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A CLASS OF NEGATIVE-AMPHICHEIRAL 
KNOTS AND THEIR ALEXANDER POLYNOMIALS 

JAMES M. VAN BUSKIRK 

1. Introduction. A knot K is amphicheiral provided there is an orien­
tation-reversing autohomeomorphism p of space (S3 = R3 U I00}) map­
ping K to itself; if p is a piecewise-linear involution, then K is strongly 
amphicheiral. According to R. H. Crowell and R. H. Fox [7, p. 9], "It 
is not hard to show that the figure-eight knot is amphicheiral. The 
experimental approach is best. . .". An accompanying figure then con­
vinces the reader, in six views, that the standard projection of this knot 
can be deformed to its mirror image. 

The motivation for the present study is the simple observation that 
the strong amphicheirality of the figure-eight knot is obvious from the 
single view of this knot appearing in Figure 1(a), since a half-rotation 
(about a normal to the plane of projection at the origin o) takes the knot 
to its mirror image. 

( a ) ( b ) ( c ) 

Figure 1 

Unfortunately, while the invertibility of this knot is obvious from its 
standard projection (as given in knot tables, for example [22, p. 391], 
where it is denoted 4X), about a half-dozen views would now be needed 
to visulize a deformation which takes the given projection of 4X to itself 
while reversing the orientation of (that is, the direction of an arrow on) 
the knot. 

The strong amphicheirality of the other knots in Figure 1 likewise 
follows from their invariance under the extension a of the reflection of 
R3 in the origin to S3; that is, under the composition of the half-rotation 
mentioned above with the reflection in the plane of projection. 
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Figure 1(b) and (c) are actually 12-crossing projections of the same 
10-crossing knot 1031 (see Figure 2). In one projection the knot passes 
through the origin (as well as the point oo) so that a reverses orientation 
on the knot, thereby showing 1031 to be strongly negative-amphicheiral ; 
while in the other projection a preserves orientation, showing that 1031 

is a strongly positive-amphicheiral knot as well. 

Figure 2 
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Knots, such as 1031, which are both positive- and negative-amphicheiral 
are clearly invertible. H. Trotter exhibited a 15-crossing knot K, which is 
neither invertible nor amphicheirai, which he used to construct composite 
knots which are either negative-amphicheiral or positive-amphicheiral, 
but not invertible [29]. These knots can be described as the completions, 
by th map a, of the positive x raxis on the one hand, and of a semi­
circle "centered" at the origin on the other, into which has first been 
tied a knot of type K. W. Whitten has exhibited both positive-amphicheiral 
and negative-amphicheiral prime knots which are non-invertible [32], 
while F. Bonahon and L. Siebenmann have shown many of the classical 
prime negative-amphicheiral knots, including 817 (see [8, Prob. 10]), to 
be non-invertible [4]. 

Being strongly amphicheirai is not as special for amphicheirai knot 
types as might first appear. The fact (as indicated in Figure 2) that each 
of the 20 amphicheirai knot types on 10 or fewer crossings (see [20]) is 
strongly negative-amphicheiral leads to the following 

CONJECTURE 1. [16, Prob. 1.5]. A knot is amphicherial if and only if 
it is strongly amphicheirai. (A candidate for a counterexample to this 
conjecture is Whitten's negative-amphicheiral knot Jf (+) [32].) 

REMARK. Subsequent to the writing of this paper, both R. Hartley [11] 
and W. Whitten [33] have determined infinite collections of both positive-
and negative-amphicheiral counterexamples to Conjecture 1. 

Loosely related is the following conjecture. 

CONJECTURE 2. A minimal crossing projection of an amphicheirai knot 
has an even number of crossings. 

Attention will now be restricted to strongly negative-amphicheiral 
knots K which, like the knots 4X and 1031 considered above, have centrally 
symmetric embeddings of the form indicated in Figure 3(a), where it can 
be assumed (possibly following a half-rotation of K about the horizontal 
axis) that the left ray emerges at the top of the projection so that a knot 
j f and a 2-component link <£ are formed as indicated in Figure 3(b) 
and (c). 

