
ROCKY MOUNTAIN 
JOURNAL OF MATHEMATICS 
Volume 13, Number 1, Winter 1983 

LOWER BOUNDS FOR THE HYPERBOLIC METRIC 
IN CONVEX REGIONS 

C. DAVID MINDA 

1. Introduction. Let XQ(z) \dz\ denote the hyperbolic metric on a hyper­
bolic region Q in the complex plane C. For convex regions we shall give 
sharp lower bounds for XQ{Z) in terms of the geometric quantity 5Q{z), the 
distance from the point z to the boundary of Q. In §3 we obtain a lower 
bound that applies to all hyperbolic convex regions. Then in §4 we derive 
a lower bound that is valid for any convex region with the property that 
ÔQ is uniformly bounded in Q. Each of these lower bounds leads to distor­
tion and covering theorems for a certain family of possibly multiple-valued 
analytic functions defined in the unit disk. In particular, we obtain classical 
covering theorems for normalized convex univalent functions defined in 
the unit disk, including the fact that Bloch-Landau constant is %\A for 
such functions. In order to obtain these distortion and covering theorems 
from the lower bounds for the hyperbolic metric, we require a generaliza­
tion of the principle of hyperbolic metric which is given in §2. In this 
section we also present other results about the hyperbolic metric. 

2. The hyperbolic metric. We begin this section with a brief introduction 
to the hyperbolic metric. For a general discussion of the hyperbolic metric 
we refer the reader to [2], [3] and [7] 

Let Q be a hyperbolic region in the complex plane; that is, the comple­
ment of Q in C contains at least two points. Then there is an analytic 
universal covering projection <p of the open unit disk B onto Q. If Q is 
simply connected, then <p is just a conformai mapping of B onto Q. The 
hyperbolic metric \Q(z)\dz\ on Q is defined as follows : if a e Q and b e 
<p~l{a), then 

XM = 2/to>'(*)l(l - \bn 

The value of AQ(a) is independent of both the choice of è e <p~l(a) and the 
selection of the covering <p. The collection of all analytic coverings of B 
onto Q consists of the functions <p o T, where T is any conformai auto­
morphism of B. Hence, for any fixed aeû, there is a unique analytic 
covering <p for which <p(0) = a and <p'(0) > 0. In this case, XQ(a) = 2/ç/(0). 
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The function XQ(z) is real-analytic on Q and the metric XQ{z)\dz\ has 
constant (Gaussian) curvature -1. Recall that 

K(Z)= -A log XQ(z)/X&z) 

is the curvature of XQ(z) \dz\. 

EXAMPLES, (i) XB(z) = 2/(1 - |z|2). 
(ii) Xn(z) = 1/Re(z), where H = {z: Re(z) > 0}. 

(iii) AS(M)00 = 7T/2M sin((^r/2M)Re(z)), where S(M) = {z: 0 < Re(z) 
< 2M}. 

Note that the definition of the hyperbolic metric gives XQ{<p(z))\(p{z)\ = 
^B(Z)> whenever <p is an analytic covering of B onto Q. We shall make use 
of the following two elementary properties of the hyperbolic metric which 
are stated without proof. Assume Q and A are hyperbolic plane regions. 

CONFORMAL INVARIANCE. Iff is a conformai mapping of Q onto A, then 
h(f(z))\f(z)\ = Xo(z)forzeQ. 

MONOTONICITY. If Q cz A, then XA(z) ^ XQ(z)for zeQ. If equality holds 
at a point, then 0 = A. 

For a hyperbolic region Q and z G Q let dQ(z) = min {|z — c\ : cedQ}. 
Thus, 5Q{Z) is just the distance between z and dû ; it is the radius of the 
largest open ball centered at z which is contained in Q. It is elementary to 
show that XQ(z) g 2/dQ(z). If equality holds at a e 0, then Q is a disk with 
center a. In subsequent sections we shall obtain sharp lower bounds for 
XQ in terms of dQ when Q is a convex region. 

The next two theorems generalize results of Nehari [6]. 

THEOREM 1. Let Q be a hyperbolic region in C Suppose f is analytic at 
a e B andf(a) 6 Q. IfXQ{f(z)) \f'(z)\ :g X^{z)for all z in a neighborhood of a 
with equality at z = a, then fis an analytic universal covering of B onto 0. 

