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Introduction. The purpose of this paper is to investigate the asymp­
totic relationship between solutions of the w-th order linear homogeneous 
equation 

(1) Lny = 0 

and those of the perturbed equation 

(2) Lny + B(x, y, / , . . . , jpC-D) Ä 0 . 

The results will involve certain smallness conditions on the function 
B(x, y, y\ . . . , y{n~X)) which will be made more precise in later sections. 
In the first section we will consider the general case where Lny admits a 
Mammana factorization [6]. In the second section we shall consider the 
case where Lny is a constant coefficient operator. In the third section we 
shall consider the specific operator Lny = y{n). This section also contains 
examples to show the results obtained here generalize those of Svec [7], 
[8], and Belohorec [3]. 

I. Perturbed linear equations. Mammana [6] has shown that, under 
certain conditions, an w-th order linear differential operator with leading 
coefficient one admits a factorization of the form 

(3) L^y] = (fl^D - Vj(x))[y] 

where 7jj{x) = Z>[ln Wj/Wj^ 1 ^j^n, and Wj is the Wronskian 
of the solutions fl5 £2> • ••> £/(^o = 1) °f 0)- The solutions £l5 £2> • •• > 
£w have the property that for every j \ Wj is different from zero, which 
requires, in general, that the £y be complex and hence the 7]{{x) will be 
complex. Levin [5] has observed the interval on which this holds may be 
half-line of the form [a, oo). 
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We shall assume this factorization (3) holds so that (2) takes the form 

(4) Lny = ( J (D - 9 / ) ) M = -B(x9 y) 

where y = (y9 /, . . . , y{n~l)). For convenience we let Lk = Hj=i(D — ç*)> 
1 ^ A: g n, and L0 = /. If z = L*[y], O g H » - l , then (4) becomes 

(5) ( fi (D-Vj))[z]= -B(x,y). 

Proceeding formally to solve (5) for a particular solution we find, using 
variation of parameters, 

/•oo 

(6) z = LJLy] = J^ gk(x, t)B(t, y)dt 

where 
gk(x, t) = S K*. A)wÄfX/)/w*(0], 

£*, y(/ = & + 1, . . . , «) are « — fc independent solutions of ( n nj=k+\(P — ŷ)) 
[y] = 0, w* = W(£ky m , &t *+2, . . . , £^ „) and w*. y is w* with the (J - fc)-th 
column replaced by (0, 0, . . . , 0, 1). 

If k = 0, z = y and (6) becomes 

/•oo 

(7) y = ] x g0(x, t)B(t, y)dt. 

If 1 ^ k ^ n, then (6) can again be solved in the same way yielding 

(8) y = £<?*(*, o(J~S*(', ^ ( ^ , ?)&)// for 1 g * ^ a - 1 

and 

(9) y = - £ Gw(*, g)fi(f, ?)# for k = n 

where 

7=1 

<j>kJ are A: linearly independent solutions of Lk[y] = 0, Wk(t) = W{<j>kti, 
- - -9$k,k) a nd W*, y is ^ with they-th column replaced by (0, 0, . . . , 0, 1). 

To show the expressions (7), (8), and (9) are indeed solutions of (4), 
we first note that (W/dx^Gfa, t) = ZUi[$?j(xWkj(t)/Wk(t)l l^k^n, 
hence (y/teQG^*, x) = 0, 0 ^ i ^ k-2 and (dk~lldxk-l)G(x, x) = 1. 
Thus, using Leibniz's formula, 
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J* Gk(x, t)(j~gk(t9 s)B(s, y)ds^dt 

= Jjft(^ OB(t, y)dt + j*-J^G,(x, *)(J~g*(f, *)*(*, y)ds)dt. 

Thus it follows that 

L\îb
Gk{?c' ^or^5 ) 5 ( 5 ' ^*H = i r*****^^ ̂ * 

If fc = «, we may use Leibniz' rule to show that 

Thus it follows that Lw[-j|G„(x, *)£(*,?)*] = -B(x9 y). For 0 g k g 
« — 1 we have ([1], p. 443) 

- J ^ J X gfa ')*(',y)dt = -B(x, y) + ) x -g^z* **(*, 0*C, ?)*. 

From these equations we see that 

and so 

( ft (D-y,)f{~gk(x,t)B(.t,y)dt = -£ (* ,? ) 

= ~B(x,y). 

For convenience we define 

I°0(x, B(y)) = J ^ g0(*, ')#(', y)A, 

TJK*, B(y)) = j*G*(x, o(J"**(<, *)*(*> f)ds)dt, 1 £ * £ » - 1, 

7°(x, Ä(j>)) = -£<?„(*, 0*0, ?)^, 

and 

/{(x, B(y)) = £,[/?(*, !?(?))], 0 g * g », 1 g i g ». 

/IM = ( ft V>- vShl o g * g «-1, fc+i g i g », 

and 

^ » / J M ^ O £ * £ » - ! . 
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Thus In
k{x, B(y)) = — B(x, y), 0 ^ k ^ n, and we have shown that if y(x) 

is a solution of y(x) = Pk(x, B(y)), 0 ^ H n, then y{x) is a solution of (4). 
In the following we shall suppose the Mammana factorization is valid 

on the appropriate half-line (see [5]) and that the coefficients of the 
homogeneous equation are continuous there. 

THEOREM 1. Let B(x, «0, w1? . . . , w„_i) be continuous on D: a ^ x < oo, 
— oo < Uj < oo, O ^ / ^ n - 1 . Let F(x) be continuous on [a, oo) such 
that \B(x, u)\ ^ F(x)for each (x, u)eD. Let (J) be an arbitrary solution of 
Ln[y] = 0. 

Then for all b ^ a, equation (4) has at least one solution yn(x) defined 
at least on [b, oo) satisfying 

(S) yP(b) = ^(b),0^i^n-l, 

and 

(5X) L{[yn] = L,[0] + O(£ |L , [G W (X, 0] | - F ( 0 Ä ) , 0 £ I £ I I - 1 . 

Further, if for some k, 0 ^ k ^ n—l, j™\gk(x, t)\-F(t)dt < oo, then for 
all b ^ a the equation (4) te a/ /easf one solution yk(x) defined at least on 
[6, oo) satisfying 

(si yV(b) = 4,<*>(b),0£i£k-i, 

LAy] = Lfcßl + tf ( £ \L{[Gk(x, 0] | (J" |ft(/, *)| • F ( j )&y ), 

0 £ / £ J f c - l , 

(SÇ) LAy] = L # ] + o(J jkto*(x, O l l - ^O*) ^ ^ » - 1 . 