Figure 3 
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The knot K will be called an a-completion of the knot J T , and 3? the link 
associated with this completion. 

This ad hoc terminology should cause no confusion, although it cer­
tainly fails to anticipate that other strongly negative-amphicheiral knot 
constructions can be obtained by varying the (odd) number of strings in 
the central portion of Figure 3(a) (such as that yielding the knot 818, as 
given in Figure 2) or that strongly positive-amphicherial knots can also 
be constructed in this manner (such as the knot 1031, given in Figure 1(c), 
which can be completed from half of its projection so as to be invariant 
under reflection in a point. 

The Alexander polynomial of K will be expressed in terms of those of 
C/T and if, each of which has half the number of crossings, much as Y. 
Hashizume and F. Hosokawa had done [13] in determining the Alexander 
polynomial of the symmetric skew knot unions of S. Kinoshita and 
H. Terasaka [15]. 

Flipping the right-hand side of K, as illustrated in Figure 3(a), about a 
horizontal axis (at the expense of introducing three additional crossings 
in the projection) allows the Alexander polynomial AK of K to be com­
puted from those of c/T and j£? by J. W. Alexander's original method [1], 
since the geometric symmetry of K is then captured in the matrix having 
AK as its determinant (see [31] for details). However, J. H. Conway's 
tangle theoretic methods [6] will provide a less onerous proof of this re­
lation. Here, the Alexander polynomial Ac? of the 2-component link £g will 
be that originally defined by Alexander [1, p. 301]. In terms of the 2-
variable polynomial Ag{x\, x2) which R. H. Fox defined for such links. 
[8, p. 131], A<?(x) would be (x - l)A<?(x, *)• 

The author hereby thanks the Aarhus University Mathematics Institute 
for providing the hospitable atmosphere in which this paper was written, 
Larry Siebenmann for the encouragement to give an alternate (tangle 
theoretic) proof of the main result, Andrew Taylor for helpful suggestions 
and the referee for a shorter proof of the primality of the knot given as 
Example 1 of §3. 

2. The main result. 

THEOREM. If a negative-amphicheiral knot K is the a-completion of a 
knot jf, then its Alexander polynomial is given by 

Mx) = J & * ) - x-^â%{x\ 

where A^ix) and A^{x) are the Alexander polynomials of J T and the asso-
dated link g>. 

PROOF. Those familiar with the tangle theoretic approach of Conway 
[6] will recognize the a-completion K of a knot J T to be the numerator of 
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the sum of a tangle J2, which has 3T as its numerator, and the mirror image 
of the tangle obtained by rotating â by — %\2 radians in the plane of 
projection, as indicated in Figure 4(a) and (b). Figure 4(c) shows the 
knot K* of Figure 6 from this point of view. 

( a ) (b ) ( c ) 

(d) ( e ) ( f ) (g) 

Figure 4 

A tangle @> is a standard three-ball spanned by a pair of oriented smooth 
arcs meeting the boundary (transversely) in four standard points, in­
dicated in Figure 4(d), so that the strings run from a to d and from c to b 
(as in the left tangle of Figure 4(c)) or from a to b and c to d (as in the 
right tangle). 

The sum of tangles â and 0> is indicated in Figure 4(e); while the com­
pletions, in S3, of the tangle 0> by standard arcs, indicated in Figure 4(f) 
and (g), yield its numerator 0>n and its denominator 0>d, one of which will 
be a knot and the other a 2-component link. 

