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ABSTRACT. Let S£ be the classical Lie algebra of type Ax with a 
basis {e,f,h} and [e,/] = /*, [e9 h] = 2e, [f,h] = - 2 / over an 
algebraically closed field of characteristic p > 2. Let @ be the radi
cal of the «-algebra W of J£f. Our main result is the obtainment of 
(p - l)/2 sets of generators of ^, and hence (p - l)/2 criteria for 
complete reducibility of restricted representations of if. 

Introduction. For the classical Lie algebra j£f with a basic {e, f h) and 
[e,f] = A, [e, h] = 2e, [/, h] = — If over an algebraically closed field JT 
of characteristic p > 2, Jacobson [2] showed that a sufficient condition 
that a representation 0 of ££ be completely reducible is that ç5(e)^_1 = 
0(/)/>-i » 0. Seligman [4] showed a necessary and sufficient condition 
for complete reducibility of any restricted representation $ of <g to be 
(fcey-1 + <l>(e)P-i<l>(h) = 0 and cK/)*"1 + «WC/)**"1 = 0. Using the 
minimal right ideals in the w-algebra $f constructed by Nielsen [3] and by 
an approach entirely different from those given by Jacobson and Seligman, 
we obtained a number of generating sets for the radical <% of °U, and hence 
a number of criteria for complete reducibility of restricted representations 
of i f including the one obtained by Seligman. Our approach involves 
only computations within the «-algebra and is easily generalized to give 
some necessary conditions for complete reducibility of restricted repre
sentations of classical Lie algebras of rank / ^ 1 as was shown by Wong 
[6]. Throughout this paper unless otherwise stated if, jf\ °U and ^ will 
denote the aforesaid Lie algebra, field, «-algebra and radical respectively. 

1. The main theorem and its corollaries. 
MAIN THEOREM. Let $g be the classical Lie algebra of type Ax with a 

basis {e,f h) and[e,f] = A, [e, h] = 2e, [/, h] = -If over an algebraically 
closed field tf of characteristic p > 2. Then the radical 0t of the u-algebra 
°ll of£g is generated by any one of the (p — l)/2 sets of elements 
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COROLLARY 1. Let <f>be a restricted representation of<£. Then (f> is com
pletely reducible if and only if 

2 v - l 

#*)>-"• n w*)+y/i-o 
and 

for any one ve{\, 2 , . . . , {p — l)/2} where J is the identity linear transforma
tion. 

The corollary follows since a restricted representation <j> of j£? is com
pletely reducible if and only if <f> vanishes on the radical & of °U. In case 
v = 1, we have the following result. 

COROLLARY 2. (SELIGMAN [4]). Let <f>be a restricted representation of ££. 
Then <f> is completely reducible if and only if 

<ß(e)P-i<f>(h) = -#*)*- ! and ^ W ) * " 1 = -ft/)*-1. 

2. Proofs of main theorem and related lemmas. Our proof of the main 
theorem is quite a computational one. It could in fact be verified by a 
computer. First we shall establish a few lemmas which will facilitate the 
proof. 

LEMMA 1. Let A(h) be a polynomial in h over ctif and let n be any positive 
integer. Then 

(1) A(h)e» = e»A(h - 2n\ 
(2) f»A{h) = A(h - 2n)f», 
(3) fen = enf - nen~x\h - (n - 1)], and 
(4) f»e = ef" - n[h - (n - l)]/»"1. 

LEMMA 2. Let n be a positive integer such that 0 ^ « ^ p — 2. Jftew 
(5) e»(A - w) = (e»+1/ - >w+1)/(« + 1), and 

(6) (A - n)f" = (e/-+i -f+tyKn + 1). 

Lemmas 1 and 2 are proved by induction on n. 

LEMMA 3. Let m and n be any two positive integers less than p. Then 

fnem =
 M , g Ä ) ( - lV7!(7)G) c W-y{n(Ä -m-n+j + /)}/»-/ • 

PROOF. Using formula (4) we prove the lemma by induction on m. A 
complete proof is given by Wong in [5]. 

Next we shall need a theorem obtained by Nielsen to construct the 
irreducible ^-modules with which we can easily carry out the computa
tions in our proofs. 
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THEOREM 4. (NIELSEN [3, p. 17]). Let ££, be a classical Lie algebra of 
rank / with a basis {eh . . . , em, hh . . . , A/5 e_i, . . . , e„m} over an algebrai
cally closed field of characteristic p > 1 and let %/ be the u-algebra 
of Sa,. Let E*-1 = e f 1 • • • e£\ F^ = e£+ • • • e£* and H(c) = 
XlUMhi, ct)for c = (cl9 . . . , 0 e (Xp, where H{hi9 0) = 1 - A?"1 and 
H{hh ct) = 2 £ i W ^ K if Ci ± 0. JAew the p' right ideals EP^H^FP-1^ 
in Ol, form a complete set of representatives of all isomorphic classes of 
irreducible %,-modules. 