PROOF. Consider the equations 

(100 A M = I # ] + /£(x, 2?(j>,)), 0 £ i, * £ *. 

If .y*(X) is a solution of (102), then j^(x) is a solution of (10£), which is (2). 
Thus it will suffice to show that (10£) has a solution with the stated prop­
erties. 

We set Li[yktl] = L^] and use equations (100 for the successive 
approximations 

' % d = 4 t $ + /*(*, *(?*,*)), m = 1, 2, 3, . . . , 
\A Afe) 

0 £ i, ifc £ w. 

Since L,|>£>m+1] is a linear combination of >>j$»+i> 0 ^ y ' ^ i", in which the 
coefficient of y$m+i is 1, we can solve equations (11£) for y$m+1 in terms 
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of j ^ + i , 0 ^j g i —1, and yktVn. Thus the successive approximations 
yktfn are well defined. 

Let N be the least integer such that N > b ^ a and set Iq = [b,N + q], 
q = 0, 1, 2, We now show that the sequences {I%(x, B(yktfn))}%=1, 
0 g i ^ n, are uniformly bounded on Iq by some number Dq. First we 
observe that 

(fclLAGfa 0 1 l ( £ W , s)\-F(s)dsyt9 

0 ^ i ^ & - 1 < w - 1 , 

(12) |/<(x, B(yktm))\ ^ / J j I4[g*(*, t)]\.F(t)dt9 0 g * £ i g #i-1, 

r |L,[GW(JC, /)]| .F(0<fr, 0 ^ i £ w - 1 , ifc = TI, 

(F(X) , 0 g k ^ «, i = n. 

Thus the right hand side of (12) is bounded by a continuous function 
which is independent of m, and the left hand side can therefore be bounded 
on Iq by some number Dq which is independent of m. 

If the sequences {/£(*, B(yktfn))} are uniformly bounded on Iq, it can 
be shown by induction on i that the sequences {y$m}, 0 ^ i ^ «, are 
likewise uniformly bounded on each interval Iq by some number Bq 

independent of m. To see this, first note that yk,m+i = $ + I°k(x, B(ykm)). 
Since ^ is continuous on each Iq and {I%x, B(yktm))} is uniformly bounded 
there, the result follows for i = 0. Suppose now that it is true for some 
f—1 < n. Now Li[ykttn+{\ is a linear combination of y$m+i> 0 ^ 7 =s U 
in which the coefficient of y$m+i *s 1 a n d the coefficients of j^m+i» 0 g 
7 ^ i—1, call them ££(x), 0 ^ , / g i - l , are continuous. Thus we may 
write 

I j i ' U l ^ g l l i ^ U l + |L,[$| + \Ii(x, B(ykJ)\. 

Since the £{ and 9J are continuous on 7g and the sequence {Ii(x, B(yktfn))} 
is uniformly bounded there, the assertion follows from the induction 
assumption. 

Since the sequences {y$m}, 1 ^ / ^ n, are uniformly bounded on Iq, 
the sequences {y$m}9 O g / g n - 1 , are equicontinuous there. Hence 
we can extract from these latter sequences subsequences {y$ktm} which 
converge uniformly on I0 to a limit function y\. For the same reason we 
can extract subsequences {j4'\m} °f {yoXm} which converge uniformly 
on li to a limit function which we may also call y% because it agrees with 
y\ on 70, since {J4?*,»J is a subsequence of {y$k,m}- Inductively, we extract 
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subsequences {y$-i,ktm} of {y%\m} which converge uniformly on Iq+1 to 
a limit function which we may again call y'k9 since it agrees with the 
limit of {yq%,m} o n h- This defines y\ on [b, oo). The diagonal sequence 
W-i,*,/}£=i converges uniformly on every compact subinterval of [b, oo) 
to y I It follows that y\ = (d*'/dxi)(y$), 0 ^ i ^ « - 1 (see R.G. Bartle 
[2], p. 217). We write yQ

k = j ^ and show that yk is the required solution. 
We first consider the case in which 0 ^ k ^ n— 1. Now 2? is continuous 

on Z) so that l i m ^ o ^ x , j>/_i,Ä,/) = 2?(x, j>0 for all x e [b, oo). Moreover, 
|£(x, J O I g ,F(x) for all x e (b, oo) and J~|g*(x, t)\-F{t)dt < oo. It now 
follows from Lebesgue's Dominated Convergence Theorem that for all 
x e [b, oo) 

L{[yk] = l i m { Ì # ] + /£(*, * ( ? / - w ) ) } 
(130 

= Aty] + / « * , *(?*)), 0 £ i £ * - 1 , 

whence ;^(x) is a solution of (10£) and thus of (4) also. If k = n then, 
without appeal to Lebesgue's Theorem, 

Lt{yJ = limL,[0] + /<(x, *(j>/_w))} 
(140 

= Lfcßl + /<(x, £(?„)), 0 S i ^ n-1, 

so that j>w(x) is a solution of (102) a n d thus of (4). 
As for the properties (S) and (£'), we first observe that yk(b) = </jk(b), 

since /£(*> £(j>0) = 0, I ^ k ^ n. Then, since (Z> - 7ji)[yk] = (D - TJI) 
[(/>] + Il(x, B(yk)) and I\(b, B(y)) = 0, 2 ^ A: ^ «, it follows that^(Ä) = 
<f>\b). Likewise, since L2[yk] = L2[(/j] + / |(x, B(yk)) and /I(6, B(yk)) = 0, 
3 ^ k ^ «, we have y"k{b) = ^"(ô). Since the coefficient of y(f in Z/,[jJ 
is not zero, this reasoning may be continued so long as Pk(b, B(yk)) = 0, 
namely for 0 :§ / ^ k— 1. 

The proof is complete when we observe that, in view of equations 
(140, 0 ^ k ^n, 0 g / g B - l , properties (Sx)9 (S[) and (S'2) follow 
immediately from the inequality (12) with yktfn replaced by yk. 

Note that Theorem 1 offers an asymptotic comparison between solu­
tions of Lny + B(x, y) = 0 and those of Lny = 0. 

