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WALTER S. SIZER 

Introduction. For any group C7, let F(G) denote the semigroup of finite 
non-empty subsets of G. A semigroup homomorphism a: F(G) -> G 
satisfying a({g}) = g for all g in G is called a retraction of G. The notion 
of a group admitting a retraction generalizes the notion of a lattice-
ordered group because in any lattice-ordered group the mapping A -*• A A 
is a retraction (cf., [1]). This example of a retraction induced by a lattice 
order has the property that the effect of the mapping on F(G) is determined 
uniquely by its effect on two element subsets. This is not so for all retrac
tions, and [1, example 6.1], gives an instance where two distinct retractions 
agree on all two element subsets. The question of whether distinct retrac
tions can agree on sets of cardinality less than or equal to n for arbitrary 
n is dealt with in this paper. 

Also, in looking at a retraction a on a group G, the notion which cor
responds to that of an 1-subgroup is the notion of a ^-subgroup—a sub
group H of G such that a restricted to F(G) is a retraction of H. In this 
paper we also deal with the question of whether a subgroup H of G with 
the property that all sets in F(H) of cardinality less than n get mapped by 
a io H must necessarily be a er-subgroup. 

Our approach considers only retractions of divisible abelian groups and 
builds on observations made in [3] and [4]. In the process of studying re
tractions we get a correspondence between retractions and homomor-
phisms from a semigroup of convex polytopes in Qn to Qn, so some of 
our results are essentially geometric in nature. 

I. Retractions and convex polytopes. Throughout, G will be a torsion 
free divisible abelian group, hence a rational vector speace. For conveni
ence we take G to be of finite rank. 

If a is any retraction of (7, and A, B, C are sets satisfying A + C = 
5 + C , then a(A) = a(B). Hence for A, B in F(<7), we define A ~ B if 
there is a C in F(G) with A 4- C = B 4- C. The following proposition is 
then easy to verify. 
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PROPOSITION 1. The relation ~ is a cancellative congruence. 

PROOF. Omitted. 

If for the moment we denote the equivalence class of A under ~ by 
[A], we have observed that a takes on the same value on all sets in [A]. 
Hence we can factor any retraction of G through F(G)j ~ . 

The following proposition gives an alternate way of conceptualizing ~ . 

PROPOSITION 2. A ~ B if and only if the convex hull of A (in the rational 
vector space G) equals the convex hull ofB. 

PROOF. If: This is proved in [3] in the proof of lemma 11. Only if: 
Suppose A ~ B; then A ~ A {] B, so it suffices to show that if A ~ A \j 
{*}, then x is in the convex hull of A. Suppose A + C = (A [} {x}) + C. 
Let c0 G C. From the above equation we get successively relations 

x + c0 = ai + ch ox e A, Ci e C; 

x + c1 = a2 + c2, a2 eA,c2e C; 

x + c2 = a3 + c3. a3 eA,c3e C; 

x 4- cn_x = an + cn9 an, eA,cne C; 

Since C is finite, for some pair of integers /, j , i ^ j , cï = cy. Without 
loss of generality we take j = n, i = 0. Summing the first n equations 
above and setting cn equal to c0, we get nx + £ c * = Hai + Hci, o r 

nx = ax + • • • + an. Then x = (1/^) ax + • • • + (\jn)an, so x is in the 
convex hull of A. 

The set of convex polytopes in G forms a semigroup S0 under the ad
dition P + Q = {p 4- q\p G P, q e Q}. Using this notation we get the fol
lowing result. 

PROPOSITION 3. F(G)j ~ ^ S0-

(This was noted in [4] for the case of G = Q2). 

PROOF. That the mapping [A] -> convex hull of A is 1-1 and onto fol
lows from proposition 2. That this mapping is a homomorphism follows 
from the fact that {extreme points of A + B} E {extreme point of A] + 
{extreme points of B], itself a consequence of the equation min (A + B) 
= min (A) + min (B) for any total order on G. 
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Our observations so far are summed up as follows. 

COROLLARY. There is a 1-1 correspondence between retractions of G 
and semigroup homomorphisms er* : S0 -> G satisfying a*({g}) = g. 

We can eliminate the added condition on <7* in the corollary by passing 
to a subsemigroup of SQ. Let P b e a positive cone of a G for some total 
order, and let S = {Q e SQ\Q E P, min 2 = 0}. S is a subsemigroup, 
and any QQ in So can be written uniquely as p + Q,pinG, Qin S (namely 
p = min Q0, Q = Qo — min QQ). Any homomorphism a*: S0 -» G 
satisfying a*({g}) = g restricts to a homomorphism a**: S -> G, and 
any homomorphism <y**: S -+ G extends uniquely to a homomorphism 
a* : S0 -> G satisfying a*({g}) = g for all g in G by the rule a*(ß0) = 
min QQ + a**(Qo — min QQ). Thus we get the following result. 

