$ $\mathrm{K} \cdot \operatorname{dim}(T / x T+y T)<\mathrm{K} \cdot \operatorname{dim}(T / x T)<\mathrm{K} \cdot \operatorname{dim}(T)$. Thus $\mathrm{K} \cdot \operatorname{dim}(T) \geqq$ $\omega+3$; so $\mathrm{K} \cdot \operatorname{dim}(T)=\omega+3$.

Now $\delta-\mathrm{K} \cdot \operatorname{dim}(R) \geqq \omega+1$ since $\delta-\mathrm{K} \cdot \operatorname{dim}(R / x R+y R)=\omega$. Suppose that δ-K.dim $(R) \geqq \omega+2$. Then there exists δ-prime ideals $0<P<Q$ of R with $\delta-\mathrm{K} \cdot \operatorname{dim}(R / Q)=\omega$ and $\delta-\mathrm{K} \cdot \operatorname{dim}(R / P)>\omega$. Note that $\mathrm{K} \cdot \operatorname{dim}(R / Q) \geqq \delta-\mathrm{K} \cdot \operatorname{dim}(R / Q)=\omega$. Hence $A \cap Q=0$, for otherwise R / Q is a homomorphic image of $(A / A \cap Q)[x, y]$ and so has finite Krull dimension. Thus in R_{1} there is a proper chain of δ-prime ideals $0<P R_{1}$ $<Q R_{1}$. Since R_{2} is integral over R_{1} there is a proper chain of prime ideals $0<\tilde{P}<\tilde{Q}$, such that \tilde{P} is minimal over $P R_{2}$ and \tilde{Q} is minimal over $Q R_{2}$. By [6, Theorem 1] \tilde{P} and \tilde{Q} are δ-prime ideals of R_{2}, and hence $\delta-\mathrm{K} \cdot \operatorname{dim}\left(R_{2}\right) \geqq 2$. However, by [2, Example 2.15], $\delta-\mathrm{K} \cdot \operatorname{dim}\left(R_{2}\right)=1$. Hence $\delta-\mathrm{K} \cdot \operatorname{dim}(R)=\omega+1$.

In order to find a formula for the Krull dimension of $R[\theta ; \delta]$ in the general case, it is necessary to look at arbitrary prime factor rings R / P with Krull dimension a limit ordinal. To retain a small amount of clarity, the cases of characteristic zero and characteristic non zero are presented separately.

Lemma 7. Let P be a prime ideal of R such that $\operatorname{char}(R / P)=0$ and that $\mathrm{K} \cdot \operatorname{dim}(R / P)=\eta$ is a limit ordinal.
(i) If $\delta(P) \subseteq P$ and $\delta-\mathrm{K} \cdot \operatorname{dim}(R / P)=\eta$, then $\mathrm{K} \cdot \operatorname{dim}(T / P T)=\eta+1$.
(ii) If $\delta(P) \subseteq P$ and $\delta-\mathrm{K} \cdot \operatorname{dim}(R / P)<\eta$, then $\mathrm{K} \cdot \operatorname{dim}(T / P T)=\eta$.
(iii) If $\delta(P) \varsubsetneqq P$, then $\mathrm{K} \cdot \operatorname{dim}(T / P T)=\eta$.

Proof. (i) and (ii) are just Corollary 5 applied to the ring R / P. (iii) $\mathrm{K} \cdot \operatorname{dim}(T / P T) \geqq \eta$, by [2, Proposition 1.2]. An easy adaptation of the argument due to Hart [3, Lemma 2.4] gives the reverse inequality.

For any ideal I of R, set

$$
(I: \delta)=\left\{r \in R \mid \delta^{n}(r) \in I, \text { for all } n=0,1,2, \ldots\right\}
$$

Then ($I: \delta$) is the largest δ-ideal contained in I.

Lemma 8. Let P be a prime ideal of R such that $\operatorname{char}(R / P)>0$ and that $\mathrm{K} \cdot \operatorname{dim}(R / P)=\eta$. Then $\mathrm{K} \cdot \operatorname{dim}(T / P T)=\eta+1$.

Proof. By [1, Lemma 13], if Q is a prime ideal containing P then $Q /(Q: \delta)$ is nilpotent. It follows that the map $Q \rightarrow(Q: \delta)$ is an order isomorphism from the set of primes of R containing P to the set of δ-primes of $R /(P: \delta)$. Hence δ-K. $\operatorname{dim}(R /(P: \delta))=\eta$. Therefore, by [2, Proposition 1.3], $\mathrm{K} \cdot \operatorname{dim}(T /(P: \delta) T)=\eta+1$. Since $P /(P: \delta)$ is nilpotent, we may choose a series of ideals $(P: \delta)=A_{0} \leqq A_{1} \leqq \cdots \leqq A_{n}=R$ such that each factor is either isomorphic to R / P or a prime homomorphic image of R / P. Thus there are right ideals $(P: \delta) T \leqq A_{1} T \leqq \cdots \leqq A_{n} T=$ T such that each factor is isomorphic to a homomorphic image of $T / P T$. Hence $\eta+1=\mathrm{K} \cdot \operatorname{dim}(T /(P: \delta) T)=\max \left(\mathrm{K} \cdot \operatorname{dim}\left(A_{i+1} T / A_{i} T\right)\right) \leqq$ $\mathrm{K} \cdot \operatorname{dim}(T / P T) \leqq \mathrm{K} \cdot \operatorname{dim}(R / P)+1=\eta+1$; so $\mathrm{K} \cdot \operatorname{dim}(T / P T)=\eta+1$.

