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LIMIT BEHAVIOR OF SOBOLEV TOTAL 
FLUX BOUNDARY CONTROL PROBLEMS 

L. W. WHITE 

ABSTRACT. We consider control of certain nonlocal boundary 
value problems of Sobolev equations. Regularity results are ob­
tained for the optimal controls. Further, convergence results are 
obtained for the solution of the boundary value problems as well 
as the control problem as the equations formally approach the 
diffusion equation. 

1. Introduction. Let D be a nonempty bounded domain in Rn, n — 2 
or 3, with smooth boundary T7. Let a e D and B(a, p) be the ball centered 
at a with radius p > 0 and boundary Tp such that B(a, p) c D. Let Q = 
D - B{a, p) so that 30 = T7, U r. Finally, let Q = Q x (0, T) with 
2 = r x (0,T) and 2p = Tp x (0, T). We study control problems gov­
erned by the following nonlocal boundary value problem 

(1) (1 - eJ)yie) - ây^ = 0 in Q 

(2) yto(x9 0) = 0 in 0 

(3) j » ( x , t) = 0 on 2 

(4) / '>(*, t) = C£(t) on 2P 

where Ce(t) is an unknown function of t only 

(5) J -%n-{y{e) + eyP)da = v(0 a.e. in [0, T] 

where v e L2(0, T). 
In equation (1) the Laplacian may be replaced by another operator A 

that is second order symmetric uniformly strongly elliptic in Q. Equation 
(1) with e > 0 arises in the modelling of many physical phenomena [2]. 
Of particular interest is the flow of a fluid through fissured media [1]. 
In this case a system of fractures is assumed that separates blocks of a 
porous media thereby creating a material having two porosities. The 
solution y of equation (1) at a point represents an average pressure of the 
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fluid in the fissures in a neighborhood of that point. The term - eâyt is 
related to the contributions of fluid into the fissures from seepage from the 
blocks [1]. The boundary conditions of this problem attempt to model a 
fluid boundary condition in which the pressure is known in the cavity 
B(a, p) only to be independent of position on the boundary I'p and with 
the total flux through rp known but not known locally. That is, the total 
quantity of fluid flowing through rp can be measured, although not at 
each point on rp. 

These boundary value problems have been treated in [3, 6]. There 
limiting behavior of the solutions is studied as the radius p approaches 
0. It is found that for fixed e à 0 the solution of (l)-(5) converges to the 
solution of 

(1 - eJ)yp - ây^ = v(t)5(x - a) in Q 

(6) v(£)(x, 0) = 0 in Q 

yto(x, t) = 0 on S 

as p -• 0. 
In this note we consider control problems given by 

minimize J?\v) = [T f (y(£)(x, /; v) - z(x, t))2dx dt + Vv\t)dt 
p\ JOJQ JO 

subject to v e L2(0, T) 

minimize/£
(1)(v) = f 0>(e)(*, T\ v) - z(x))2dx + Vv\t)dt 

(8) Jo J o 

subject to v G L2(0, T). 

Again for problems in which e ^ 0 is fixed, it can be shown [3, 6] that the 
optimal controls of these problems converge as p -> 0 to the solution of 
the control problem with (6) for underlying equations. In the case of (6) 
limiting behavior of optimal controls is studied as e -> 0, [7]. 

Here we study the convergence properties of problem (l)-(5) with p > 0 
fixed as s -> 0 along with convergence of the optimal controls u^l) and 
uf \ In §2 we provide a priori estimates of the solutions of (l)-(5) and of 
certain adjoint problems. From these estimastes we are able to establish 
convergence properties of the solution of these problems. In §3 we give the 
optimality equations for the solution of the control problems (7) and (8). 
These conditions along with the estimates of the previous section enable 
us to deduce regularity properties of the optimal controls u{P and u{P 
for e ^ 0. Finally, in §4 we apply the above results to obtain convergence 
properties. 

2. Estimates and convergence properties of solutions. We provide esti-
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mates that will be useful in determining convergence and regularity prop­
erties. Our first result gives estimates on yie). 