PROOF. First, we show that we may specialize to consideration of the 
case in which a = 0, Q = B and f(a) = 0. Let tp\ B -• Q be an analytic 
universal covering with >̂(0) = f(a) and let T be a conformal automorph­
ism of B which sends 0 to a. Take <p~x to denote the branch of the inverse 
of <p which is analytic at f{a) and maps/(a) to 0. Then g = <p~l o /o T is 
analytic at 0,g(0) = Oand XB(g(z))\g'(z)\ ^ ^B(Z) f° r a ^ z m a neighborhood 
of 0 with equality at z = 0. Now, we show that g is a conformal automorph­
ism of B. Note that |g'(0)| = 1. Select r > 0 so that g is analytic in B(r) = 
{z: |z| < r} and maps B(r) into B. Let */(0, z) denote the hyperbolic dis­
tance in B between the points 0, z. Then d(0, z) = log (1 4- \z\)/(l — |z|). 
If y denotes the radial path from 0 to z e B(r\ then 
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d(o, z) = J xB{z)\dz\ ^ J ABfe00)lEr'00ll<fe| 

= f AB(z) |<fe| è d(0, g(z)). 
J g°r 

Since f -• log(l -f 0/(1 ~ 0 is strictly increasing on (0,1), this implies that 
\g(z)\ ^ \z\ for \z\ < r, so that g maps B(r) into itself. Schwarz' lemma 
applied to g on B(r) gives |g'(0)l ^ 1 with equality only if g(z) = e'dz9 

where 0 e R. Because \g'(0)\ = 1, we conclude that g(z) = ei6z for some 
0 e R. Then/(z) = <p{eidT~\z)) is an analytic universal covering of B onto 
Q. 

COROLLARY. Suppose Q and â are hyperbolic regions in C with Q fl à ¥> 
0 . Let aeû fi à and assume that XQ(z) g Aj(z)for all z in a neighborhood 
of a with equality at z = a. Then Q = J. 

PROOF. Let <p: B -• Q and 0: B -+ J be analytic universal covering pro­
jections which send 0 to a and have positive derivative at the origin. Take 
<p~l to be the branch of the inverse of <p at a which satisfies <p~l(a) = 0. 
Then/ = <p~l o ^ is analytic at 0,/(0) = 0 and satisfies 

AB(/(z))l/'(*)l = W « ' 0 0 l ^ W*W(*) l = hi*) 
for z near 0 with equality at z = 0. The theorem implies that/is the identi­
ty function because/'(0) > 0. Hence, (p = ^ so that ß = J. 

We shall establish a generalization of the principle of hyperbolic metric 
for a certain class of multiple-valued analytic functions. For this reason 
it is useful to define the following classes of functions. 

DEFINITION. Let g denote the family of functions / with the following 
property: there is a discrete subset is of B, depending on/ , such that/ is 
analytic on B\E9 / has an algebraic branch point at each point of E and 
f'{z) is finite everywhere in B. Let gf0 be the subfamily consisting of all 
fe g such that/(0) = 0 and/'(0) = l for some branch of /at the origin. 

For a function/e g and z e B, we shall let/(z),/'(z) denote the value of 
the function/and its derivative at z using some fixed branch of the func­
tion. Also,/(B) will denote the set of all values/(z) as z ranges over B and 
We evaluate the function at all possible branches at z. 

THEOREM 2. Let Übe a hyperbolic region in C. Suppose/e gandf(B) e 
û. Then for any z e B and any branch off at z, 

(1) W(z) ) | / ' ( z ) | ^ Uz). 

If equality holds at a point, then fis an analytic universal covering ofB onto 
Û. 
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PROOF. In order to establish the inequality, it suffices to demonstrate 
that for z e B(r) = {z: \z\ < r) and 0 < r < 1 we have 

(2) Wiz))\f'(z)\ ^ XBM(z) = 2r/(r2 - |z|*). 

We may then fix z and let r tend to 1 to obtain the desired inequality. If 
we restrict our attention to B(r), then there are just finitely many branches 
of/determined at each point of B(r). For z G 2?(r) let p(z) = max {ÀQ(f(z)) 
| / ' (z) |}, where the maximum is taken over the finite number of branches of 
/ a t z determined via continuation in i?(r). We shall show that p(z)\dz\ is an 
ultrahyperbolic metric on B(r). Then inequality (2) is a consequence of 
Ahlfors' extension of Schwarz' lemma ([1], [2, p. 13]). Clearly, p is continu­
ous on B(r). To show that p(z)\dz\ is ultrahyperbolic, we must demonstrate 
that there is a supporting metric at each point where p does not vanish. 
Fix a e B(r) with p(a) ^ 0. Select a branch of / at a such that p(a) = 
Aû(f(a)) \f'(a)\. Then for z near a pa(z) = M/(z)) l/'OOl £p(z) with equality 
at z = a. Also, since the metric XQ(z)\dz\ has constant curvature — 1, it 
follows that pa(z)\dz\ has constant curvature — 1 near a. Thus, pa(z)\dz\ is 
a supporting metric for p(z) \dz\ at a, so (2) is established. 

