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LIMIT BEHAVIOR OF SOBOLEV TOTAL
FLUX BOUNDARY CONTROL PROBLEMS

L. W. WHITE

ABSTRACT. We consider control of certain nonlocal boundary
value problems of Sobolev equations. Regularity results are ob-
tained for the optimal controls. Further, convergence results are
obtained for the solution of the boundary value problems as well
as the control problem as the equations formally approach the
diffusion equation.

1. Introduction. Let D be a nonempty bounded domain in R?, n = 2
or 3, with smooth boundary /. Let a € D and B(a, p) be the ball centered
at a with radius p > 0 and boundary /', such that B(a, p) = D. Let Q =
D — B(a, p) so that 9Q = I', U I'. Finally, let Q = Q x (0, T) with
=7 x(0,T)and 2, =1, x (0, T). We study control problems gov-
erned by the following nonlocal boundary value problem

(1 (I — ed)y® — 4y© = 0in Q
@ y@(x,0) = 0in Q

@) yO(x, 1) =0on ¥

4) yO(x, 1) = C(t) on 3,

where C(¢) is an unknown function of ¢ only

® §. 2 09+ exus = w0 ne.in 0. 7]

where ve L%0, T).

In equation (1) the Laplacian may be replaced by another operator A
that is second order symmetric uniformly strongly elliptic in Q. Equation
(1) with ¢ > O arises in the modelling of many physical phenomena [2].
Of particular interest is the flow of a fluid through fissured media [1].
In this case a system of fractures is assumed that separates blocks of a
porous media thereby creating a material having two porosities. The
solution y of equation (1) at a point represents an average pressure of the
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fluid in the fissures in a neighborhood of that point. The term —edy, is
related to the contributions of fluid into the fissures from seepage from the
blocks [1]. The boundary conditions of this problem attempt to model a
fluid boundary condition in which the pressure is known in the cavity
B(a, p) only to be independent of position on the boundary /', and with
the total flux through /', known but not known locally. That is, the total
quantity of fluid flowing through /’, can be measured, although not at
each point on /’,.

These boundary value problems have been treated in [3, 6]. There
limiting behavior of the solutions is studied as the radius p approaches
0. It is found that for fixed ¢ = 0 the solution of (1)—(5) converges to the
solution of

(I = ed)y — dy®@ = v(t)d(x — a) in Q
(6) v (x,0) = 0in Q

YO, 1) =0on 2

as p — 0.
In this note we consider control problems given by

minimize JO(v) = j Zj (YO (x, 13 v) — 2(x, 1))2dx di + jOTVZ(t)dt
Q
subject to ve L0, T)

(M

minimize JO(v) = j (O(x, T: v) — 2(x)2dx + Kﬂ(r)dt
Q

subject to v e L0, T).

®)

Again for problems in which ¢ = 0 is fixed, it can be shown [3, 6] that the
optimal controls of these problems converge as p — 0 to the solution of
the control problem with (6) for underlying equations. In the case of (6)
limiting behavior of optimal controls is studied as ¢ — 0, [7].

Here we study the convergence properties of problem (1)—(5) with p >0
fixed as ¢ — 0 along with convergence of the optimal controls 4 and
u®. In §2 we provide a priori estimates of the solutions of (1)—(5) and of
certain adjoint problems. From these estimastes we are able to establish
convergence properties of the solution of these problems. In §3 we give the
optimality equations for the solution of the control problems (7) and (8).
These conditions along with the estimates of the previous section enable
us to deduce regularity properties of the optimal controls ¥ and u®
for ¢ = 0. Finally, in §4 we apply the above results to obtain convergence
properties.

2. Estimates and convergence properties of solutions. We provide esti-
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mates that will be useful in determining convergence and regularity prop-
erties. Our first result gives estimates on .

LEMMA 1. Let ¢ = 0. Then
[ oee 02 + dvyocs, npax + [ | vy, 9 dx ds
Q
< KI; Vva(s)ds

where K is independent of ¢.

Proor. Multiplying (1) by y© and integrating by parts, we have
[ oo 02+ vy opx + 2 [ f (vroc 9 dx ds
0
< “Ilf j; cYs)ds + K j; ve(s)ds.
Since y©|y = 0, we see that
Lot 9lng dx < & [ [ 19y ax ds.

Further, the trace map from H(Q) into L¥/",) is continuous. Hence, we
have

j';cZ(s)ds < Kj;jo|Vy<e>(x, S dx ds,

and we obtain (9).