II. Perturbed constant cofficient equations. 

2.1. An integral condition for the nonlinear terms. In this section we 
shall restrict Lny to the constant coefficient operator y{n) + J^%=iaiy

in~i) 

where the a{ are complex constants. The solutions of the homogeneous 
equation (1) are linear combinations of functions of the form £(x) = 
xJelx, where X is a root of the characteristic polynomial, rn -f ZI?=i0*rW~* 
and j is a non-negative integer less than the multiplicity of X. We shall 
refer to these solutions as standard form solutions. The Green's function 
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in this case can be written as a linear combination of such £, evaluated at 
the argument x — t [4]. We shall begin by defining a partial order and 
equivalence on these functions. 

Let £1 = xJeXx and £2 = xkeß* be two such functions. Then, if (i) 
Re(jl - ß) > 0 or (ii) Re(A - ß) = 0 and j - k < 0, we write £i < £2, 
while if (iii) Re(A - ß) < 0 or (iv) Re(A - /3) = 0 and j-k > 0, we 
write Ci > £2- Finally, if Re(A — /3) = 0 and j—k = 0, we write £1 = £2. 
Then Çx « £2 means £1 < £2 ox Ci s= Ç2. 

Let F(t) be a non-negative function and set I± = J~|Ci(^ — t)\-F(t)dt 
and 72 = j " " ^ * - t)\-F(t)dt. If Ci « £2, then, if 72 exists, so does Il9 

while if Ii diverges, so does 72. If & = £2» then Ix exists if and only if I2 

exists. 
We will use the same notation here as in Theorem 1, except that, 

because k will be uniquely determined, we drop the subscript k from 
the notation for some functions. 

Order the n independent standard form solutions of Ln[y] = 0 so that, 
calling them Ç,-, Ç, » Çm , 1 £ 1 £ n - 1 . Thus, if J~|£(* - t)\-F{t)dt 
exists so does j^lCmC* - t)\-F(t)dt, 1 ̂  * g /z -1 . Let n{ and A,- be 
such that 

Zt = xnieXiX
9 \ S i Sn. 

Note that £*+i> . . . , £n are the standard form solutions of the equation 

n[y\ = ( ft (J> - h)\y] = 0. 

This is so because, if 

then 

since 

xmeXix ^ xni~le*iX. 
DEFINITION 1. We define k to be the smallest integer for which there 

exist a non-negative integer N and real number c such that both £ m « 
xNecx a n d 

(,4) f °° tNe~ctF(t)dt < 00, 

provided such a A: exists. In this case, J^CC* 
fc + 1 ûi-ê-n. 

Denoting the k solutions of (\{)=1{D - Ay))[j] 

t)F(t)dt exists, where 

Oby 
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0. = xnie^x, 1 ^ i ^ Ä:, 

we order the set { !̂, . . . , <f>k} so that if Re(A,- — Ay) > 0, then i < j ; 
and if Re(A, — Ay) = 0 and «,- > nh then i < j . Note that Re (c — A,) ^ 
0, 1 ^ / ^ &. Further, if Re(c - A,) = 0, then Re(c - Xj) = 0, 1 g 
y ^ i, while if Re(c - A,-) > 0, then Re(c - Xj) > 0,i ^j ^ k. 

For k + l ^ i ^ n, Re(c - A,) ^ 0. In this case, if Re(c - A,) = 0, 
then Re(c - Ay) = 0, k + \ g y g i, while if Re(c - Af) < 0, then 
Re(c - Xj) < 0, i ^ j g /z. 

Let w,-+1(A) be the multiplicity of A as a root of n?=*+i(r "~ ŷ)> 0 ^ 
/ ^ /i—1. Then let m t+1 = maxRe^=c{mt+1(A)}. Thus if all the roots of 
Y[nj=i(r — Xj)9 the characteristic polynomial of Ln, are real, then mt+i = 
mi+i(c), 0 ^ / ^ n - l . 

Suppose first that k ^ i ^ «— 1. If Re(c — A,-+i) < 0, then mi+x = 0, 
because no A with real part c appears in the list {A,+i, • • -, Xn}, while if 
Re(c — At+i) = 0, then mt+1 = ni+1 + 1, because no A with real part 
c can occur more times in the list {Af-+i, . . . , Xn} than A,-+i occurs. 

Suppose now that 0 ^ i g k— 1. If Re(c — Af+i) > 0, then m,+1 = 
mH 1 , because no A with real part c occurs in the list {A,-+i, . . . , A J . 
Suppose, on the other hand, that Re(c — At+i) = 0. Then A,+i appears 
exactly mk+l times in the list {Ak+i, . . . , Aw}, because some A with real 
part c appears mk+1 times in this list so that 

xmk+i—^i+ix <£ xNec*. 

Then mi+1 = /if-+1 + 1 + m H 1 because no A with real part c can occur 
more times in the list {Al+i, • •., Xk) than A,-+i occurs. Thus we see that 
for 0 ^ / g « - 1 , if Re(c - A,+i) = 0, then mi+i = ml+1(A,+i). 

We now state three lemmas that we will find useful in estimating the 
asymptotic size of the integrals Vk. All three can be proved by induction 
on n and N, integration by parts and l'Hopital's rule. 

LEMMA 1. Let n and N be non-negative integers and a and A complex 
numbers. Let 

Jg(x) = {X(x - tYe^*-» tNe«*dt. 

Then, (a) if a - A ̂  0, then J%(x) = PN(x)eax + Qn(x)eXx, where PN(x) 
and Qn(x) are polynomials of degree at most N and n, respectively, and 
(b) if a — A = 0, then J%(x) = PN+n+1(x)eax where PN+n+1(x) is a poly­
nomial of degree N + n + 1. 

LEMMA 2. Let n be a non-negative integer, N a positive integer and a 
and A real numbers. Let 
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Jnipc) = \\{x - tyitN)eK*-»e«*dt, b < 0. 

Then (a) if a - X > 0, then l i m ^ / ^ * ) / * " ^ « * = nl/(a - A)»+1, awrf 
(b)//** - A = 0, fAé?« lim^oo/JW/x^log x)ea* = 1. 

LEMMA 3. Let n be a non-negative integer and let (A) be satisfied. Let 
c and N be as in (A) and A a complex number. With F(t) the same as in (A), 
put 

Jn(x) = f°°(jc - t)»e^-»F(t)dt. 