LEMMA 1. Let e =" 0. Then 

f ((y(£)(x, 0 ) 2 + e\Vy^(x, t)\2)dx + P f \Vy^(x, s)\2dxds 
Jo JoJ a 

^ K P v\s)ds 

where K is independent of e. 

PROOF. Multiplying (1) by y(e) and integrating by parts, we have 

f ((/*>(*, t)2 + e\Vy(x, t)\2)dx + 2 P f |Vj(e)(x, s)\2 dx ds 
Jo JoJo 

è -h P c%s)ds + # P v2(s)*. 
A J o JO 

Since j ^ b = 0, we see that 

| V £ ) ( - , *)IIW) </* ^ ^ J 0 J j V ^ ( £ ) l 2 ^ * -
Further, the trace map from 7/1(ö) into L2(rp) is continuous. Hence, we 
have 

P c2{s)ds ^ K P f |V^(£)(x, s)\2 dxds, 
Jo JoJß 

and we obtain (9). 

Similarly, we may obtain estimates for the solution of the following 
problem. 

(10) (1 - ed)<p(
t
£) - Acp{£) = <f> i n Q 

(11) <p(£)(x, 0) = 0(jc)inO 

(12) pW(jc, /) = 0 on 2 

(13) p<«>(x, /) = d£(t) on 2 , 

where de is an unknown function of t only 

(14) J W£- (JC, 0 * = 0 a.e. in [0, T]. 

LEMMA 2. Lef e ^ 0 awrf 0 = 0. Then 
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f (<pU)(x, t)fdx + c J ' f |Vp(£)(x, t)\*dx ds 

(15) ° ° I 
+ e \ | V £ , ( * , t)\2dx ^ J J ^2(X) ^ d$! 

(16) 

and 

f f (<pP(x, s))2dx ds + ei'i |Vp,w(jc, s)\2dx ds 

f | V*>(X, O l 2 ^ + r [ Wp(e)(jC, 5))2^X ds 

(17) * ° ° 
+ e l ( Jp(x, O ) 2 ^ a l l (p2{x, s)dx ds. 

We introduce the subspace H of /^(Û) defined by taking the closure 
in H\Q) of the set 

(18) {a e C\Q) : a = constant on Tp and a = 0 on T7}. 

LEMMA 3. Let e ^ 0, 6 = 0, aw/ 0 e L2(0, T; # ) . Then 

r j iv^i^^+^r j (jcp^ydxds 
(i9) ° f°

 o f l 

+ 1 (Jp(e)(x, 0)2*c ^ J J \V(/>\2dxds. 

The preceding results give the following corollary. 

COROLLARY 4. Let e ^ 0, 6 = 0, andcfie L\Q). The following estimates 
hold independently ofe. 

ll^<e)lly(o,r;H2(0)) ^ C licita«) • 

/ / ^ e L2(0, T; # ) , rôen/or any e è 0, 

M £ ) | I L 2 ( 0 , TXHKQ)) = C||^||£,2(0, r;ffl(0))-

On the other hand, we may establish the following lemma. 

LEMMA 5. Let s ^ 0, <]) = 0, and 0 e H^Q). Then for almost every t e 
[0, T], 

f {(pw(x, f))2 + £|V^)<£)(x, t)\2}dx + c f f IV£)(x,s)|2Ä<fc 

(20) " 
^ (02(*) + e\V6(x)\*dx 

Jo 
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(21) 

P f drì'\x9 s)2 + e\V<p(
t
£\x, s)\2dx ds 

+ f IV £ ) (x , t)\2dx £ f \Vd(x)\2dx. 

We now consider convergence results for equations (10)—(14). 

PROPOSITION 6. Let e -* 0, ^£ -» $ weakly in L2(0, T; H), and 0 = 0. 
Then <pU) -> ^)(0) strongly in L2(Q). 

PROOF. Let (e,-) be a sequence such that £, -• 0 as / -> oo. Then by Corol­
lary 4 there is a subsequence, again denoted by ($,-), such that p ^ -• ^ 
weakly in H\Q) and strongly in L 2 ( 0 . Define the set V = {0 e C\Q): 
0(., 0) = 0 in 0, 0\r = 0 and 0\rp = function of t only}. Let V0 be the 
closure in Hl(Q) of the set K Hence, V0 must be weakly closed, and the 
limit function <p belongs to V0. 