COROLLARY. There is a 1-1 correspondence between retractions of G and 
semigroup homomorphisms a: S -• G. 

In what follows we shall make use of the fact that S, as subsemigroup of 
the cancellative semigroup 50, is cancellative. In the next section we give 
a way of describing semigroup homomorphisms from S to G. 

II. Algebra of polytopes. The cancellative, commutative semigroup S 
can be embedded in a group Q(S) of quotients by adjoining formal in
verses, and Q(S) will have a vector space structure over the rational num
bers which agrees with the multiplication by non-negative rational num
bers defined on S. 

We say a set X = {xa\a in A} of polytopes in S is independent if it is 
independent in the vector space g(S), and that X forms a basis of S if it is 
a basis in Q(S). We get this simple result. 

PROPOSITION 4. Let Y be a basis in S. An arbitrary map a: Y -> G ex
tends unqiuely to a homomorphism cr* : S -> G. 

PROOF. Clear. 

Thus to define a homomorphism 5 -> G—and hence a retraction 
F(G) -> G—it suffices to define an arbitrary map from a basis in S to G. 
Bases in S are not easy to construct, however. One is given, without veri
fication, at the close of [4] for the case G = Q2. We shall limit our inquiries 
here to properties of bases in S. 

A /:-simplex in S is a polytope with k + 1 vertices which span a k-
dimensional affine subspace of G. 

Let P e S, and let H be a hyperplane in G such that (1) P lies in one of 
the closed half-spaces determined by i/, and (2) P f] H / 0 . Then 
F = P H H is a face of P. The hyperplane H can be described as {x in G| 
<x, v> = c) for suitable v in G and c rational. By replacing v by — v and 
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e by — c if necessary, we can assume that c = max{<>', v}\y in F}; in this 
case, F = F(P, v) is called the face of P with outer normal v. Going back
wards, given v in G, v # 0, H = {x in G\(x, v> = max{<j, v>|w in P}} 
is a hyperplane and H f) P = F(P, v), (see [2]). We denote by F*(P, v) 
the translate of F(P, v) in S. By [2, p. 317, theorem 1], if P + g = P for 
P, ß , /? in S, then F*(P, v) + F*(ß, v) = F*(Ä, v) for all v in G - {0}. 
We are now able to prove our next result. 

THEOREM 5. Let X be a k-simplex in S. Let Xh . . . , Xr be polytopes in 
S of dimension at mostk-X. Then no relation X + TiaiXi = 0 holds for a{ 

rational. 

PROOF. We will show that no relation X 4- 2>,-AV = Z > , ^ holds for r{, 
s{ non-negative. We use induction on k. If k = 1 the result is trivially 
valid. Suppose the theorem holds for A>1, and we will show it is true for 
k also. Let v be the outer normal of a k-\ dimensional face of X. Then 
(1) F*(Ar, v) + S ^ * ^ - , v) = I X F * ( A ; , V). F*(X, V) is A:-l dimensional. 
F*{Xh v) is k-\ dimensional only if X{ J_ v, in which case F*(Xt-, v) = 
F^Xi, - v). But we also have (2) F*(X, - v) -f- £r,-F*(^-, - v) = 
2] siF*(Xi, -v), and the first term here is zero-dimensional. Combining 
(1) and (2), we get 

F*(X, v) + L r , F * ( ^ , v) + S ^ * ( ^ , - v) 

= F*(^, - v) + Lr,F*(^, , - v) -f Ü J ^ t ^ . , v). 

In (3) the k-\ dimensional summands of the form rtF*(X{i v) and 
SjF*(Xh — v) on the left are balanced by terms r,-F*(Ar

l- — v) and 
stF*(Xi9 v) on the right, and since S is cancellative we cancel them. On the 
left we have remaining a single term of dimension A>1, namely F*(X, v), 
and on the right no terms of dimension k-\. This is not possible by our 
induction hypothesis, so the theorem is valid. 

COROLLARY. If G is n-dimensional, any basis in S contains a polytope 
with at least n + 1 vertices. 

PROOF. By theorem 5, a basis cannot consist solely of polytopes of 
dimension less than n. A polytope of dimension n contains at least n + I 
vertices. 

Our next objective is to show that there exist bases in S which consist 
only of simplices. First we need the following Lemma. 

LEMMA 6. Let P e S be a polytope. Let H be a hyperplane which cuts P. 
Let F0, Px be the polytopes formed by intersecting P with the closed half-
spaces determined by H, and let F = P f] H. Suppose 0 e F0, and set 
P[ = Fi - min Ph F' = F - min F. Then P + F' = P0 + P[. 
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PROOF. First we show that min Px = min F. Let'a = min P l 5 b = 
minF. Then b ^ a, 0, so for every rational number r in [0, 1], b ^ ra 4-
(1 — r)0. Since 0 is in one closed half-space determined by H and a is 
in the other, some ra + (1 — r)0 is in H, so is in F. But then by the mini
mality of b, ra 2; b, so ra = &. But also ra g #, so ra = a, and a = b. 