Then, (a) if Re(c - A) < 0, then lim^^J^/x^e^ = 0, and (b) // 
Re(c - A) = Oandn g N, theniimx^00Jn(x)lxn-Necx = 0. 

We are now prepared to prove the following theorem. 

THEOREM 2. Let B(x, w0, wl5 . . . , un_{) be continuous on D: a g x < oo, 
— oo < ut- < oo, 0 2g i" 2g ?i—1. Let F(x) be continuous on [a, oo) such 
that \B(x, u)\ ^ F(x)for each (x, u)eD. Let c, N and k be as in Defini­
tion 1, and we suppose such a k exists. 

If(j) is any solution ofLn[y] = 0, then for all b ^ a the equation (4) has 
a solution y(x) defined at least on [b, oo) satisfying 

(S) y<»(b) = ^(b), 0 £ i £ Jfc-1, 

and, for each ifor which w î+1 = 0, 0 ^ i 5̂  n— 1, 

(SÙ L,[y) = L,[<I>] + o(x-»e"), 

while for each ifor which w,-+1 # 0 , 0 g / g » - l , 

(S2) L;[y] = L,[0] + o ^ + i - i - ' V * ) . 

PROOF. It follows from the definition of k that j~l£<* - t)\-F(t)dt < 
oo, k + l ^ i ^ n, so that j£°|g*(*5 j ) | - F ( 0 ^ < oo, whence the proof of 
Theorem 1 applies. Thus it remains only to show validity of properties 
(Sx) and (S2). Thus we must estimate the asymptotic size of the 
IÌ(x,B(x,y)),0^i^n-l. 

For this purpose, we will show by induction that a linear combination 
of [Ljlfa], ..., L{[(j)^} is a linear combination of {̂ ,-+i, . . . , <ßk}, 0 g 
i g k — 1. The case i = 0 is trivial. Suppose now that it is true for somey, 
0 :gy < k— 1, and let z be a linear combination of {Ly+it^i], . . . , 
Ly+1[0d}. Then it follows from the induction hypothesis that z is a linear 
combination of {(D - Ay+i)[0y+i], . . . , ( / ) — Ay+x)^]}. Since 

(D - Ay+1)[&+1] = /imx"/+i-V'+i*, 
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it is now clear that z is a linear combination of {̂ y+2, • • -, <t>k}- This 
completes the induction. In like manner, we may show that every linear 
combination of {/£[ÇJH-I]> . . . , /£ [£J} i s a linear combination of {Çm , . . . , 

It now follows that for k ^ i è n- 1, /£(*, B(x, y)) = jr4fe*(*> 01 
£(f, j?)<ftis a linear combination of J^Çy(x - t)B(t9 y)dt, i + l ^j^n. 
Thus it suffices to examine 

Hj(x) = I |x - f|«/<?Re */<*-'> F(t)dt, i +1 ^j Sn. 

According to Lemma 3 the largest, asymptotically, of the ///, i +1 ^ 
j S n9 is # , + 1 . If Re(c - A m ) < 0, then mi+l = 0 and i / m = o(x~^e^) 
by Lemma 3(a), while if Re (c - A m ) = 0, then mi+l = ni+1 + 1 # 0 
and 

i / l + 1 = ö ^ ' + i - 1 " ^ * ) 

by Lemma 3(b). From these asymptotic relations follow the asymptotic 
relations of properties (5X) and (S2) for k ^ i S n— 1. 

For 0 £ i £ * - 1, /£(*, £(*, j>)) = IfLJGAx, f)](f ?**(', s)B(s, y)ds)dt 
is a linear combination of J?^y(x — 0(jì°C/(/ — •*)-#(•*> y)ds)dt, where 
/ + 1 ^j^k and Ä; +1 ^ / 5J n. Thus it is enough to consider 

HJfXx) = f*(* - t)nJeReWx-»HAt)dt, i + l £j ^ k, k + l g / ^ n. 

Suppose first that Re(c — AÄ+1) < 0. If Re(c — Xi+1) = 0, then 

eh+ix « xNecx
9 

regardless of N. But then Xi+i is included in the list {A*+i> . . . , An}, 
contradicting the assumption that Re(c — Àk+i) < 0. Thus, if 
Re(c - A*+i) < 0, then Re(c - A m ) > 0 and /w m = 0 for 0 ^ i ^ k-1. 

We will use this last statement to show that 

H- „ [* (x - tpe-WHAM 
lim fll^L = Al = o, 
*-*oo X~Necx

 x-NeRe(c-lj)x 

i+\ ^j ^ Ä:, fc + 1 ^ / £ «. 

If the numerator on the right hand side is bounded above, then the result 
follows from the fact that Re(c — Ay) > 0. If the numerator is un­
bounded, then we may apply l'Hôpital's rule and induction on «y. 

First, if «y = 0, then from l'Hôpital's rule we get 

lim J ^ w =l im e-^'HAx) Q 

,-co x~Ne" , -«, x-
NeR«c-W*lRe(c - X,) - N/x] 
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since H, = o(x~Necx% k + l ^ / ^ n. The inductive step is a similar 
application of FHopitaFs rule. 

Suppose now that Re(c - AÄ+1) = 0. Then mi+1 ̂  mk+l > 0 and we 
must show that 

u [*(x - tfie-^^HX^dt 
Hm nJ,Kx) = i j m J b 

i + l ^j ^ K * + l ^ / Û n. 

If Re(c — A/+i) > 0, then Re(c — Ay) > 0 and either the numerator is 
bounded above and the result follows, or we may employ FHopitaFs rule 
in a proof by induction on rij, as in the previous case, using here the fact 
that 

H, = o(xmi+i-l-Necx). 

If Re(c — >lz+1) = 0, then mM — 1 — N = 0, To see this, first note 
that m m — 1 — N ^ 0, since Ç*+i <£ : Ä C * . Suppose, then, that mk+1 — 
1 - N ^ - 1. It follows that mk+l ^ Nso that 

and Àt-+i is included at least mk+l + 1 times in the list {Xk+\, . . . , Aw}, a 
contradiction. Thus mÄ+1 — 1 — N = 0 and mi+x — 1 — N > 0. It is this 
last fact which validates the use of FHopitaFs rule in still another similar 
inductive argument showing that here, too, 

lim #y,X*)/xw / + 1~1 -^* = 0. 