We now demonstrate that ip is indeed the solution of (10)—(14) with 
e = 0. To this end let a e C Q ° ( 0 . Then we see by integrating that 

\ <p{St)[-(at - BiActt - Aa)]dxdt = f <fi£.a dx dt. 

As 6:, -+ 0, we have then \Q<P\_ — at — Aa]dx dt = \Q <J>a dx dt. Accordingly, 
for all a e Q ( 0 , JQ(p, - Atp — <fi)a dx dt = 0 holds, and yt - Ac = $ 
in the sense of distributions. However, ^ e Hl{Q) so that ^ e £2(ß) and 
zfy e L2(0, 71; H-\Q)\ With ^ e L 2 ( 0 , we conclude that in fact A<p e 
L2(Q), and the equation holds in L2(Q). Furthermore, since <p belongs to 
K0, we see that equations (11), (12) and (13) hold as well. 

It remains to show that <p also satisfies equation (14). Since the trace 
map is continuous and onto from H\Q) to H3/2(dQ) x H1/2(dQ% [5], we 
let a e H2(Q) have the property 

(22) a\rp = 1 and a\r = | ^ = 0. 
\dQ 

Setting w(£) = <pi£) - <p we see that w(
t
£) - Aw{£) = -eA(p\e) + <J>£ - (p. 

Multiplying by a, we have 

p f w^dxds - r f ^^-da ds - p f ŵ  J « <& & 
Jo J O JoJrP on JojQ 

= - e P f V<p(
t
£)'Va dx ds + P J (^£ - ^)a dx <&. 

Since (J)£. -• ^ weakly in L2(0, T; / / ) , it is a uniformly bounded sequence 
in L2(0, T; / / ) . As a consequence of Corollary 4, we see that 

i 'o:v^\\mo)dsèM 
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for all e ^ 0. Hence, the first term on the left goes to zero as et- -> 0. As 
all the other terms go to zero, we see that 

J o J r 
dwM 

ase,-

irP dn 

0 as well. But we note that 

da ds -+ 0 

JoJrP dn a JoLvJr, dn / \J rp dn /J 

-u dip 
rP dn 

da ds. 

Thus, we have for almost all / G [0, T], 

JoJrP dn 

and conclude that 

dcp i dn 
(x, t)da = 0 

for almost all / e [0, T). 
The limit ç is a solution of equations (10)—(14) for e = 0 and 0 = 0. 

By uniqueness then ^(0) = tp. Furthermore, we see the above arguments 
holds for any sequence eï -> 0 so that ^>(£) -* ^>(0) strongly in L2(Q). 

PROPOSITION 7. Let <J>£ -> <Jj weakly in L2(0, T; H)ase -> 0. Then de -* dQ 

strongly in L2(0, T). 

PROOF. Let a e H2(Q) have the properties 

da 
dn cc\rP = oc\r 

= tp{£) — ipm we see that 

= 0 a n d | * 
r on 

= 1. (24) 

Then with w{£) 

1 l w{
t
e)adxds+ \ I w{e)dads- \ I wU)Jadxds 

J O J Q JoJrP JoJo 

= - s 1 i zfy>(£)a rfx<& + f I (^£ - 0)a dx ds. 

Certainly, from the preceding proposition, as e -> 0, we have 

P f w^dads-^0. 
JoJrP 

Thus, $b(di£)(s) - d(0)(s))ds -+ 0 as e -* 0. But this implies along with 
estimates in Corollary 4 that d{£) -* d(0) weakly in L2(0, T). In fact, from 
Corollary 4 we have strong convergence in L2(0, T). 
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In an analogous manner we may use Lemma 5 to obtain other conver­
gence result for 0 = 0. 

PROPOSITION 8. Let <]) = 0 and d£ -> 0 weakly in H\Q) as e -» 0. Then 
p<«> -> <pW strongly in L2(Q) and d£ -> d0 weakly in L2(0, T). 

By superposition we obtain the following result. 

COROLLARY 9. Let cjj£ -> cp weakly in L2(0, T\ H) and 0£ -• 0 weakly in 
Hl(Q) as e -> 0. Then <p(e) -> <p(0) strongly in L2(Q) and d£ -» d0 weakly in 
L2(0, T). 