Hence, to show P + F' = P0 + P[, we need only show that P 4- F = 

Po + Pi-
P -f F g P0 4- ZV LetpeP, feF. Then /? e J>,, / e />!_,., so p -h fé 

Po + /V 
Po + Pi = P -h F: Let a e P0, be Ph For some rational number r 

in [0, 1], ra + (l - r)ò e //. Then a + b = (ra + (\ - r)b) + ((1 - r) 
a + r£) is in F -f- P. 

THEOREM 7. 777É7T is a basis in S consisting only of simplices. 

PROOF. We need a result of Tverberg [5], namely that any polytope can 
be dissected into simplices by first cutting it with a hyperplane, then 
cutting one of the pieces with a hyperplane, and continuing this process 
for a finite number of steps. 

Let X be an independent set of polytopes in S maximal subject to con
taining only simplices. We want to show that, for any polytope P e S, 
P 4- TiriXi = Hst^n f° r rn si non-negative rational numbers, X{ in X. 
We use induction on k, the dimension of P. If k — 1, F is a simplex, so 
by the maximality of X, either P is in X or P can be expressed as a linear 
combination of elements of X, and we can get the desired relationship. 
Assume then that any polytope of dimension at most k-\ satisfies an equa
tion of the desired form. 

Using Tverberg's result and lemma 6, we get equations 

P + F{ = Po + Pi 

P 4- F[ + Fi = Po + Pi + PI 

where F-j is the face we get cutting P/ with a hyperplane, and P" and 
P'2 are the resulting pieces, translated to lie in S. Eventually we get 

(*) P + ZF'j = LPjk\ 

where the Pf] are simplices and the Fj have dimension at most k-l. By 
induction, we get relations Fj + I X y ^ = I X / ^ > and by maximality 
of X we get equations Pjk) 4- 2>?7A^ = HbaXt: Then, adding J^rtJ-Xt-
+ H(*ijXito b°th sides of (*), we get 

P + £ F ; + 2> l 7 *, + £*,.,.*, = £ P f + L M V + 2>i7** 

or F 4- IXyÀ^ 4- 2>r7AV = Z3*,v ,̂- + TiUjXh as desired. 
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III. Aplications to retractions. With some care in constructing bases 
X in S and defining maps X -* G we can answer some previously unsettled 
questions about retractions. 

THEOREM 8. Let G be a torsion free abelian group of rank n. Two re trac-
tions of G are the same if and only if they agree on all sets of cardinality at 
most n -f 1, and agreement on all sets of cardinality at most k < n + 1 
is not sufficient to guarantee agreement on sets of cardinality n -b 1. 

PROOF. By [3] we can take G = Qn. 
Only if: clear. 
If: If two retractions agree on all sets of cardinality at most n + 1, the 

corresponding homomorphisms S -> G agree on all sets with at most 
n + 1 vertices. Hence they agree on all simplices, so they agree on a basis 
and hence are identical. Thus the original retractions were the same. 

To show that agreement on sets of cardinality at most k < n + 1 is 
not sufficient for retractions to be the same we proceed as follows. In 
constructing a basis Y we first get a maximal independent set X of poly-
topes of dimension less than n. The maximality of X will imply that the 
image under any semigroup homomorphism S -* G of any polytope of 
dimension at most n — 1 will be determined by its effect on X. The corol
lary to theorem 5 tells us that X is not a basis, so it can be extended to a 
basis Y. Clearly, two distinct mappings of Y into G can agree on X, so 
two distinct retractions on G can agree on all sets of cardinality less than 
or equal to n. 

Regarding ^--subgroups of retractable groups, we get the following 
result. 

THEOREJM 9. For any n there is a retractable group G with retraction 
a, and a subgroup H of G, such that a maps all subsets ofF(H) of cardinality 
less than n to H, yet H is not a o-subgroup of G. 

PROOF. We take G = Qn, and H to be any n-\ dimensional subspace. 
This time we first take an independent set X of polytopes of dimension 
less than n-\ maximal subject to having all vertices in H. We extend X 
to a maximal independent set X' of polytopes with all vertices in H, then 
extend X' to a basis Y in S. The maximality of X implies that if P is a 
polytope with vertices in H and dimension less than n-l, then the image 
of P under any homomorphism S -> G is determined by the correspond
ing images of X. Also, the corollary to theorem 5 applied to H shows that 
X ^ X''. Thus in defining a map Y -> G we can assign values in H to 
elements of X, and yet assign a value outside of H to some element of 
X' not in X. The corresponding retraction would have the desired property. 
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