These arguments complete the proof of Theorem 2. 

2.2. A bound for the nonlinear term and two examples. In Theorem 2, we 
have assumed the existence of some solution £ of L„[y] = 0 such that 
£ <£ xNecx. The c which satisfies this requirement may be much larger 
than that required to satisfy (A). Also, if F(x) = xMec'x, M a non-negative 
integer and c' a real number, Theorem 2 requires c' — c < 0, since 
negative JV is not allowed there, while it is desirable to have c' — c = 0. 
Therefore, we shall study the case F(x) = xMec*, and include the additional 
case k = n, in which {£H-I, . . . , £„} is empty. For this we require three 
additional lemmas. All three use induction, Lemma 4 also using integra­
tion by parts and Lemma 5 using FHopitaFs rule. 

LEMMA 4. Let n and N be non-negative integers and a and X complex 
numbers such that Re (a — X) < 0. Then 

/•oo 

/ " ( * ) = I (x - t)ne^x-^tNeatdt = PN(x)e«x 
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where PN(x) is a polynomial of degree N. 

LEMMA 5. Let n be a non-negative integer and N a positive integer and 
a and X complex numbers. Let 

/^(JC) = f°°((x _ tyitN)eU*-»e«tdt. 

Then, (a) // Re(a - X) < 0, then l i m ^ / ^ * ) / * - ^ « * = -n\j(a - X)n+\ 
and (b) if a - À = 0, then for N^n+2, limx_>00J%(x)/xn-N+1eax = 
(-1)*(JV- n - 2)\nl/(N - 1)! 

LEMMA 6. Lef/? be a non-negative integer. Then for 0 ^ q ^ p there exist 
numbers aq > 0 andbq such that [xt log x]{^ = xP~^[aqlog x + bq). More­
over, [xP log x](^+1) = ap/x. 

With the C« ordered as before, and ww+1 = 0, we can now prove the 
following result. 

THEOREM 3. Let B(x, u0, wl9 . . . , un_{) be continuous on D:0 ^ a ^ x < 
oo, — oo < u{ < oo, 0 ^ / ^ «— 1. Suppose that for some integer M, 
real number c and positive constant cQ, \B(x, u)\ ^ c^pcMecx for each (x, u) e 
D. Let k be the smallest integer such that £Ä+1 <£ x~M~2ecx, provided such 
a k exists. If no such k exists, let k = n. Let mi+i,0 g i ^ n — 1, be defined 
as before and let </> be an arbitrary solution ofLn[y] = 0. 

Then for all b ^ a, equation (4) has a solution y(x) defined at least on 
[b, oo) satisfying 

(S) y™(b) = </><t>(b), 0 £ i £ Jfc- 1, 

and, if M is negative and Re(c — A,-+i) = OandO ^ / ^ k— 1, then 

(Si) L{[y] = L,[0 + 0(*"<+i^(log x)e<x), 

while, if M is non-negative or Re(c — A,-+i) > 0 or k ^ / g «, then 

(S2) Lily] = LXcjj] + 0(x*»^+Me<x). 

PROOF. Because fêt-M-2e-cttMectdt < oo, the proof of Theorem 1 
applies, as before, and the task is again reduced to estimating the asympto­
tic size of the I\{x, B{x, y)), 0 ^ i ^ n— 1. We shall omit the details 
involved in the remainder of the proof which, although somewhat in­
tricate, are similar to those used in the proof of Theorem 2. 

We now give an example which shows that in Theorem 3 the right 
hand sides of (S{) and (S2) are actually achieved. 

Let « be a positive integer and suppose that M is an integer such that 
M ^ 0 or -M ^ n + 1. Then M + « ^ 1 or M + n ^ - 1 and the 
function (jjp = xM+ne*x/(M + 1)(M + 2) • - • (M + n) is a solution of 
the equation (D - X)n[y] = xMeXx, M ^ 0 or M ^ - « - 1 . 
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If M is non-negative, then (S2) applies. If — M ^ n + 1, then n — 1 ^ 
- M - 2 so that £1 « ^-^~2^^ and k = 0. Thus (S2) applies again. 
m,+1 is the multiplicity of X as a root of (Z) — X)n~\ that is, m /+1 = n — i. 
Taking ^ = 0, Theorem 3 predicts a solution y(x) satisfying (D - A)'[y] = 
0(xN+n~'eXx), 0 ^ i ^ n - l , and ^ clearly satisfies this prediction. Since 
M + n > n — l i n case M is non-negative and M + n ^ — 1 in case 
— M ^ « + 1, it is not possible to improve the asymptotic estimates of 
(D - X)'[y(x)] by adding to <pp a. solution of the homogeneous equation 
(D - X)«[z] = 0. 

Let us now suppose that « is a positive integer and suppose that M is 
an integer such that 1 ^ — M ^ n. It can be shown that 

</>q = (-\)-M-leXxxn+M Jog xj(-M - \)\(n + M)\ 

is a solution of (D - X)n[y] = xM^*, - « g M g - 1 . 
Again A: is the smallest integer such that £Ä+1 = xn~k~x eXx «: x~M~2eA*. 

But then n-k-\ = - M - 2 , that is, k = « + M + 1. Thus^)appl ies 
for 0 g / g ft + M while ( 5 ^ applies for n + M + 1 ^ i g ft. Again 
m t+1 = « — / and, if we take ^ = 0, Theorem 3 predicts a solution y(x) 
satisfying 

(D - ty[y] = 0(x*+^-'(log x)e*x), 0 ^ i g « + M, 

and 

(/> - A)'[>>] = 0(xw + M~^^), » + M + 1 ^ / ^ /i, 

and 09 clearly satisfies this prediction. Since (D — X)'[y] contains a term 
with factor log x, 0 ^ i ^ « + M, and since « + M— * < 0 , « + A f + 
1 ^ i :§ #i, it is not possible to improve the asymptotic estimates of 
(D — A)'[}>(*)] by adding to c]jq a solution of the homogeneous equation 
(D - A)»[z] = 0. 

Next we give an example to show that in Theorem 3, Re Ai+1 ^ c cannot 
be changed to Ài+1 ^ c. More specifically, we wish to exhibit an example 
in which M is negative, Re(c — Ä,+i) = 0, but c — A,-+i ^ 0, for some i, 
0 :g i ^ fc — 1, and yet (Sy still does not hold. 