In order to complete the proof, we must investigate the situation when 
equality holds in (1). Assume that equality holds in (1) at some point 
a e B. This means that there is a branch of/defined in a neighborhood of 
a such that XQ(f(z)) \f'(z)\ S XB(z) for z near a with equality at z = a. Then 
Theorem 1 implies that / is an analytic universal covering of B onto Q. 

THEOREM 3. Let Q bea hyperbolic region in C. Suppose that XQ has a local 
minimum at the point a e Q. 1f<p\ B -• Qis an analytic universal covering with 
(p(0) = a, then <p"(a) = 0. 

PROOF. Under the hypotheses of the theorem, we have XQ(a) = 2/|^/(0)l» 
XQ(<P{Z)) = 2l\(p'(z)\(\ — |z|2). Consequently, if XQ has a local minimum at 
a, then for z near the origin 

(3) 0 <; ko(<p(z)) - XQ(a). 

Suppose that <p(z) = a + axz 4- a2z
2 + • • • , where we may assume 

ax = <p'(0) > 0 without loss of generality. Then 

feW-M«) =^mil--m R e ( a 2 Z ) + 0 ( | z | 2 ) ) 
so that (3) yields 0 ^ (-4/p'(0)2)Re(tf2z) + OQz\2) for z near the origin. 
Because the argument of z is unrestricted and we may let z -* 0, this 
inequality implies 0 = a2 = <p"(0)/2. 

3. Lower bound in an arbitrary convex region. We now derive a sharp 
lower bound for the hyperbolic metric in a convex region by using eie-
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mentary methods. The bound leads to a distortion theorem for functions 
in $ and a covering theorem for function in g .̂ 

THEOREM 4. Let Q bea convex region, Q # C. Then for zeQ, 1/3Q(Z) ^ 
XQ(Z). If equality holds at a point, then 0 is a half plane. 

PROOF. Fix a e Q. Select e e dû with \a — c\ = dQ(a). By performing a 
translation and a rotation, if necessary, we may assume without loss of 
generality that c = 0 and a > 0. Note that a = ^(tf) relative to this 
normalization. Then Û c H because Q is convex. The monotonicity prop­
erty of the hyperbolic metric gives XQ(a) ^ Xn(a) = l/a = ljôQ{a), and if 
equality holds, then 0 = H; that is, Q is a half-plane. 

COROLLARY. Le* / e 5 ö«d fer Û denote the convex hull of /(B). 77*ew 
/or 0«y z e B and any branch off at z, 

(4) (1 - | z |2 ) IA*)I ^ 2^(/(z)). 

If equality holds at a point, then Q is a half plane and fis a conformai map­
ping ofB onto Q. 

PROOF. If Q = C, then ôQ = oo and there is nothing to prove. Hence, 
we may assume that Q # C. From Theorem 2 we have XQ{f(z)) \f'(z)\ ^ 
^B(z) = 2/(1 - |z|2) and Theorem 4 gives \fXz)\/öQ(f(z)) g W(z)) | / ' (z) | . 
By combining the two preceding inequalities, we obtain (4). If equality 
holds in (4), then equality must hold in both of the preceding inequalities. 
Equality in the latter implies that Q is a half-plane and equality in the former 
requires that/be a conformai mapping of B onto Û. 

COROLLARY. Let ft %0 and let Q denote the convex hull off(B). Then 
either cl5(1/2) = {w: \w\ ^ 1/2} cz Q or elsef(z) = z/(l - eiez)for some 
0 e R . 

PROOF. Let / denote the branch at the origin which satisfies /(0) = 0 
and /'(O) = 1. If we use z = Oand this branch o f / in the preceding 
corollary, then we obtain dQ(0) ^ 1/2. Thus, either cl 5(1/2) c u o r else 
5Q(0) = 1/2. The latter case implies that / i s a conformai mapping of B 
onto a half-plane whose edge has distance 1/2 from the origin. Direct 
calculation, using the normalization of / shows that / must have the 
specified form. 

REMARK. In case/is analytic and univalent in B, normalized by/(0) = 0, 
/'(0) = 1 and/(B) is convex, then the conclusion of the second corollary 
is a classical result [4, p. 13]. 