Finally, we give results for the convergence behavior of yU) in (l)-(5). 

PROPOSITION 10. Let v£ -» v weakly in L2(0, T) as e -+ 0. Then y(e)(vs) -> 
j>(0)(v) weakly in L2(Q) as e -» 0. 

PROOF. We note as a consequence of Lemma 1 that 

(25) \\y(£)(ve)\\L~(o,T;Hom = II vt\\mo,T> 

so that there exists a sequence e{ -> 0 such that 

^(£,)(v£.) -> y 

weak* in L~(0, T; H°(Q)\ and thus weakly in L2(Q). 

Introduce the adjoint equations which are ( 10)—( 14) with time reversed. 

(10') - ( 1 - eJ)(ple) - A<pU) = (pmQ 

(11') y>(£)(*, n = a £ (x ) inß 
(12') (p{£){x,t) = 0 o n ^ 

03') pW(x, 0 = rf.(0 on ^ 

where d£ is an unknown function of / only, and 

(14') J ^ (x, r)rf = 0 a.e. in [0, T\. 

By setting a£ = 0 and taking ^ e L2(0, T; / / ) we may obtain the useful 
Green formula 

\]\/£)(yMdx ds = §\(*)d£(t)dt 

for each e = 0. Now as e -> 0 we see that, since, by Proposition 7, J£ -» J0 

strongly in L2(0, T), 

J7, f jrçWx dt = \Tv{t)d(t)dt 
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for any cfj G L 2 (0 , T; H). This formula in fact implies that y = j (0 )(v). 
Hence, we see that 

weakly in L\Q). Again, the argument holds for any sequence $t- -> 0 so 
we have the result. 

PROPOSITION 11. Let v£ -> v weakly in L2(0, T) as e -> 0. Then 
/«>(., T\ ve) -* j ( 0 ) ( - , F; v) weakly in L2(Q). 

PROOF. Again we use a Green formula linking (l)-(5) to an adjoint 
equation (10')-(14'). Set cjj = 0 in (10') and take a(e) to be the solution of 

(26) 

(1 

«"Mr, 

- £j)aU) = ß in 0 

aM\r = 0 

= C. unknown constant 

f ^ - ^ = 0 

where ß G L2(Q). Note that 

(27) f (a<«>(jt))2</jc + e f |Va(£)(x)|2</x ^ C f â2(xyx. 
JQ JQ JQ 

Furthermore, for ß e Hl(Q), we have 

(28) f \la^{x)\*dx 4- e f \Aa^(x)\2dx S f |V/3(x)|2Ac 
JQ JQ JQ 

and for ^ G H%(Q% 

(29) f (zJa(£)(x))2rfx: 4- e f |VJa(*>(*)l2<fr ^ f \aß(x)\*dx. 
J Q J Q J Q 

By multiplying (10') by — A<pt and integrating, we have the estimate 

f f W<p\*\x,s)\2dxds + j GV£)(*, 0 ) 2 ^ 

(30) ^ f (âa{'\x))2dx 
J Q 

è J (Jj3W)2rfx. 

In this case we may obtain 
II^J/W0,T) = l̂l9>(£)ll̂ i(0,T;̂ i(O)) 

^ All \\W(Q) 
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where the constant is independent of e à 0. Hence, in contrast to Pro­
position 8, we see that there exists a sequence such that d£. -» d0 strongly 
in L2(0, T). 

The Green formula is given by 

l/'tKx, T; v£t)ß(x)dx = $T
od8.(t)v9i(t)dt. 

in the limit we see that 

(31) ^üKx)ß{x)dx = ^d0(t)v(t)dt 

since 

yW(x9 T; ve.) -• y 

weakly in L2(Q). However, equation (31) implies y = j ( 0 ) ( - , T\ v). Again, 
from uniqueness, the above argument may be carried through for any 
sequence e{ -• 0. Hence, the proposition is proved. 