Consider the equation 

(D - (1 + /))(/> - (1 - i))[y] = (£ 2 - 2Z> + 2)[y] = ^ sin tjt. 

Since M = — 1, we have x~M~2ecx = x_1ex and k = 2. Then, taking 
</> = 0, the solution given by Theorem 3, which in this case is just the 
solution given by the Method of Variation of Parameters, is y(x) = 
— ex j£(sin t sin( ' — x)/t)dt. Because m1 = 1 our goal is to show that 
y(x) does not satisfy 0(ex). If we choose b = 2TZT, then \y(2kx)\ > (e2k7C/2) 
(1/3 + 1/4 + ••• + 1/2Ä:), which completes the example. 
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This example shows that for Re(c - X;+{) = 0, XM - c ^ 0 we may 
not use the criterion: Let k be the smallest integer so that Ç*+i « x~M~lecx 

because here x"M~lecx = ex. Thus according to this criterion k = 0 yet, 
noting that G2(x, t) = gQ(x, t), we see that J~g0(*> t)B(i)dt does not exist. 

2.3. A linear nonhomogeneous equation. We have the following corollary 
to the proof of Theorem 3. 

COROLLARY 1. Let M be an integer and c a real number, and consider 
the equation 

(E) Ln[y] = x*e°*. 

Suppose that all the roots of the characteristic polynomial of Ln[y] are real. 
Let k be the smallest integer such that ^ + 1 <£ x~M~2ecx, provided such a k 
exists. If no such k exists, let k = n. Let mi+1, 0 ^ i ^ n — 1, be defined as 
before. 

Then for all b > 0 the equation (E) has a solution y(x) defined at least 
on [b, oo) satisfying 

(S) yM(b) = 0, 0 ^ i ^ k-1, 

and, if M is negative and Ài+1 = c andO :g i ^ k— 1, then 

(Si) lim L,[j>]/;cw<+1+M(log x)ecx exists 
* ->oo 

and, if M is non-negative or Xi+i < cork ^ / ^ n, then 

(S2) lim Li[y\lxmi+^Mecx exists. 
X-*oo 

PROOF. Here we are taking (Jj = 0 in Theorem 3. Since Re Xj = Xj, 
1 Sj^n, and \x — t\nj = ± (x — /)w>, f ^ x, for any non-negative 
integer nj, the limits established in the proof of Theorem 3 suffice for this 
corollary. 

If M is non-negative, then the result is well-known from the Method 
of Undetermined Coefficients, even if either the roots of the characteristic 
polynomial of Ln[y] are not real or c is not real. 

ffl. The equation y<») + B(x9y9y'9...9y<*-U) = 0. 

3.1. Two theorems of Svec and some examples. Let us consider the case 
when Ln[y] = Dn[y] and take N = n — k' — 1. If we take c = 0, then 
mi+l is just the multiplicity of 0 as a root of the characteristic polynomial 
of the operator Dn~{, 0 ^ i ^ n — 1, namely n — i. Thus mi+1 — 1 — 
N = (« — /) — 1 — (n — k' — 1) = k' — i. Further, k is the smallest 
integer so that £*+1 = xn~k~l « xn~k'~x so that k' = k, provided 0 ^ k ^ 
/i — 1. Then we can obtain the following corollary to Theorem 2. 
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COROLLARY 2. Let B(x, w0> wl5 . . . , un_{) be continuous on D: a < x < oo, 
— oo < u4 < oo, 0 ^ i ^ n — 1. Let F(x) be continuous on (a, oo) so that 
\B(x, u)\ ^ F{x) for each (x, u)eD and let k be the smallest integer such 
thatO ^ k ^ n — 1 and ̂ °°tn~k~lF{t)dt < oo. Let $ be an arbitrary solution 
of the homogeneous equation y(n) = 0. 

Then for all b > a equation (4) has a solution y(x) defined at least on 
[b9 oo) satisfying 

(S) y^{b) = ^(b), 0 ^ / ^ k- 1, 

and 

(S ) ^ ( x ) = <J)^(x) + o(x*-0, O ^ i g n - 1 . 

PROOF. Let us call the a of Theorem 2 by a'. Then given 6 > a, if we 
take A' = b, then Theorem 2 gives the result immediately. 

Since (p is arbitrary and k is chosen as small as possible, this corollary 
contains two results of Svec (Theorem 1 of [7] and Theorem 2 of [8]). 

Corollary 2 guarantees one solution of (4) on [b, oo) with properties 
(5) and (S^), for each solution <}) of L„[y] = 0. In fact, we may find n — k — 1 
solutions of (4), linearly independent on [b, oo) and satisfying properties 
(5) and (Sx). To see this, define yh k g j ' ^ n — 1, to be the result of using 
the above approximations with 0 = XK Suppose now that some linear 
combination of the y,, say y = ZJ^i Cjyj is identically zero on [b, oo). 
Then lima:_>0O^/xw~1 = cn_x so that c ^ = 0. Considering, in turn 
lim^ooy/xJ, j = n — 2, n — 3, . . . , & , we conclude that all the Cy are zero. 

We now give an example which shows that Theorem 2 does not include 
Theorem 3 and vice versa. 

Consider the equation ya) = x~2+e, x ^ 1, \e\ < 1 (this was just to 
avoid zero denominators in the following expressions). If e # 0, then it is 
easy to see that <J)£ = x2+e/(2 + e)(l + e)e(— 1 + s) is a solution satisfying 

#'[&] = x2-^l(2 - / + e)(l - i + e) • • • ( - 1 + e), 0 ^ i ^ 4. 

If e = 0, then ^0 = — *2 l°g */2 ! is a solution satisfying 

Z><ty0] = - * 2 - ' l o g x/(2 - i)!, i = 0, 1, 2 

and 

Z>[0o] = ( - 1 ) ' * 2 - U = 3,4. 

Let us see now what kind of asymptotic estimates are offered by Theo­
rem 2 and 3 in each of the three cases e < 0, e = 0, and e > 0. First 
observe that mi+1, 0 g / ^ 3, is the multiplicity of 0 as a root of Z>4~% 
namely 4 — /. Because c = 0 is the best possible choice in either Theorem 
2 or 3, we will confine ourselves to determining the best possible choices, 
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given c = 0, for N (in Theorem 2) and M (in Theorem 3) and the cor­
responding asymptotic estimates. For Theorem 2 we require a non-
negative integer N such that Jf tN~2+edt < oo, while for Theorem 3 we 
require an integer M such that \x~2+£\ g CQXM, X ^ 1, for some c0. We 
take (J) = 0 throughout this example. 