Similarly, we may obtain estimates for the solution of the following
problem.

(10) (I — ed)pl? — dp© = ¢ in Q
(11) 9@ (x, 0) = f(x)in O

(12) p©@(x, 1) =0on Y

(13) P©(x, 1) = d(r) on 3,

where d, is an unknown function of ¢ only

(&)
(14) EZL-M (x, t)do = O a.e. in [0, T].
r, dn

LEMMA 2. Let ¢ 2 O and 0 = 0. Then
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jo(go(”(x, t)’dx + ¢ j;jOIV¢<E>(x, 1)[2dx ds

(15)
+ eSD]Vq)(”(x, zdx < S;50¢2(x’ s)dx ds,
16 j;jo((pge)(x’ 5))2dx ds + eﬁjglvwﬁs)(x, 5)|2dx ds
+ fgle“)(x, nNtdx < j;_fgsbz(x, s)dx ds
and
(17) jg[V(p@()@ t)|2dx + s;jg(A¢(e)(x’ $))2dx ds

+e | (gt pax < ! § 2 yax as.

We introduce the subspace H of H(() defined by taking the closure
in H1(Q) of the set ‘

(18) {a € CYQ) : @ = constant on ', and « = 0 on ['}.
LEMMA 3. Let ¢ 2 0, 0 = 0, and ¢ € L0, T; H). Then

5; 50 [Vo©ldx ds + ¢ 5:) yo (dopi)2dx ds

+ | oo oy < [\ [ (vgpax s

The preceding results give the following corollary.

COROLLARY 4. Let ¢ =2 0, § = 0, and ¢ € L%(Q). The following estimates
hold independently of e.

(19

”go(f) “HI(Q = C“Sb“L?(Q)
"(p(e) I 20, 75 m200) = Cll¢ll L2
I 6 LY. T: ), then for any e 2 0,

19t 2o, 7: ran £ Cllglzzco, 7 rrcan-
On the other hand, we may establish the following lemma.

LEMMA 5. Let e 2 0, ¢ = 0, and 0 € HY(Q). Then for almost every t €
[0, T],

50{(¢<e>(x, D)2 + elVp©(x, 1)[2}dx + c_[; j IVp(x, o)edx ds
(20)
< j (09 + el
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[ ] (o 92 + eVt pdx ds

21
+ L|v¢<s>(x, 1edx < L IVO(x)[2dx.

We now consider convergence results for equations (10)-(14).

PROPOSITION 6. Let ¢ = 0, ), — ¢ weakly in L%0, T; H), and 6 = 0.
Then p© — ¢ © strongly in LXQ).

PRrROOF. Let (¢;) be a sequence such that ¢; » 0 as i — co. Then by Corol-
lary 4 there is a subsequence, again denoted by (¢;), such that ¢’ — ¢
weakly in H1(Q) and strongly in L%(Q). Define the set V = {# € C1(Q):
0(-,0) =0in Q, 0], = 0 and §|,, = function of ¢ only}. Let V; be the
closure in H1(Q) of the set V. Hence, V', must be weakly closed, and the
limit function ¢ belongs to V.

We now demonstrate that ¢ is indeed the solution of (10)-(14) with
¢ = 0. To this end let ¢ € C3?(Q). Then we see by integrating that

jow(e,->[_(at — e day, — Aa)ldx dt = j9¢5fa dx dt.

As¢; — 0, we have then [op[—a, — daldx dt = [q Ja dx dt. Accordingly,
for all @ € C5(0Q), folp, — dp — )a dx dt = 0 holds, and ¢, — dp = ¢
in the sense of distributions. However, ¢ € H(Q) so that ¢, € L% Q) and
dp € LX0, T; H-1(Q)). With ¢ € L¥Q), we conclude that in fact dyp €
L¥Q), and the equation holds in L%(Q). Furthermore, since ¢ belongs to
Vo, we see that equations (11), (12) and (13) hold as well.

It remains to show that ¢ also satisfies equation (14). Since the trace
map is continuous and onto from H2%(Q) to H¥%(9Q) x H%(9Q), [5], we
let « € H%(()) have the property

(22) alp, = land af, = g%

Setting w® = ¢© — ¢ we see that w® — Aw® = —edpl® + ¢, — ¢.
Multiplying by «, we have

jtj. w dxds — ft oW do ds — jtj w® da dx ds
0Jo oJr, oOn 0Jo
= ¢ ©. j’j _
Ejoj_o Voo -Va dx ds + . g(gbs D dx ds.