4. Lower bound in restricted convex regions. This final section is devoted 
to establishing a sharp lower bound for the hyperbolic metric in any covex 
region Q with the property that dQ is bounded above. Of course, the lower 
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bound for XQ depends on the upper bound for dQ. The techniques used in 
this section are not as elementary as those employed in §3. As applications 
of the lower bound, we again obtain a distortion theorem for % and a 
covering theorem for JJo-

THEOREM 5. Let Q be a convex region in C. If ôQ{z) ^ M for all ze Q, 
then for z eu 

(5) 7cl2Msm((7cl2M)do(z)) ^ X0(z). 

If equality holds at a point, then Q is a strip of width 2M. 

PROOF. Initially, we establish the inequality (5) under the more restrictive 
hypothesis that dQ(z) < M for all z e û . Define 

p(z) = %\2Msm((7ußM)oQ{z)). 

We shall show that p(z)\dz\ is an ultrahyperbolic metric on Q. Then the 
inequality is a direct consequence of Ahlfors' extension of Schwarz' lemma 
([1], [2, p. 13]). Clearly, p is a continuous function on Q. We will show 
that there is a supporting metric at each point of Q. Fix a e û . Then pick 
c edQ with \a — c\ = öo(a). Without loss of generality we may assume 
that c = 0 and a > 0. Note that a = ôQ(a) < Min this special situation. 
Then Q a H because Q is convex, but it need not be true that Q <=. S(M). 
For z in Q and near a, we have dQ(z) ^ Re(z) < M, since the ball with 
center z and radius ôQ(z) must be contained in H. Because the function 
sin(^//2M) is strictly increasing for t e (0, M), it follows that 

W ) ( z ) = 7r/2Msin(0z;/2M)Re(z)) ^ p(z) 

for z G Q and near a. Note that equality holds for z = a. Since ÀS(M)(z)\dz\ 
has constant curvature — 1, we conclude that XS(M)(z)\dz\ is a supporting 
metric for p(z)\dz\ at a. Thus, p(z)\dz\ is an ultrahyperbolic metric on Q, 
so (5) is established in the special case d0(z) < M, z eQ. 

Now, we determine when equality can hold in (5) under our restricted 
hypothesis. Suppose aeû and p(a) = XQ(a). As in the first part of the 
proof, we may assume that a > 0 and a = dQ(a). Then AS(M)(Z)I^ZI is a 

supporting metric for p{z)\dz\ at a, so we may conclude that XS(M)(Z) ^ 
p(z) ^ XQ(Z) for z e Q and near a with equality when z = a. The corollary 
to Theorem 1 implies that Q = S(M); that is, Q is a strip of width 2Af. 

Next, we turn to the general case dQ(z) g M,zeQ. Set Mn = M -f 1/n, 
where n is any positive integer, and 

pn(z) = 7r/2Mnsin((^/2Mw)^(z)). 

Now, ÔQ{Z) < Mn for all z e fl, so the first part of the proof implies that 
pn(z) \dz\ is an ultrahyperbolic metric on fl. Thus, pn(z) ^ A0(z) for zeQ. 
By allowing « -> oo, we obtain the inequality (5) in the general case. 



LOWER BOUNDS FOR THE HYPERBOLIC METRIC 67 

The determination of when equality holds in (5) is more involved in 
the general case. Assume a e Q and p(a) = XQ(a). If dQ{a) < M, then 
exactly as in the first part of the proof we may conclude that Q is a strip 
of width 2M. In order to treat the case dQ(a) = M9 we use a method of 
Pommerenke [8], As usual, we may assume that a > 0 and a = do(a) = 
M. In this situation we obtain 

(6) AS(M)00 è dz) S Uz) 

for zeû near a = M with Re(z) < M and equality for z = M. Observe 
that we do not necessarily have the inequality (6) in a neighborhood of 
a = M; but rather only in a "half" neighborhood of a = M. Note that 

(7) « M ) - 7C/2M = AS(M)(M) 

and both XQ and AS(A/) have a minimum value at z = M. Let p>: B -• Q 
and ^: B -» S(Af)be conformai mappings with ^(0) = M = ^(0). From 
(7) we obtain 

(8) |p'(0)| = 2M/7T = |^(0)|. 

From Theorem 3 we conclude that 

(9) p"(0) = 0 = ^"(0). 

Consider the function v(z) = As(M)(<p(z))/U<p(z))- If Ö # S(M), then 
we shall show that there is a point z near the origin with v(z) > 1 and 
Re p(z) < M. This would violate inequality (6) and will show that equality 
implies Q = S(M). Define / = (jr1 o^ina neighborhood of the origin. 
Then / i s analytic at the origin, /(0) = 0 and 

v(z) = AS(M)(^))I^(^)I/A^(Z))|^'(Z)| = XS(MMZW(Z)\HB(Z) 

= h(f(z))\f(z)\/XB(z) = (1 - |Z|2)|/'(Z)|/(1 - |/(Z)|2). 