In order to make it easier to compare our general result with that of Goodearl and Warfield, we shall say that, given a limit ordinal η, a prime ideal P of R is η-maximal if $\mathrm{K} \cdot \operatorname{dim}(R / P)=\eta$. All that remains to be done is to rephrase Proposition 2.7 and Theorem 2.9 of [2] in terms of η-maximal ideals and to check that the proofs go through.

Proposition 9. Let η be a limit ordinal and let P be a prime ideal such that $K \operatorname{dim}(R / P)=\eta+n$, for some natural number $n \geqq 1$. Set

$$
\eta+m=\max \{\mathrm{K} \cdot \operatorname{dim}(T / Q T) \mid Q \text { prime in } R \text { and } P<Q\}
$$

Then $\mathrm{K} \cdot \operatorname{dim}(T / P T)=\eta+m+1$.
Proof. As in [2, Proposition 2.7].
Theorem 10. Let I be an ideal of R and let η be a limit ordinal such that $K \operatorname{dim}(R / I)=\eta+n$, for some natural number n. Let

$$
\begin{aligned}
\mathscr{M}= & \{M \triangleleft R \mid M \text { is } \eta \text {-maximal and } I \subseteq M \text { and either } \\
& \text { (i) } \delta(M) \subseteq M \text { and } \delta-\mathrm{K} \cdot \operatorname{dim}(R / M)=\eta \text {,or } \\
& \text { (ii) } \operatorname{char}(R / M)>0\} .
\end{aligned}
$$

Set $m=\max \{\operatorname{height}(M / I) \mid M \in \mathscr{M}\}$, with $m=-1$ if $\mathscr{M}=\varnothing$. Then $\mathrm{K} \cdot \operatorname{dim}(T / I T)=\max \{\eta+(m+1), \mathrm{K} \cdot \operatorname{dim}(R / I)\}$.

Proof. As in [2, Theorem 2.9], using Lemmas 7 and 8 in place of [2, Lemma 2.8].

Corollary 11. Let $\operatorname{K} \cdot \operatorname{dim}(R)=\eta+n$, for some limit ordinal η and natural number n. Set $\mathscr{M}=\{M \triangleleft R \mid M$ is η-maximal and either (i) $\delta(M) \subseteq M$ and $\delta-\mathrm{K} \cdot \operatorname{dim}(R / M)=\eta$ or (ii) $\operatorname{char}(R / M)>0\}$ and set $m=$
$\max \{\operatorname{height}(M) \mid M \in \mathscr{M}\}$, with $m=-1$ if $\mathscr{M}=\varnothing$. Then K $\operatorname{dim}(R[\theta$; $\delta])=\max \{\eta+(m+1), \mathrm{K} \cdot \operatorname{dim} R\}$.

If R is an algebra over a field of finite characteristic then it is easy to see, from Lemma 8, that $\mathrm{K} \cdot \operatorname{dim}(R[\theta ; \delta])=\mathrm{K} \cdot \operatorname{dim}(R)+1$. In the case that R is a Q-algebra we can give the following slight improvement to Corollary 4.

Theorem 12. Let R be a Q-algebra with $\delta-\operatorname{K} \operatorname{dim}(R) \leqq \eta$, for some limit ordinal η. Suppose that $\mathrm{K} \cdot \operatorname{dim}(R)>\eta$. Then $\operatorname{K} \cdot \operatorname{dim}(R[\theta ; \delta])=$ $\mathrm{K} \cdot \operatorname{dim}(R)$.

Proof. If $K \cdot \operatorname{dim} R \geqq \eta+\omega$, then Corollary 4 applies. Otherwise, suppose that $\mathrm{K} \cdot \operatorname{dim}(R)=\eta+n$, for some natural number $n \geqq 1$. Consider the set M defined in Theorem 10. If $\mathscr{M}=\varnothing$ then $\operatorname{K} \cdot \operatorname{dim}(R[\theta ; \delta])=$ $\max \{\eta+(-1+1), \mathrm{K} \cdot \operatorname{dim}(R)\}=\mathrm{K} \cdot \operatorname{dim}(R)$. Otherwise, let $M \in \mathscr{M}$. Then, since $\operatorname{char}(R / M)=0, \delta-\mathrm{K} \cdot \operatorname{dim}(R / M)=\eta$. Now minimal prime ideals of R are δ-primes; so, since δ - $\operatorname{K} \cdot \operatorname{dim}(R) \leqq \eta, M$ must be a minimal prime. Thus $m=\max \{\operatorname{height}(M) \mid M \in \mathscr{M}\}=0$ and $\operatorname{K} \cdot \operatorname{dim}(R[\theta ; \delta])=$ $\max \{\eta+1, \mathrm{~K} \cdot \operatorname{dim}(R)\}=\mathrm{K} \cdot \operatorname{dim}(R)$.

References

1. K.R. Goodearl, Global dimension of differential operator rings. III, J. Lond. Math. Soc. 17 (1978), 397-409.
2. -_ and R.B. Warfield, Jr., Krull dimension of differential operator rings, Proc. Lond. Math. Soc. (3) 45 (1982), 49-70.
3. R. Hart, Krull dimension and global dimension of simple Ore-extensions, Math. Zeit. 121 (1971), 341-345.
4. T.H. Lenagan, Krull dimension and invertible deals in Noetherian rings, Proc. Edin. Math. Soc. 20 (1976), 81-86.
5. M. Nagata, Local Rings, New York (1962) Interscience.
6. A. Seidenberg, Differential ideals in rings of finitely generated type, Amer. J. Math. 89 (1967), 22-42.

University of Utah, Salt Lake City, UT 84112

[^0]: This research was partially supported by a National Science Foundation grant.
 Received by the editors on February 22, 1982.