Since ¢,, — ¢ weakly in L20, T; H), it is a uniformly bounded sequence
in L%0, T'; H). As a consequence of Corollary 4, we see that

= 0.

002

(23)

t
j.o Vi@l ey ds = M
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for all ¢ = 0. Hence, the first term on the left goes to zero as ¢; — 0. As
all the other terms go to zero, we see that

j‘l aw(E,') do~ ds R 0
oJr, on

as ¢; = 0 as well. But we note that

§.5,, o dods = [(F, “Gdo) = ([, “eaa) o
j L 99 4y ds.
’

Thus, we have for almost all ¢ € [0, T,

tf Oy _
jojr,,d—nda ds =0,

do _
j G (o 1) = 0

and conclude that

for almost all £ [0, T).

The limit ¢ is a solution of equations (10)-(14) for ¢ = 0 and § = 0.
By uniqueness then ¢© = ¢. Furthermore, we see the above arguments
holds for any sequence ¢; — 0 so that p© — ¢© strongly in L%(Q).

PROPOSITION 7. Let ¢y, — ¢ weakly in L0, T; H) ase¢ — 0. Thend, — d,
strongly in L%0, T).

PRrROOF. Let a € H¥{) have the properties

= 1.

24) alp, = alp = ﬂ] -0 andﬂr

0 on

Then with w'® = ¢@© — ¢© we see that

Yj w®a dx ds + Stj w®dg ds — rj w® da dx ds
0do 0d r, 0Jdo
— - t (&) j‘tj. —
e apoadvds + (| @ - P as

Certainly, from the preceding proposition, as ¢ — 0, we have

j‘t j w®dgds - 0.
0dr,

Thus, [5(d©(s) — d©(s))ds - 0 as ¢ — 0. But this implies along with
estimates in Corollary 4 that d© — d© weakly in L0, 7). In fact, from
Corollary 4 we have strong convergence in L%0, T).
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In an analogous manner we may use Lemma 5 to obtain other conver-
gence result for ¢ = 0.

PROPOSITION 8. Let ¢y = 0 and 0, — 0 weakly in H\(Q) as ¢ — 0. Then
@ — ¢ © strongly in LXQ) and d, — d, weakly in L¥0, T).

By superposition we obtain the following result.

COROLLARY 9. Let ¢, — ¢ weakly in L*0, T; H) and 0, — 0 weakly in
HY Q) as ¢ = 0. Then ¢ — ¢ strongly in LAQ) and d, — d, weakly in
L0, T).

Finally, we give results for the convergence behavior of y in (1)—(5).

PRrROPOSITION 10. Let v, — v weakly in L2(0, T) as ¢ — 0. Then y®©(v,) —
YO (v) weakly in LX(Q) as ¢ — 0.

PrROOF. We note as a consequence of Lemma 1 that
(25) 1y @I Lo, 7500 S Vel 20,1y
so that there exists a sequence ¢; — 0 such that

Yedve) = y

weak* in L=(0, T; H(9)), and thus weakly in L2(Q).
Introduce the adjoint equations which are (10)-(14) with time reversed.

(10) —(I —ed)pi? — dp® = ¢in Q
(1) P9, T) = a(x)in Q
(129 P (x,t) =0on 2

(13) p©(x, 1) =d(t)on 3,

where d, is an unknown function of ¢ only, and
(&)
(14') I ﬁg -~ (x,t)d = 0 a.e.in[0, T].
r, dn

By setting @, = 0 and taking ¢ € L%0, T; H) we may obtain the useful
Green formula

§o § pooagas as = § vod

foreach e = 0. Now as ¢ — 0 we see that, since, by Proposition 7, d, — d,
strongly in L2(0, T),

j‘:jo Y dt = j OT y(£)d(2)dt
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for any ¢ € L%0, T; H). This formula in fact implies that y = y©(y).
Hence, we see that

Y (r,) = yO®)

weakly in L%(Q). Again, the argument holds for any sequence ¢; — 0 so
we have the result.

PrROPOSITION 11. Let v, = v weakly in L%0, T) as ¢ — 0. Then
Y-, Ty v) = yO(-, T; v) weakly in LA(Q).