From (8) and (9) we obtain 

(10) f(z) = <*\z + bmz" + . . . ) , 

for z near the origin, where 0 e R and m è 3. Notice that bm # 0 since 
we are assuming Û ^ S(M). By making use of (10), we obtain 

(11) v(z) = 1 + w Re^z*-1) + 0(|zh). 

Since p(0) = Af and p"(0) = 0, we have 

(12) Rep(z) = M + Re(p'(0)z) + o(|zp). 

Because m ^ 3, the identities (11) and (12) show us that we can select z 
close to the origin so that v(z) > 1 and Re<p(z) < M. This is a contradic­
tion to (6). This completes the proof. 
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COROLLARY. Letfe $ and let Û denote the convex hull o//(B). Suppose 
ôo(z) ^ M for all zeQ. Then for any z e B and any branch off at z, 

(13) (1 - |z|2)|/'(z)| S (4M/7t)sm((7ü/2M)öo(f(z))). 

If equality holds at a point, then fl is a strip of width 2M and fis a conformai 
mapping ofB onto fl. 

PROOF. Theorem 2 gives XQ(f(z)) |/'(z)| ^ XB(z) = 2/(1- |z|2), while 
Theorem 5 yields 

^|/'(z)|/2Msin((;r/2M)5r?(/(z))) ^ W(z))|/ '(z)| . 

Inequality (13) results from combining these two inequalities. If equality 
holds in (13), then we must have equality in both of the above inequalities. 
Equality in the second inequality implies that fl is a strip of width 2M 
and equality in the first inequality implies that/is a conformai mapping 
of B onto fl. 

COROLLARY: Letfe %0 and let fl be the convex hull off(B). Then either 
there exists a point aeû with do(a) > %\\ or else 

f(z) = (l/2^)Log ((1 + eiez)/(l - eif>z)) 

for some 0 e R. 

PROOF. If there exists aeQ with 50(a) > K/4, then we are done, Other­
wise, ÖQ(Z) ^ ;r/4 for all z e fl. If we use z = 0 and M = TT/4 in the 
preceding corollary, then we obtain 1 ^ sin (2 dQ(0)). Since 0 g 3Q(0) ^ 
ft/4, this implies that do(0) = ic/4 so equality holds in the preceding 
corollary. Hence, fis a conformai mapping of B onto a strip of width %\2 
and 0 lies on the center line of the strip. Because/is normalized by/(0) = 
0 and/'(0) = 1, direct calculation shows that / must have the specified 
form. 

REMARK. The conclusion of the last corollary implies that the Bloch-
Landau constant for normalized convex univalent functions is ^/4, a 
classical result of Szegö [9]. Also, for 0 < òQ{z) ^ M9 we have 

(14) l/da(z) < 7r/2Msin(0r/2M)^(z)), 

so that the lower bound given in Theorem 5 is a strict improvement of 
the one in Theorem 4. The limit, as M -> 00, of the right-hand side of the 
inequality (14) is equal to the left-hand side. Finally, if fl were contained 
in a strip of width 2M9 then the conclusion of Theorem 5 would follow 
immediately from the monotonicity property of the hyperbolic metric. 
However, the condition that 5Q{z) ^ M for all z e fl does not imply that 
flis contained in such a strip. This is easily demonstrated by considering 
an equilateral triangle such that the radius of the largest inscribed disk 
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is M. The altitude of this triangle is 3M and the narrowest strip containing 
Q has width 3M. 

The lower bound for the hyperbolic metric obtained in Theorem 5 can 
be used to derive a univalence criterion. 

THEOREM 6. Suppose Q is a convex region in C and 5Q(Z) ^ icjAfor all 
zeQ. Iff is analytic in B, f\z) ^ 0 for all zeB and log /'(B) c Q, then 
fis univalent in B. 

PROOF. Let A(Q) = inf{A0(z): zeû} . A result of Minda and Wright 
[5] implies that/is univalent provided A(Q) ^ 2. Theorem 5 with M = 
n/4 gives 2 ^ 2/sin (2do(z)) g A0(z). (Actually, the result in [5] requires 
that A(Q) JÊ 1. However, in [5] the hyperbolic metric was normalized to 
have constant curvature —4, so it is necessary to multiply by 2 to obtain 
constant curvature — 1.) 
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