Conway defines, for any tangle ^ , a formal fraction D^n(x)/D^d(x)9 

termed the polynomial fraction of ^ , and then gives, as the polynomial 
fraction of â + ^ , the formal 

lDMH{x)D,d{x) + Dad(x)DrH(x)]IDad(x)Dpd(x) 

of those of â and &> (see [6, pp. 340 and 339] and [9, Proposition 14]). 
Also, if Jf ' is the mirror image of a knot J T , then Dx,{x) = D^x); while 
if £?' is the mirror image of the 2-component link £?, then D^,{x) = 
-DJjc) [6, pp. 337 and 340]. 

The polynomial fraction of the tangle obtained on deleting arcs from 
the top and bottom strings of the ct-completion K of J T in Figure 4(b) 
is thus 

Dx{x)ID^x) + (-D^x))/DAx) = (Z)&x) - D%,(x))/D^x)DAx), 

since â„ = Jf" and âd = if, the associated link of this completion. Thus 
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DK(X) = DMX) ~~ • Al(*)- Since for any knot K, DK(x1/2) is the Alexander 
polynomial AK(x) of K, while for any 2-component link L, x1/2DL(x1/2) 
is AL{x), the polynomial of Alexander referred to at the end of §1 [6, 
p. 338], it follows that AK(x) = A^(x) — x_1zlj>(x), which completes the 
proof. 

The computation of AK(x) is facilitated by the observation that A#{x) 
and Acf(x) = (x — l)A<?(x, x) (which, as often defined, are knot and 
link invariants only to within a factor of ± x£) need not be determined by 
the methods of Conway or Alexander (compare with [10]), but can be ob­
tained by any convenient method. To see this, note that each of AK(x), 
Ajrix) and A#(x, x) = (x — l)_1zJ^(x) is a symmetric (finite Laurent) 
polynomial of even (reduced) degree, by [27, Theorem] and [28, Corollary 
3 (note misprint in statement)], so that AK(x) (normalized so AK(\) = 1) 
can be obtained as the difference of associates in Z[x, x_1] of the symmetric 
polynomials A^(x) and x~lA%{x) = (x — 2 + x~l)A%(x, x) in but one 
way. An excellent resource for such computations is provided by the 
projections and Alexander polynomials (after Fox) of prime knots to ten 
crossings and prime 2-component links to nine crossings which J. Bailey 
has compiled in Appendix C of [22] from Conway's enumerations [6]; 
but note that the ordering of ten crossing knots in these tables is not an 
extension of that given by P. G. Tait for ten crossing alternating knots, 
as listed in [6] and used here. 

A conjecture of A. Kawrauchi (namely, that for negative-amphicheiral 
knots A(x2) is of the form/(x)/( — x), where/( — x_1) = f(x) [11]) is verified 
for the special class of negative-amphicheiral knots under consideration 
on noting that 

AK(x2) = [AAx2) + x-^(x2)][AAx2) - x~lAAx2)l 
that Ax(x) is symmetric in x and, by the symmetry of A^(x, x) = 
(x - \)~lAçf(x) in x, that 

(-x-^A^x-2) = -x{x'2 - l)Aj?(x-2, x-2) 

= x-\x2 - l )zy> 2 , x2) = x-iA<?(x2). 

Appearing in a sequel to this paper [30] is a verification of this conjecture 
for strongly negative-amphicheiral knots, as well as of its converse; 
thereby answering a question raised by R. Hartley and Kawauchi in [12, 
Remark 3], where they settle the conjecture for the same class of knots 
and further show that the Alexander polynomial of a strongly positive-
amphicheiral knot is the square of some Alexander polynomial. 

3. Applications. There are knots on as few as eight crossings, such as 
the (3,4) torus knot 819(see [17]), having no projection on which the over-
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crossings and undercrossings alternate about the knot. An answer to the 
obvious question raised, on observing that each of the amphicheiral knots 
on ten or fewer crossings is an alternating knot (see Figure 2), is provided 
by the following example. 