From Nielsen's theorem when setting / = 1 we have H(0) = 1 — A^-1, 
# ( 0 = 2£}(A/0' for i = 1, 2, . . .,p - 1, and that {e^H^fP-^i = 
0,1, . . . ,p — 1} is a complete set of nonisomorphic irreducible ^-modules. 
This leads us to the following result. 

PROPOSITION 5. Let mp^1 = eP~lH(p - \)fP-\ and mt- = 
eP~lH{p - 2 - fyP-ifor / = 0, 1, . . . , / > - 2. Then for each i = 0,1, . . . , 
p — 1, L(/) = mfll is an irreducible ^-module having a minimal vector 
mt with weight — i and a maximal vector m^e* with weight i. {mi9 m{e, . . . , 
ntje9'} and {m^e*, m{e

{ f . . . , mjp /'"} are two bases of L(i) and m^f* = 
ötmtfor some 0 ^ dt- e jf\ 

PROOF. Since /> = 0, /w, /= eP-xH(p -2 - i)fp = 0. Hence iwf. is a 
minimal vector. By formula (2) we have m{h = — imi9 hence — f is the 
minimal weight of L(i). By Lemma 3, m{e

i+l = 0, and m^J # 0 for 
j = 0, 1, . . . , ï. Hence m#e* is a maximal vector and {mt-, m{e, . . . , m^e*} 
forms a basis of L(i). Again by Lemma 3 we have w,e'/ l + 1 = 0 and mie

ifj ^ 
0 for y = 0, 1, . . . , /. Hence {/w,e% w^'/, . . . , mie

if{) also forms a basis 
of L(/). Since 

mfiff* = (-iy/!(V){^L/ » (i + 1)]}^, 

the last assertion of our proposition is proved. 

LEMMA 6. Let m and n be any two elements in Hgp with m # n. Then 

-l=(h + m)(h + n)g(h) + \[ (A + j) + U (h + j) , 
j<=2rp-{m} j^STp-in) 

where g{h) is some polynomial in A over jf. 

PROOF. Let x be an indeterminate. Since X is of characteristic p > 2, 
xP — x = \[jç=2p(x H- y). Computing derivatives of both sides we have 

- 1 = E I"I (* +y) = (* + "OC* + n)g(x) 
i^3Tp JÇE&p-ii) 

+ n (x+j)+ n (*+y), 
jtE&p-im) jŒ&p-{n} 

where 
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*(*)- E n (x+j) 
iŒ&p-{m,n} j(=2rp-{i,m,n} 

is a polynomial in x over jf. Replacing * by A we have the lemma. 

LEMMA 7. For each v = 1, 2, . . . , l/2(/? - 1), to ^ v be the two-sided 
ideal in % generated by the two elements eP~v ft j^(h 4- j) and[ ft Jz?(h + j)] 
fp~v, and let m be the radical of <%. Then for v = 2, 3, . . . , l/2(p - 1), 
Jfv-\ is contained in Jf„ and ^a/2)(p-D is contained in <%. 

PROOF. By Lemma 6, 

eP-Hfi + 1) 

= -ep-Kh + i)[(A + 2)(A + 3)g(A) + £ n (A + j)] 

= -ep-*e(h + 1 ) 2 fi (Ä +y) (mod^r2), by formula (1), 
i=2J£!Tp-{i) 

= -e#-2(A + 3) 2 I! (h+j) 
.i=2J^&p-{i+2) 

= -eP-zQt + 3XA + 2XA + i ß FI (A + j ) l 
L f = 2 / ' e ^ - { ï + 2 , l , 2 } J 

= 0 (mod ^ 2 ) . 

Similarly, by Lemma 6 and formula (2), we prove (A + 1)/*_1 = 0 
(mod^2). Hence Jfx is contained in Jf2. 