PrOOF. Again we use a Green formula linking (1)-(5) to an adjoint
equation (10")-(14"). Set ¢ = 0in (10’) and take a‘@ to be the solution of

(1 —ed)a® = Bin Q2

(26) a®l, =0
a®|p, = C. unknown constant
(e)
j i@— do =0
l'p

where 8 e L%). Note that
27) jQ(a(5>(x))2dx +e lea<s>(x)]2dx < CL B(x)dx.
Furthermore, for 8 € H §(Q), we have
@8 | Vaweordx + e | a0 s | vpeordx
and for § e H§(Q),
(29) J.Q(Aa‘”(x))zdx b § Ve (ftdx < L 14800 2d.
By multiplying (10") by — ¢, and integrating, we have the estimate
j; S IV, o) ds + j (o, Dy
(30) < | (dawyar
= | (peyes.

In this case we may obtain

Kllo® o, ;1000
K81l g0y

“dequ(O,T)

IA A
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where the constant is independent of ¢ = 0. Hence, in contrast to Pro-
position 8, we see that there exists a sequence such that d,, — d; strongly
in L0, T).

The Green formula is given by

T
jg yed(x, T; v, )B(x)dx = j' . d. (t)v.(t)dt.
in the limit we see that

31) [ 560pcoax = [ diyvieya

since
yeo(x, T;v,) =

weakly in L2(Q). However, equation (31) implies = y@(., T; v). Again,
from uniqueness, the above argument may be carried through for any
sequence ¢; — 0. Hence, the proposition is proved.

3. Control problems. In this section we consider the control problems (7)
and (8) with underlying equations (1)-(5) in which v serves as a control
variable. Our problems seek to find functions ¥ and u® in L2(0, T)
that minimize (7) and (8) over L0, T'), respectively. We apply the estimates
obtained in the previous section to deduce regularity properties of the
optimal control. The existence and uniqueness of these solutions is
straightforward. Hence, we have the following proposition, c.f. [4].

ProOPOSITION 12. For each ¢ = 0 there exist unique solutions u®® and
u®@ to problems (T) and (8), respectively.

Further, in the usual manner, we may obtain optimality equations as
the Euler equations of the various problems.

PROPOSITION 13. Let ¢ =2 0. Then the equations characterizing u" are
given by

(32) (1 — ed)y®® — dy® = 0in Q,
(33) y©(x, 0) = 0in Q,

(34) y@(x,t) =0o0n 2,

(35) yO(x, t) = c(t) on 3,

where ¢ (t) is an unknown function of t only, and

(36) I , ——aanf(y(” + ey¥d = u(t) a.e. in [0, T]

3

fori =1, 2. Coupled with the adjoint equations
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Gn —(I = ed)pf — 4p®@ = yOuP) — zin Q,
(38) pe(-, T)=0inQ,

39 pO(x,t) =0on 3,

(40) pO(x, 1) = d®(t)on 3,

where dQ(¢) is an unknown function of t only,

(41) Lp-dg’(:) do = 0ae. in [0, TJ,
42) ud(t) = —dO(t) a.e. in [0, T},
and

(43) —(1 — ed)q®® — 4qg® = 0in Q,
(44) g®x, T) = a(x) in Q,
(45) g (x, 1) =0on 3,

(46) q@(x, t) = dP(t) on 2,

where dP(t) is an unknown function of t only,

dq (&) _ .
47 ;) dn do = 0a.e. in[0, T),
(48) u®(t) = —d@(t) ae. in [0, T)

where o satisfies

(1 — eda(-) = yO(, T; u®) — z(-) in Q,
(49) alr =0,

aslf'p =cC

where c is an unknown constant independent of x € I, and

da, _
.“rp in do = 0.

THEOREM 14. Let z € LA(Q) in (7). If ¢ > 0, then ulV belongs to HY(0, T).
If € = 0, then u') belongs to L>(0, T). If ze L%0, T; H), then for ¢ = 0
it follows that uy € HY(0, T).

PROOF. Since u’(t) = —d®(t) on I',, we may write for any ¢ = 0,
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[REEQEN T(d@h(r»?dr

=f - j (p©(x, 1))2dx dt.
0 W0
By trace properties [5],
ot o, o oraxdr s L [P Ol
Similarly, we have

jr(d u(l)(t)) dt < A I 1PEC-, ) 2oyt

From inequalities (15) and (16) we see that for ¢ > O,
T T
[oupoc e + [ 1p0C. Dl

sc | | oown - 2y a.
Q

However, if e = 0, then from (15) it follows that

_[Z 1O, Dl < j' Z j O — 2R

In fact, from (17), foreach ¢t £ T,
1PDC Dl < [ | 0w = 22ax
0Jo

on the other hand, if ze L%0, T; H), then y©(u®) — z belongs to
L%0, T; H) for any ¢ = 0, and inequality (19) holds with ¢ replaced
by y©@(u®) — z and ¢ replaced by p.