EXAMPLE 1. A prime non-alternating amphicheiral knot. K. Murasugi 
has shown [17, p. 188] that alternating knots have alternating Alexander 
polynomials in which no term is skipped. A search of the tables in [22, 
Appendix C] reveals a 2-component, 7-crossing link f̂, shown in Figure 
5, which has an Alexander polynomial z/^(%i, x2) = x\x2 + 1 (after Fox) 
in which the difference of the degrees of its terms is so large that A%(x) = 
(x — l)2ZfJ>(x, x) is a polynomial having fewer terms than its (reduced) 
degree. But then, since i f has a projection for which the "associated 
knot" c/f is the unknot, the a-completion of J T has an Alexander poly­
nomial, 

AK{x) = x10 - 2x9 + x8 + 2x6 - 5x5 + 2x4 + x2 - 2x + 1 

which shows it to be non-alternating. 

Figure 5 

In this example, as well as in the following, it is crucial to demonstrate 
that the knot constructed is prime, since composite knots having these 
properties are easily constructed. The primality of these examples will 
be established following the presentation of the next example. 

EXAMPLE 2. A prime amphicheiral knot having trivial Alexander poly­
nomial. There is a projection of the Kinoshita-Terasaka 11-crossing knot 
Jt with trivial Alexander polynomial [15, p. 151] for which the associated 
2-component link & splits into unknots, as indicated in Figure 6. 

Figure 6 
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Since 4^(xl5 x2) = 0; (by [8, Example 7] or [22, p. 416]), A<?(x) = 0 and 
it follows that the a-completion K* of X has trivial Alexander poly­
nomial. 

The non-triviality of K* is established by extending a representation 
which R. Riley gives of ^iC^3 - J T ) into the alternating group Ab [21, 
p. 615] to 7Ui(S3 — K*), as indicated in the given projection of K*, where 
the images of a set of Wirtinger generators appear next to the correspond­
ing overpasses. 

Now if K* were not prime, each of its factors would inherit its trivial 
Alexander polynomial [8, p. 144] and consequently have at least three 
bridges. To see this, note that each factor of K* is non-alternating, since 
the genus of an alternating knot is half the degree of its Alexander poly­
nomial [18, p. 294] and no non-alternating knot has as few as two bridges, 
by [5] or [10]. 

But then, since the bridge number of the composition of two knots is 
one less than the sum of the bridge numbers of the factors [23, Satz 7], 
it follows that the bridge number of K* would be at least five. However, 
there is a direction in which the given projection of K* has only four 
relative maxima (marked *), so the bridge number of this knot is at most 
four (see [3, p. 199]). 

That the knot K of Example 1 is prime will follow, as with AT*, on show­
ing that the assumption to the contrary implies that its bridge number 
is at least five; whereas Figure 5 shows it to have a 4-bridge presentation. 

If K were composite, say K = K' # K" for non-trivial knots K' and K\ 

Figure 7 
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then, since AK(x) = AK,(x) • AK,{x) and the degree of any Alexander 
polynomial is even, one of the factors would have Alexander polynomial 
one while the other would have the same (non-alternating) Alexander 
polynomial as K. But then it would follow (as with the factors of K* in 
Example 2) that each of K' and K" is a non-alternating knot with bridge 
number at least three and hence that the bridge number of K would be 
at least five. 

The 2-fold covering of S3 branched over the knot K* of Example 2 
provided R. J. Stern with an example of an irreducible homology 3-sphere 
( ^ 5*3) with an orientation reversing diffeomorphism (which happens to 
have period four) [26]. L. C. Siebenmann and the author show that this 
diffeomorphism will be an involution if K* is replaced by any of an 
infinite class of positive-amphicheiral knots (including one with Alexander 
polynomial one) constructed for this purpose [25]. 

Now no knot with A(x) = 1 is known to be non-slice [16, Prob. 1.36] 
and no slice knot is known to be non-ribbon ([8, Prob. 24] or [16, Prob. 
1.33]). That K*, indeed any a-completion of a ribbon knot, is a ribbon 
knot (hence a slice knot) is indicated in Figure 7. 
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