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CONVERGENCE IN FUZZY TOPOLOGY 

RICHARD H. WARREN 

Abstract. Convergence and weak fuzzy continuity are developed 
and applied in fuzzy topological spaces. 

Introduction. Lowen has skillfully used lower semicontinuous functions 
[5] and convergence [6] to obtain significant results about a proper subclass 
of the fuzzy topological spaces of Chang [1]. Lowen introduced this 
subclass in [5], also called its members fuzzy topological spaces and 
has adhered to the concept in his subsequent work. The main thrust of 
this paper is to take Lowen's ideas and results into work [2, 8, 91 based 
on Chang's paper. Often this requires methods which differ from Lowen's, 
since his work rests upon the usual topology of the unit interval, whereas 
Chang's viewpoint does not require a topology on the unit interval. 

In §1 open fuzzy sets are described in terms of generalized lower semi-
continuous functions which are used to characterize fuzzy continuous 
maps. Convergence is developed in §2 and then used to characterize 
fuzzy limit point and fuzzy continuity. An example is given to show that 
one of the characterizations of fuzzy continuity is the best possible. In 
§3 weak fuzzy continuity is given six characterizations which interestingly 
show its relation to other concepts, and the question of a complement for 
it is examined. 

This paper assumes that the reader is familiar with the results in [6] 
and [9]. In general, the terminology and notation follow [9], except that 
fuzzy sets are denoted by lower case Greek letters. 

1. F-continuity. If X is a set, then a fuzzy topology on X is a family Tof 
mappings from X into [0, 1] such that the constant maps 0 and 1 are in 
T, the supremum of any subcollection of T is in T, and the infimum of 
any finite subcollection of T is in T. The members of T are called open 
fuzzy sets. A mapping between fuzzy topological spaces is called F-
continuous if the inverse image of each open fuzzy set is open. 

Several of the results in this section are based on the fact that if/: X -• 
y and A a Y, then the function/ - 1^) maps Zinto {0,1} and 
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/ KMA) = f*f-iU) = t*A°f 

where ftA and fif-i(A) a r e characteristic functions. Let / = {0, 1} and 
have the topology Sf = { 0 , {1}, / } , i.e., (/, y) is a Sierpinski space. 
For E c I , w e have the following diagram: 

/<* PA 

J 

The well-known result that fiE is lower semicontinuous if and only if E 
is open in Pleads to the following statements: 

(1) [iE is continuous with respect to (/, £f) if and only if E is open in 
X. 

(2) fis continuous if and only if whenever A a Y and fiA is continuous 
with respect to (/, Sf\ t h e n / - 1 ^ ) is also. 

Generalizing (/, S?) to fuzzy topological spaces, we consider / = [0, 1] 
with the fuzzy topology y = {0, 1, /} where I(JC) = x for each x e F 
The diagram now is : 

The analogue of (1) is the following theorem. 

THEOREM 1.1. Let (X, T) be a fuzzy topological space. The fuzzy set v 
in X is F-continuous with respect to (I, 9) if and only ifveT. 

PROOF. If v is open, then v~H0) = 0, v_ 1(0 = 1 a n d v_1(0 = v are in 
F and so y is F-continuous with respect to (/, £f). Conversely, if v is F-
continuous, then v~l{i) e F, which means v e F. 

The analogue of (2) is the following theorem. 

THEOREM 1.2. Iff: X -> Y where (X, T) and(Y, U) are fuzzy topological 
spaces, then the following are equivalent: 

(a) / is F-continuous, and 
(b) whenever the fuzzy set z in Y is F-continuous with respect to (/, Sf)> 

thenf~\z) is also. 

PROOF. If (a) holds and if the fuzzy set z in y is F-continuous with 
respect to (/, Sf\ then by Theorem 1.1 r e U. Thus f~\z) e F. Again 
by Theorem 1 .1 , / _ 1 (T) is F-continuous with respect to (/, y). 

If (b) holds and z e U, then by Theorem 1.1, z is F-continuous with 
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respect to (/, 9>\ T h u s / - 1 ^ ) is F-continuous with respect to (/, &>). Again 
by Theorem \AJ~\x) e T. 

Note that if [0, 1] is replaced by a more general lattice used by Hutton 
[2], then Theorems 1.1 and 1.2 remain valid with the same fuzzy topology 
y. 

2. Applications of prefilters. The prefilter terminology and notation are 
from [6]. A prefilter is a filter on a lattice. Due to the role of a neighbor­
hood in a fts [9], fuzzy topology differs from topology in that the set of 
all fuzzy neighborhoods of a point may be only a base for a prefilter and 
not a prefilter. This motivates the following: 

A base & for a prefilter in Ix is said to converge to a point x e X if and 
only if every fuzzy neighborhood of x is in &. If/: X -» Y and if J* is a 
base for a prefilter in Jx

9 then {/(//) : ft e <%} is a base for a prefilter in IY 

and is denoted b y / ( ^ ) . 
If & is a base for a prefilter <^> in Ix and x e l , then <&x denotes 

& U {Vx: Vx is a neighborhood of x and 7}xe(&}}. Expanding the 
definition of adherence [6, p. 153] to include a base, we say adh J* = 
A{fi: j " G ^ } . Clearly, adh <% = adh <^>. Similarly, a base 3& is called 
prime if whenever / / V v e J there exists r e ^ such that r ^ ju or r :§ v. 
Clearly, ^ is prime if and only if < J*> is prime. 