THEOREM 15. Let z € LA(Q) in (B). If ¢ > 0, then u® belongs to L*(0, T).
For ¢ = 0, ufp) belongs to L0, T). If ¢ > 0 and z € H, then u® € H\(0, T),
and for ¢ = 0, ul? € L=(0, T).

Proor. These results follow from the inequalities of Lemma 5 and
(26)-(28) with B replaced by y®@(-, T; u,) — z(-) and ¢ replaced by
q(e).

4. Convergence behavior of optimal controls. We consider the family of

optimal controls {u{V: ¢ = 0} for problem (7). First we note that from
Lemma I with vin L20, T) fixed,

1y 2, 72 ey < Clvlizzo,

for any ¢ = 0. Accordingly, we see from
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JOWY) £ JOO) = K(Ivl3e0, 1 + 21320

that the sets {y©@u): ¢ = 0} and {uV: ¢ = 0} are bounded in L%(Q)
and L2%(0, T), repsectively, independently of ¢ = 0. Hence, there exists
a sequence ¢; — 0 as i — oo such that

Ye(u) - §
weakly in L2(Q) and
uld > u

weakly in L2(0, T). As a consequence of Proposition 10, however, we see
that

Y)Y = YO

weakly in L2(Q) as i — o0. Actually, by Lemma 1 there is a subsequence
again ¢; — O such that

YD) > yO (1)

weakly in L0, T; HY()). The next step is to show that ¥ and y®(u)
satisfy the characterizing equations (32)-(42). By uniqueness then we con-
clude u = ufV. But this step follows from Propositions 6 and 7. Indeed, we
see that if z e L2(0, T: H), then

ud - ufp
strongly in L2(0, T'). From Proposition 7,
PEUD) > pO (D)

strongly in L2(0, T; H). Finally, from the uniqueness of u}’, the above
holds for any sequence ¢; — 0.

THEOREM 16. Let ¢ — 0 and z belong to L%0, T; H). Then u® — ufP
strongly in L0, T) and y© (uf) - y© D) weakly in L2(0, T; H).

For problem (8) we may, as was done above, show that the sets
{yO(-, T; u®): ¢ 20} and {u®: e = 0} are bounded in L%(Q) and
L2(0, T'), respectively, independently of ¢ = 0. Hence, from Proposition
11 there is a sequence such that

u® - u
weakly in L2(0, T') and
VeI, T u®) —» yO(, T; u)

weakly in L%((). Note from Lemma 5 and inequality (27) that
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j (@O(x, 17 + elVg@(x, H2dx + j ; j,, IVq® (x, 5)[%dx ds
Q

< j (YO (x, T; u®) — z(x))2dx
Q

Hence, we see there is a subsequence ¢ such that g©) — ¢ weakly in
L2(0, T; HY(Q)), ¢’ — q weak* in L=(0, T; L)) and accordingly,

d® - d
weakly in L%0, T). Now since
u@ = —d®,
we see that u® = —d. Furthermore, it is easy to show that g =g

in L2(Q). For the boundary conditions consider w® = g — ¢© with
a € C>() such that af, = al;, = dajdn|,, = 0 and dajdn|;, =1, we
obtain

t 1 t t
I j w®a, +j j‘ w®dg — j j weda = ej I w'® da,.
0do odr, 0dea 0do

As ¢ — 0, we observe that for each ¢ € [0, T, lim,_ [} [d©(s) — d©(s)]ds =
0. Hence, we have for each r€[0, T}, [; [d(s)—d®(s)]ds = 0. Therefore,
d=d© ae. in [0, T] so that u = —d© = 4@. By uniqueness the above
argument holds for any sequence ¢; — 0.

REMARK 17. Note that Proposition 8 is not used above since Lemma 1
only gives estimates of |Vy@|in L20, T; L%Q)) and not in L=, T;
L2(Q)). Hence, increasing regularity of z (as in problem (7)) does not give
better results. There is typically less regularity in problems of the type (8).

THEOREM 18. Let ¢ = 0. Then u® — u weakly in L20, T), y© u®) —
yOWP) weakly in LAQ) and y© (-, T; u®) — yO(-, T; u@) weakly in
L2(Q).
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