Assuming that */fV_i is contained in Jfv for y e {2, 3, ...,(/? — 3)/2}, 
we shall infer that Jfv is contained in Jf^. By Lemma 6, 

2 v - l 

eP-*- J] (A+7) 

r 2 v - l - i r 2v+l 

= - H n (A +7) (A + 2v)(A + 2v + l)g(A) + 2 FI (A +y) 
L / = i J L t=2vJ^&p-{i} 

-2v-l -|2H-1 

IT (A + 7) 2 IT (A + 7)(mod ^ 0 , by formula (1) 

p2v+l 

T\(h+j) 
j=3 

-2v+l 

2 IT (A+7) 
.f=2j;/e2y-{»+2} 

-2v+l 
= _ ^ / > - ( v + l ) 

= 0 (mod ^r^x). 

r2v+l 

ii(A+;) n n (A+y) 
/=1 J U = 2 v y e ^ - { i + 2 , l , 2 } 

Similarly, by Lemma 6 and formula (2) we prove that [riySKA + j)]fp~v = 
0 (mod ^v+i). Hence J ^ is contained in Jf^. This proves that for v = 2, 
3, ...,(/> — l)/2, Jfv-\ is contained in ^Tv. Next we establish that 
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•^<j-D/2 i s contained in ^ by showing that the generators of Jf{P-V)/<i 
annihilate all the irreducible ^-modules Hi). 

Since by Proposition 5, L(i) has a basis {m;en\n = 0 , 1 , . . . , * ' } , and 
m& = 0 for j > i, ( m ^ ) e W ) / 2 . Y[^{h + / ) = 0 for i = 0, 1, . . . , 
(l/2)(p - 1) and « = 0, 1, . . . , i. Hence for / = 0, 1, . . . , (l/2)(p - 1), 
L(/)is annihilated by e^+1)/2UjZf(h + j). F o r / = ( p + l)/2, . . . , p - 1, 
since n £ ? ( A + 7 ) = n £ K A - A 

(m,e»)*(*+1>/2Ìf (A + 7 ) = /if̂ »+<>+i> -̂ J] (A - j), by formula (1), 
y=i y=2 

= ™Jfî (A - j + In + p + 1)~UK#+D/2 

— r{j1(—/ _ y + 2« + p + l ) W ^ ( * i > / 2 = 0 , 

because if n + (p + l)/2 > /, /w^»rK*-i)/2 = 0. If w + (p + l) /2 ^ i, 
p + 1 ^ 2« + p 4- 1 è 2/ ^ 2{p - 1) which then implies 2 = (p + 1) -
(p - 1) g 2rt + (p + 1) - i ^ i g p - 1. Hence 2 <; 2w -f p + 1 - / 
<; p - 1. Since y ranges from 2 t o p - 1, I T ^ 2 " + p + I — ï — / ) = 0. 
Therefor * 0 + 1 ) / 2 - n £ î ( A + / ) annihilates all L(/) for / = 0, 1, . . . , p - 1, 
and is in ^ . Similarly, by Proposition 5 and formula (2) we prove that 
[\[%\{h +j)]fip+l)/2 is in @. Hence JT^nn is contained in ^ . This 
proves the lemma. 

Our theorem will be proved if we show that ^ is contained in JT\. For 
this we need the concept of extent vectors defined by Curtis [1J. The 
extent of a standard monomial emhkfn in % is defined as the integer m — «. 
A nonzero element u e % is called an extent vector if u is a linear com
bination of standard monomials of the same extent, and the common 
extent is defined as the extent of u and is denoted by ${u). 

PROPOSITION 8. (NIELSEN [3, p. 11]). If u and v are two extent vectors 

in ^ , then each standard monomial ofuv has extent equal to ${u) + <^(v). 

LEMMA 9. If x = Ui 4- • • • -f un e 0t, where Uj is an extent vector of 
extent ê{uj), and <f(w,) # S {uj) for i ^ j9 then Uj e & for j = 1, . . . , « . 

PROOF. By Proposition 5, for each i = 0, 1, . . , p — 1, {m^v .= 0, 
1, . . . , / } is a basis for the irreducible ^-module L(i), and since xe ^ , 
0 = w,^vx = 2j=iWif-e

v«y. If êiyn^uj) > p — 1 = maximal extent, 
m,eyWy = 0, If g{jnfivUj) : gp — 1, then since < (̂m,) = 0 and by pro
position 8, êiyn^Uj) = v + <̂ (wy) # v + <f(w*) = êim^u^ for / # &. 
Since elements of <>U which are of different extents are linearly indepen
dent and the m^u/s are either zero or of different extents, m{e

vUj = 0 
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for v = 0, 1, . . . , i. Hence Uj annihilates L(i) for / = 0, 1, . . . ,/> — 1, 
and Uj e <% for y = 1, . . . , « . 

LEMMA 10. Let x^^t be an extent vector. If g(x) ^ 0, then x e 
(((1 + A)/*-1», the. two-sided ideal in % generated by (1 + h)fP~h If 
^(x) ^ 0, then xe {eP-l{\ + A))), the two-sided ideal in <fy generated 
by eP-\\ + A). 