THEOREM 2.1. Lef y be a fuzzy set in the fts (X, T) and let A = {x e Z: 
v(x) = 0}. TAe« yeX is a fuzzy limit point of v if and only if v(y) > 0 
and there exists a base & for a prefilter in Ix such that (1) if r e & and 
x 6 A (J {y}> then z(x) = 0, and (2) <^> converges to y. 

PROOF. If such a base exists and if yjy is a neighborhood of >>, then 
r]y e <^>, so that there exists % e ^ for which % ^ r. By (1) there exists 
z e X\(A U {y}) such that 7]y(z) > 0. Thus 7]y(z) A v(z) ^ 0. By Definition 
2.7 in [9], y is a fuzzy limit point of v. 

If j is a fuzzy limit point of v, then from Definition 2.7 in [9], v(y) > 0. 
Also {it]y A* v A //̂ {y} : % is an open neighborhood of y} is a base satisfy­
ing (1). 

THEOREM 2.2. Let (X, T) and (Y9 U) be fts and let f: X -> Y be 1-1. 

Then f is F-continuous if and only if for each xeX and for each base & 
(for a prefilter in Ix) which converges to x9 the base f(@f)f{x) converges to 
fix). 

PROOF. Suppose/is F-continuous, xeX and rj is a neighborhood of 
f(x). By Theorem 4.2(d) in [9], f~lÌ7J) is a neighborhood of x and hence, 
if @ converges to x, then f-Hyj) e <̂ . Since y ^ fif'Krj)) and Tjifix)) 
= Af-HyWlx)) it follows that Vefi<%)f(x). 

If / i s not F-continuous, then there exists j c e l and a neighborhood y 

file:///AJ~/x
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of f(x) such that /_ 1(^) is not a neighborhood of x. Therefore if TJX is a 
neighborhood of x, then r\x ^ f~Ky) fails, in which case/(^x) ^ rj fails; 
or 97, ̂  f-Ky) and f-\ij){x) # ^x(x), in which case ??(/(x)) # f(yx)(f(x)) 
since/ is 1-1. The conclusion is that y^fi^fix) where ^T = {TJX: rjx is 
a neighborhood of JC}. 

By considering the following example, it is easy to see that in Theorem 
2.2 @t cannot be replaced with any prefilter which converges to x, or 
f(&)f(x) cannot be replaced by </(^)>. Let X = Y be a set with at least 
two elements, let / be the identity map, let T be the set of all constant 
maps, and let U contain all constant maps and a nonconstant map whose 
range is a finite subset of (0, 1]. 

Furthermore, the hypothesis in Theorem 2.2 tha t / i s one-to-one cannot 
be eliminated. Let X = {r, s, t}, Y = {y, z}, f(r) = f(s) = y,f(t) = z, 
T(r) = 1/2 = 7](y), T(S) = 2/5, z(t) = 7]{z) = 1/3, T has basis of all con­
stant maps and T, and U has basis of all constant maps and TJ. Then / i s 
not F-continuous since f~Ky) $ T. However, the other conclusion of 
Theorem 2.2 holds for this example. 

However, in Theorem 2.2/(^) / ( x ) can be replaced by / (^ ) if / i s onto Y. 

THEOREM 2.3. Let (X, T) and (Y, U) be fts andf: X -> Y. Then fis F-
continuous if and only if for each prefilter <F in Ix, adh/(j^) ^ /(adh ^ r ) . 

PROOF. The proof of Theorem 6.1 in [6] is valid for this more general 
situation. 

Next we show that Theorem 6.2 from [6] is valid in the context of [1]. 

THEOREM 2.4. Let (X, T) and (Y, U) be fts and let f: X -* Y. Then fis 
F-continuous if and only if for each prime prefilter <g in Ix

9 adh f(0) ^ 
/(adh ST). 