3. Control problems. In this section we consider the control problems (7) 
and (8) with underlying equations (l)-(5) in which v serves as a control 
variable. Our problems seek to find functions u{

£
l) and uf] in L2(0, T) 

that minimize (7) and (8) over L2(0, T), respectively. We apply the estimates 
obtained in the previous section to deduce regularity properties of the 
optimal control. The existence and uniqueness of these solutions is 
straightforward. Hence, we have the following proposition, c.f. [4]. 

PROPOSITION 12. For each e ^ 0 there exist unique solutions u^ and 
u{

£
2) to problems (7) and (8), respectively. 

Further, in the usual manner, we may obtain optimality equations as 
the Euler equations of the various problems. 

PROPOSITION 13. Let e ^ 0. Then the equations characterizing u^ are 
given by 

(32) (1 - eâ)y\£) - Ay{* = 0 in g, 

(33) y^(x, 0) = 0 in Q, 

(34) y^(x, t) = 0 on 2, 

(35) yU(x, t) = c£(t) on 2p 

where c£(t) is an unknown/unction oft only, and 

(36) f - ^ (y^ + ey^d = u?(t) a.e. in [0, T] 

for i = 1,2. Coupled with the adjoint equations 
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(37) - ( 1 - eJ)pW - âp™ = yM(u™) - z in Q, 

(38) p^(-,T) = OinÜ, 

(39) pW(jc, /) = 0 on 2, 

(40) /,<•>(*, 0 = df\t) on 2P 

where d™(t) is an unknown function oft only, 

(41) f ^Ç-da = 0 a.e. in [0, T], 
J r? an 

(42) «a>(0 = -</<»(*) a.e. üi [0, T], 

and 

(43) - ( 1 - £j)<7<£> - Jg<«> = 0 in Q, 

(44) $<«>(*, 70 = a,(x) in Q, 

(45) q^(x, t) = 0on2, 

(46) <?">(*, 0 = df\t) on 2p 

where dP(t) is an unknown function oft only, 

(47) l ^ d a = 0z.z.in[0,n 

(48) uf\t) = -dP(t) a.e. in [0, T] 

where ae satisfies 

(1 - ed)a,(-) = v<£>(-, T; «®) - z(-) /« 0, 

(49) at\r = 0, 

«JrP = c 

where c is an unknown constant independent ofx e fp, and 

f 4 ^ = o. 
J rp dn 

THEOREM 14. Let z e L2(Q) in (7). If e > 0, then u{p belongs to W{0, T). 
Ife = 0, then u$ belongs to L°°(0, T). If z e L2(0, T; H\ then for e = 0 
it follows that u0 G /^(O, T). 

PROOF. Since u{p(t) = — d^\t) on 7\, we may write for any e ^ 0, 
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tT(tf\t)ydt = f T{d?>(t))*dt 
Jo Jo 

= r - - - - w f (P<°KX, wdx dt. 
Jo œnp

n L JrP 

By trace properties [5], 

co„|Ow x J o J rP o)np
n x J o 

Similarly, we have 

£(|M-(o)2^^-^Jji^(-,oii&1(^. 
From inequalities (15) and (16) we see that for s > 0, 

fV£)(-, OIIW»+ rii/tf'o.oiiW) 
4 / 0 V 0 

Jo Jß 

However, if £ = 0, then from (15) it follows that 

riip<o,(-, t)wim ^ r e (>-»)(„§)) _ zfdxdt. 
Jo J o J ö 

In fact, from (17), for each / ^ T, 

||/><o>(., 0||^(ö) £ f f (J ( 0 )(^) - z ) % ^ ; 
J o Jß 

on the other hand, if z e L2(0, T; / / ) , then ^ ^ ( w ^ ) — z belongs to 
L2(0, T; H) for any £ ^ 0, and inequality (19) holds with </> replaced 
by yie)(ul1}) — z and <p(e) replaced by p{e). 

THEOREM 15. Let z e L\Q) in (8). Ife>09 then uf> belongs to L°°(0, T). 
For e = 0, uff* belongs to L2(0, T).lfe>0andze H, then w(2) e tfi(0, T), 
and for e = 0, w£2) e L°°(0, T). 

PROOF. These results follow from the inequalities of Lemma 5 and 
(26)-(28) with ß replaced by y(£)(-, T; u£) — z(-) and <p(e) replaced by 
<?(£). 