PROOF. Let Jf = «(1 + A)/*"1)}, and let ^(JC) = -d for some 
rfe {0, 1, . . . , /> - 1}. For each y'e {</, rf + 1, . . . , /? - 1}, let ^ y = 
{ei-dA(h)fi\A(h) is a polynomial in A over j f } . «^ is a vector space 
over J T and £ £ r j ^ y is the set of all extent vectors in ^U of extent — d. 
Our proof is carried out by induction in the following manner: first 
we show that x e @ f] yp-i implies x e Jf. Our next step is to assume 
that xe& f) ZIf=l+i^k f ° r k = d implies x e / , and then to infer that 
x e & fi LjZl &, implies j c e / . 

When jc e ^ fi £^_i, JC = eP^^AQ^fP-1. Let w ^ be as defined in 
Proposition 5. Then 0 = m^^x = öp-\A(— l)#^_i where 0 # 5^_i e jf. 
Hence ^ ( - 1 ) = 0 and x = eP-l-dB(h)(h + \)fP~l where .0(A) is some 
polynomial in A over jf. Hence x e ^f. 

When x G ^ n Hj^l &Ì for some & e {d, d + 1, . . . , p - 1}, x = 
EjzleJ~dAj(h)fJ where the ^/(A)'s are polynomials in A over jf\ For 
i e {&, & + 1, . . . , /? — 1}, let m, be as defined in Proposition 5. Then 
since e*-(k~d)x e ^ and by Proposition 5, 0 = mp-^-^ x = Ak{i)mie

ifk. 
Since i ^ &, mpifk ^ 0. Hence ^^(i) = 0 for ie {k, k 4- 1, . . . , /? - 1} 
and ;4*(A) = i?(A)nf=KA — 7*) where B(h) is some polynomial in A over 
J T . Hence 

x = e*-*5(A) ff(A-7)' \P + 2 ef-*AJh)P . 

Now for v = 1, 2, .. ,9p — k — 1, we claim that 

/ML 

(•) x ̂  ( . D^-^(Ä)r n • (A - 7 )1 / Ä + ^ /P +1). •. (p - »j 
Ly=Ar+v J 

(mod § ^ y ) . 

Using formulas (1) and (6) we prove (*) easily by induction on y. Setting 
v = p — 1 — k in (*) we have x = y (mod Iljzl+i&'j)» w h e r e }> = 
( - \)P-^ek-dB{h){h + l)fP-leP-l-kl\{k + 1) •••(/? - 1)]. Since j is i n ^ 
defined in Lemma 7, ; e £ Hence x — j e f f| Ti^l+i^j a n d by 
induction hypothesis j c - j e ^T. Since >> e Jf, we have * e Jf. This 
proves the first part of the lemma. Similarly, by Proposition 5, formulas 
(2) and (5), and Lemma 7 we prove the second part of the lemma. 
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PROOF OF THE MAIN THEOREM. Since Lemma 7 affirms that Jfx £ • • • 
g */T (j-D/2 ü ^ . It remains for us to show that @ g Jfx. Let 0 # x 
e ^ . Since each element in r̂ is a finite sum of extent vectors, x = ux 

+ • • • +um where the w/s are extent vectors and ê{uj) ^ £(uk) for 7 # 
Ä:. By Lemma 9, each wy e^p. By Lemma 10, Uje Jfx f°r7 = 1> . . . , « . 
Hence ^ S ./f̂ . This completes the proof of the main theorem. 

REFERENCES 

1. C.W. Curtis, Representations of Lie algebras of Classical type with applications to 
linear groups, J. Math. Mech. 9 (1960), 307-326. 

2. N. Jacobson, A note on three dimensional simple Lie algebras, J. Math. Mech. 7 
(1958), 823-831. 

3. G.M. Nielsen. A determination of the minimal right ideals in the enveloping algebra 
of a Lie algebra of classical type, Ph.D. Dissertation, Univ. of Wisconsin, 1963. 

4. G.B. Seligman, A Criterion for Complete Reducibility of Certain Modules, Mimeo
graphed, Yale Univ., 1961. 

5. Kwok Chi Wong, On certain commutation relations in a universal enveloping algebra, 
(To Appear). 

6. , Restricted representations of classical Lie algebras of Prime Characteristics, 
Ph.D. Dissertation, The Ohio State Univ., 1973. 

DEPARTMENT OF MATHEMATICS, FAYETTEVILLE STATE UNIVERSITY, FAYETTEVILLE, NC 
28301 