PROOF. Necessity follows from Theorem 2.3. I f / i s not F-continuous, 
then from [9] there exists velx and y0 e Y such that f(v)(yo) < /(v)0>o)-
Let & = <v>. If ^ 3 ^ , then adh/(^)(^0) ^ adh f(&)(y0) = TX^X ô)-

Let E = f'Kyo) and F = {JC: y(x) > 0}. If A Œ F, we define vA e J* 
by vA{x) = v(x) if x e 4̂ and v^(x) = 0 otherwise. Let 

» = {vA: A c Fand V ^ W = V v(*)}-

If v ^ V v ß 6 ^ , then 

V*)vV*) = Vv(4 
*e£ *e£ xe£ 

and so vA or yB is in &>. By Zorn's lemma there exists a maximal subset 
<£ of >̂ such that vF e jgf and Se is a prime base for a prefilter. Let ^ = 
<JS?>. Then » 3 JF and/(adh ^)0>0) = /(v)0>0). 
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If F = {x: v(x) > 0} is finite, say F — {xl5 . . . , xn}, then Zorn's lemma 
is not needed in the above proof, since & e {<v{*l}>, . . . , <V{*„}>}-

3. Weak F-continuity. Motivated by [4] and [7], if (X, T) and (F, U) 
are fts, then a function/: X -• F is called weakly F-continuous if for each 
x e if and for each ft e t/such that ft(f(x)) > 0, there exists v e T satisfying 
y(x) ^ f~l{fÒ(x) and /(v) ^ /*. When all fuzzy sets are restricted to be 
crisp, then weak F-continuity is equivalent to weak continuity in [4]. Also, 
F-continuity implies weak F-continuity. 

THEOREM 3.1. The following are équivalent. 
(i) fis weakly F-continuous. 

(ii) / - f y ) ^ (/-i(/0) °for each fteU. 
(iii) / - 1 ( T ) ^ f~l{t°)for each closed fuzzy set z in Y. 
(iv) f~~l(j) = (/_1(f))° for each Ï in some basis for U. 
(v) TKfi) Û f-\p)for each ßeU. 

(vi) f{v) ^ /\{p: ft è /(v) and fi e t /}/ör eac/* v e /*. 
(vii) @-adh/(^) ^ /(adh $)for each base 3& for a prefilter in Ix. 

PROOF, (i) =» (ii). If x e X and f-\fi)(x) > 0, then ft(f(x)) > 0 and 
there exists vx e T satisfying vx(x) ^ f'Hfdix) and /(vx) ^ £. Let 7* = 
\J{vx: x e JTand/-i(/i)W > 0}. T h c n / - ^ ) ^ r ^ ( / " W -

(ii) => (iii). Follows from Theorem 2.13 in [9]. 
(iii) => (vi). If n ^ /(v) and ^ e £/, the p° t ft and so 

J 1 ^ ) ^rKfd^f-KfM) > v. 
By (iii), 

/-H^^/^V). 
Thus/(v) ^ p. 

(vi) => (i). Let M e U, T = 1 - ft and y = (f-l{p))°. 
Then 

/ ( / " K O ) ^ A{f : r ^ Af~KT0)) and r e £/}. 

Since r° è fif"Hf% it follows that /(TW)) ^ *- Therefore rHf) 
g> /_ 1(^) and the result follows from Theorem 2.13 in [9]. 

(vi) => (vii). Since 0-adh f($) = A {fi'- ft e U and ^ e </(^)>} and 
/ ( A {t : r e ^}) g A {/(r): r e ^ } , the result follows from (vi). 

(vii) => (vi). For v e /*, let ^ = <y>. Then /(v) = /(adh ^ ) g 
e -adh/ (^) = A {/*: /i e £/ and ft ^ /(v)}. 

(ii) => (iv). Clear. 
(iv) => (ii). Suppose B is such a basis and £»• e B. Then / - 1 ( V &•) = 

V/-KÜ.^ ViTKÜr ^ (Vf-HQT = (/"WG))0 è (f-K\TQ)°-
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(ii) => (v). Let JLL e U and r = 1 -p. Since ris open,/"Kr) ^ (/_1(f))° 
by (ii). Thus 

i -tKß) =/_1(i - /ô £ (/-Kï^l))0 

= (/-Ki - /0)° = (i -TW = i - f V ) . 
Hence f~\fi°) ^ /""K/O- Since fi is open and /z è fi, JLL g //°, so that 
/ - t y ) ^ / " V ) and/-i(^) ^/-i(/2°). Therefore/-fy) £f~\fi). 

(v) =» (ii). Let // e £/ and y = 1-/2. Since y is open, by hypothesis, 
7 = ^ ^ / - i ( f ) so that 1 - (f-Kfi)Y ^ 1 - / - V ) . Thus(/-i(/2))° è 
f~Kß°)- Since // is open and ft ^ fi, it follows that ft g fi°, and therefore 
Z"1^) £ / " W Thus/-!(;,) ^ (/-l(/2))°. 

Is there a complement for weak F-continuity so that the complement 
and weak F-continuity are a decomposition of F-continuity? When all 
fuzzy sets are crisp, then [4] has a solution which has been fruitful in 
general topology. Although [4] is based on the boundary, the boundary 
in [8] is not part of a decomposition of a closed fuzzy set, and therefore 
cannot be expected to solve the question. It can be shown that the dif­
ference of a closed fuzzy set and its interior is not useful in answering this 
question. 
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