First suppose e < 0. Then for Theorem 2, the best choice we can make 
for N is N = 1. Since (S^) applies here, Theorem 2 predicts a solution 7 
satisfying D*\y\ = Ö(JC2~9> 0 g / ^ 3. On the other hand, for Theorem 3, 
the best choice we can make for M is M = — 2. Here k is the smallest 
integer so that £ m = x3~k « 1. Thus k = 3 and Theorem 3 predicts a 
solution z satisfying Z)1'̂ ] = 0(x2~{ log x), 1 = 0, 1, 2, and D<[z] = OC*2-')* 
1 = 3, 4. Thus in this case Theorem 2 provides the best asymptotic esti­
mates for 0 ^ i ^ 3. 

Next suppose that e = 0. Then the best choice for JV in Theorem 2 is 
N = 0. Again (£2) applies and Theorem 2 predicts a solution satisfying 
Z>*'[j;] = o(x3~'), 0 ^ / ^ 3. However, we may still take M = - 2 for 
Theorem 2 so that k = 3 again and the prediction of Theorem 3, which is 
the same as in the case e < 0, is best this time. 

Finally, suppose that e > 0. Then we may again take N = 0 in Theorem 
2, whose prediction is thus the same as in the case e = 0. But for Theorem 
3 the best possible choice for M in this case is M = — 1. Since there is no 
k, 0 ^ k g 3, so that £*+i = xz~k <£ x - 1 , we have k = 4 and Theorem 3 
predicts a solution z satisfying D*[z] = 0(x 3 - ' log JC), 0 :g 1 :g 3, and 
£>4bl = Oix'1). Hence, for 0 ^ i ^ 3 the estimates of Theorem 2 are 
better in this case. 

3.2. An integral condition with a monotone nonlinear term. The next 
theorem, which draws upon techniques used by Belohorec ([3]), uses a 
different condition on the function B(x, y, y\ . . . , ^ ( w - 1 ) ) . While it offers 
a partial converse, we can no longer use an arbitrary solution of the 
homogeneous equation as our initial approximation and we have no 
knowledge of how large the left hand end-point of the solution's interval 
of existence might be. 

We first require some preliminary definitions. We let Pk(x), 0 ^ k ^ 
n — 1, denote a polynomial of degree at most k. If ch 0 ^ / ^ «— 1, are 
constants, then we let 

Ck(x) = (coxk, cxx
k-^k, ..., c*_! x, ck9 ck+1, . . . , cn_t) 

and if f(x) is a function with n - 1 derivatives, then we let 

/(*) = (/(*),/'(*), ...,/(*"1)W). 

DEFINITION 2. Let i?(x, w0, uh . . . , w ^ ) be non-negative onD: a ^ x < 
00, — 00 < Ui < 00, 0 ^ i ^ w — 1, and monotone in each ut- for each 
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fixed x. For given constants ci9 0 fg i ^ «— 1, and polynomial Pk{x) of 
degree at most k9 suppose there exists a 60 > 0 and an e > 0 such that 
for all x ^ b0 one of the following conditions is satisfied: If B is non-
decreasing in ui9 then (c, — e)x*~* ^ PtfK*), 0 ^ / ^ fc, and cf- — s ^ 
Pjp(x) = 0, H 1 ^ i ^ n - 1, while if 5 is non-increasing in ui9 then 
(c, + £)**"' ^ ^H*) , 0 ^ / è k, and c, + £ ^ P^(JC) - 0, k + 1 ^ 
i ^ n—1. Then we say that ck(x) is eventually a bound for Pf-(x) with 
respect to B because B(x9 ck) ^ B(x9 pk) for all x ^ 60. 

We may, of course, interchange the roles of ck(x) and pk(x) to define the 
notion that pk(x) is eventually a bound for ck(x) with respect to i?. Speci­
fically, it suffices to interchange the words "non-decreasing" and "non-
increasing" in Definition 2. 

We now prove the following theorem. 

THEOREM 4. Let B(x9 w0, U\9 . . . , un-i) be continuous and non-negative in 
D: a S x < oo, — oo < ut < oo, 0 ^ i ^ n— 1, and monotone in ui9 

0 g i ^ « — 1,/or each fixed x. Let k be an integer such that 0 ^ k ^ n—l 
and let Pk(x) be a polynomial of degree at most k. Suppose there exist 
numbers ci9 0 g / g n—\9 such that ck(x) is eventually a bound for pk(x) 
with respect to B and 

(15) \°° t»-*-lB(t,ck)dt < oo. 

Then there exists ab* > a such that for all b ^ 6* the equation 

(16) y™ + B(x9y9y'9 . . . , ^ ^ " 1 > ) = 0 

has a solution yk(x) defined at least on [b. oo) satisfying 

(S) y^(b) = P^(b),0^i^k-l, 

and 

(SO y<g\x) = Pjp(x) + o(x*-t)9 O ^ ^ / i - l . 

Conversely, if(\6) has such a solution andpk(x)js eventually a bound for 
ck(x) with respect to B9 then (15) holds. 

PROOF. We first consider the equations 

(no yPW = W O + i\fr> B(yk% o^i^n, 
and show that (17£) has a solution yk(x) satisfying properties (S) and (5j). 

Since ck(x) is eventually a bound for pk(x)9 there exists an e > 0 and 
b0 ^ 0 as required by Definition 2. Then, according to (15), there exists 
ab* ^ b0 such that for all b ^ b* 

f°°/*-»•-!£(/, cÄ)J/ g e/2, À; g i ^ n - 1. 
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Hence for ft ^ ft* and x ^ b 

\Iifx, B(ck))\ S {aß) \\{x - 0*-'-7(* » / - 1 ) 0 * 
(lo) J b 

^(£/2)x*-% 0 £ i £ Jfc-1, 

and 

09) \Ii(x, B(ck))\ <eß,kgi£n-l. 
We set y$o(x) = PiH*) an<l for m = 1, 2, 3, . . . we use equations 

(17j) for successive approximations y$m+i(x), 0 ^ i ^ n. 
We now show inductively that B(x, ykttn) g B(x, ck) for all x ^ ft*. 