4. Convergence behavior of optimal controls. We consider the family of 
optimal controls {u^: e ^ 0} for problem (7). First we note that from 
Lemma 1 with v in L2(0, T) fixed, 

\\yU)(v)\\L2(0,T;HHQ)) ^ C|MIL2(Q,T) 

for any e ^ 0. Accordingly, we see from 
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W. 1 1) è « O è K(\\v\\lH0}T) + ||z||i2(g)) 

that the sets {j (£)(^1}): £ ^ 0} and {u™: s ^ 0} are bounded in L2(Q) 
and L2(0, T), repsectively, independently of e ^ 0. Hence, there exists 
a sequence £, -> 0 as z -• oc such that 

y(st)(um} _+ y 

weakly in L2(Q) and 

weakly in L2(0, T). As a consequence of Proposition 10, however, we see 
that 

weakly in L2(Q) as i -» oo. Actually, by Lemma 1 there is a subsequence 
again et- -• 0 such that 

y.-)(M(i)) -+ ^<0)(tt) 

weakly in L2(0, J"; Hl(Q)). The next step is to show that u and j(0)(w) 
satisfy the characterizing equations (32)-(42). By uniqueness then we con­
clude u = u$\ But this step follows from Propositions 6 and 7. Indeed, we 
see that if z e L2(0, T: # ) , then 

strongly in L2(0, 7). From Proposition 7, 

strongly in L2(0, T; / / ) . Finally, from the uniqueness of u§\ the above 
holds for any sequence £{ -> 0. 

THEOREM 16. Let e -> 0 a/irf z èe/owg to L2(0, T; H). Then u{p -• w(
0
1} 

tf/wig/> /AI L2(0, T) andy^(u<p) -> j ^ V o O WÛ^/J; /AÏ L 2(0, T; / / ) . 

For problem (8) we may, as was done above, show that the sets 
{y(£)(-, T; wf ): e ^ 0} and {w<2>: e ^ 0} are bounded in L\Q) and 
L2(0, r ) , respectively, independently of e ^ 0. Hence, from Proposition 
11 there is a sequence such that 

weakly in L2(0, T) and 

/«\-9T;u™)-+y™(',T;u) 

weakly in L2(Q). Note from Lemma 5 and inequality (27) that 
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f UqM(x, t)2 + e\VqM(x, t)\2}dx + V f \Vg^(x, s)\2dxds 
i Ü J 0 J Q 

^ f (y^(x,T;u^)-z(x))2dx 
J Q 

Hence, we see there is a subsequence q{ti) such that q{£i) -> q weakly in 
L2(0, T; Hl(Q)), q^ -• q weak* in L°°(0, T; L2(Q)) and accordingly, 

def - d 

weakly in L2(0, T). Now since 

we see that w(2) = — c/. Furthermore, it is easy to show that qi0) = q 
in L\Q). For the boundary conditions consider w{e) = q{s) - qi0) with 
aeC°°(Q) such that a\r = a\Vp = da/dn\rp = 0 and da/dn\rp = 1, we 
obtain 

I f w(£)a:, + 1 1 w(£)JöT - M w(£)z/a = £ | I w^Aat. J o J a J o J / v J o J ß JoJß 

As e -» 0, we observe that for each t e [0, T], lime_*oJÓ [di£)(s) - dm(s)]ds = 
0. Hence, we have for each t e [0, T], Ĵ  [d(s)-d^(s)]ds = 0. Therefore, 
d = öf(0) a.e. in [0, T] so that u = —dm = u%\ By uniqueness the above 
argument holds for any sequence $j -• 0. 

REMARK 17. Note that Proposition 8 is not used above since Lemma 1 
only gives estimates of |Vj>(£)| in L2(0, T; L2(Q)) and not in L°°(0, T; 
L2(Q)). Hence, increasing regularity of z (as in problem (7)) does not give 
better results. There is typically less regularity in problems of the type (8). 

THEOREM 18. Let e -> 0. Then uf] -* uf weakly in L2(0, T), j(£)(i42)) -> 
ym(uf) weakly in L2(Q) and y™(., T\ w<2)) -+y(0)(', T; uf) weakly in 
LHQ). 
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