Since yi%x) = Pjf\x), 0 g ìr ̂  «— 1, the assertion is true for m = 0 by 
hypothesis. Now suppose it is true for m ^ 0 and observe that y$m+i(x) = 
Pf\x) + Ii(x,B(ykJ). 

By the induction assumption, B(x, ck) ^ B(x, yk,m) for x ^ b* ^ ft0. 
Thus, from equations (18) and (19), 

\Ijp(x, B(x9 yk,m))\ g (e/2)x*->\ 0 ^ i ^ A:-1, 

and 

|/J0(*, 2?(x, ft, J) | g e/2, * £ i £ * - 1 . 

Thus, because ck(x) is eventually a bound for /**(.*), we have for x ^ ft* ^ 
ft0 that if .0 is non-decreasing in wf-, then 

(ct. - e/2)xk-< ^ />£>(*) + (e/2)x*-i ^ ^ + 1 ( i ) , 0 ^ i ^ fc, 

and 

c< - e/2 ^ i>H*) + e/2 à Ä + 1 ( 4 * + l £ i £ * - l , 

while if 5 is non-increasing in w,-, then 

(c, + e/2)x*-i ^ Pjp(x) - (e/2)x*->' <Z y^m+l{x\ 0 ^ i ^ k, 

and 

Q + e/2 ^ Pjp(x) - e/2 ^ j^ w + 1 (x) , t + U i ^ - 1 . 

This suffices for the induction. 
The remainder of the proof of the convergence of the successive ap­

proximations to a solution of (16) on [ft, oo) satisfying properties (S) is 
the same as in Theorem 1, except that B(x, ck) replaces F(x). 

To show the properties (S{) it suffices to apply PHopital's rule to the 
ratio I'k(x, B(x, ck))/x

k~>, and use condition (15). 
Conversely, suppose that yk{x) is a solution of (16) with properties (S^ 

on [ft, oo). Although we shall omit the details it can be shown, by induc­
tion ony, that for 1 ^ ; ^ n — k, where 0 ^ k ^ «—1, 

file:///Iifx
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(20) /rJ\x) = P^\x) + j ~ ((x - ty-W - 1) !)*(*, ?,)*, x ^ 6. 

Takings = « — A: in (20), we now obtain 

(21) Wipe) = *! a, + j j ((x - r)-*-V(/i - k - 1) !)£(*, J^ r . 

If Pk(x) is eventually a bound for ck(x) with respect to B, then there exists 
a bi ^ ft* such that for all x ^ ^ we have B(x, yk) ^ B(x, ck). Thus, for 
all x > bi and all A ^ * 

I P((*i - ty-k-iKn - * - 1) !)*(*, fc)rf* I 

> I f\(*i - O"-^1/^ - k - 1) !)£(/, ?*)<&!. 

Since, by equation (21), the monotone increasing limit as A -> oo exists 
on the left, it also does on the right. It now follows that \°°tn~k~lB(t, ck)dt < 
oo (see Apostol [1], p. 431), completing the proof of the theorem. 

Note that in the converse portion of this theorem, having obtained 
equation (21), we can, with the properties (5), obtain all of the equations 
(17£), with y replaced by yk, since Pk(x) + 7°(x, B(yk)) is the unique solu­
tion of z<»(x) = k\ak + 7J(JC, B(yk)) satisfying z («(i) = Pjp(b), 0 ^ i g 
A:—1. Thus, j is a solution of (16) satisfying properties (5) and (S^) if 
and only if y is a solution of y = PÄ(x) + /2(x, #(>0). 

Suppose the leading coefficient of Pk(x) is flÄ. Then a necessary and 
sufficient condition to assure that ck(x) is eventually a bound for pk(x) 
with respect to 5 is that if B is non-decreasing in wf-, then c,- > k(k — 1) 
• • • (k - i + l)a*, 0 <; i ££ fc, and c, > 0 , H I ^ / ^ n-l, while if 
5 is non-increasing in ui9 then c,- < A:(/c — 1) • • • (fc — i + l)a*, 0 ^ i ^ 
Ä:, and c{ < 0, k + \ ^ / g n — 1. A necessary and sufficient condition to 
ensure that pk(x) is eventually a bound for ck(x) with respect to B is 
obtained by interchanging the words "non-decreasing" and "non-increas­
ing" in the preceding condition. 

The function B needn't be continuous on all of — oo < ut: < oo, k ^ i 
^ n — l, since the initial and successive approximations are all bounded 
above in absolute value. A finite interval suffices provided B(x, ck(x)) and 
B(x, pk(x)) are defined. 

Further, instead of requiring B to be non-negative and monotone in 
each uh we may postulate a function F(x, w0, ul9 . . . , un^x) such that 
\B(x, u)\ ^ F(x, u) for each (x, u)eD and impose on F all those condi­
tions that are imposed upon B(x9 ü) in Theorem 4. 

We also have the following result. 

COROLLARY 3. Let B(x, w0, u\> . . . , MW_X) be continuous on D:a < x < oo, 
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— oo < Ui < co, 0 ^ i ^ n — 1. Let F(x) be condinuous on (a, oo) so that 
\B(x, u)\ ^ F(x)for each (x, u) e D and let k be an integer such that 0 ^ k 
^ n— 1 and \°°tn~k~lF(t)dt < oo. Let Pk(x) be a polynomial of degree at 
most k. 

Then for all b > a the equation (16) has a solution yk(x) defined at least 
on [b9 oo ) satisfying 

(S) y™(b) = Pjp(b)90£i£k-l, 

and 

(Si) y™(x) = PjfXx) + o(xk~% 0 ^ i ^ w - 1 . 

Conversely, if (16) has such a solution ^^(x), fAe« 

(^0 J°°/»-*-1i?(r,^)A< oo. 

PROOF. The proof of the convergence of the successive approximations 
to a solution of (16) on [b, oo) with properties (S) follows as in Theorem 1. 
The proof of the properties (S^, which in Theorem 2 depended upon the 
partial order ^ , follow here from the corresponding arguments presented 
in Theorem 4, as does the proof of the partial converse. 

Here the direct portion of the corollary also includes the two aforemen­
tioned theorems of Svec (Theorem 1 of [7] and Theorem 2 of [8]). 
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