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1. Introduction. The use of differential inequality techniques in the 
study of singular perturbation problems for ordinary and partial differ
ential equations has a short but interesting history. In this paper we 
delineate briefly several avenues of investigation, starting from the 
original work and following its influence up to the present. 

2. The work of Nagumo. In the late 1930's the Japanese mathematician 
M. Nagumo wrote two beautiful papers on differential inequalities, one 
concerned with two-point boundary value problems and the other speci
fically with a singularly perturbed initial value problem. These papers 
comprise the opening chapter of our story, and so let us spend a little 
time describing their contents. 

The first paper of Nagumo [29] (cf. also [21]) concerns the existence of 
solutions of the Dirichlet problem 

/ =f(Uy,y'),a <t<b9 

y(a) = A, jib) = B, 

where / is a continuous function on [a, b] x R2. Under the assumptions 
that /grows at most quadratically with respect to y' (that is,/(f, y, z) = 
0(|z|2) as \z\ -> oo for (f, y) in bounded subsets of [a, b] x R) and that 
there exists a C(2)-bounding pair of functions {a, ß} for the problem (2.1) 
(that is, functions a and ß of class C(2)[a, b] satisfying a g ß, a(ä) g A 
g ß(a)9 a(b) ^ B ^ ß(b), and for t in (a, b), a" â /(' , a, a'\ ß" g 

f(t, /3, /3'))> Nagumo showed the existence of a C(2)-solution y = y(t)oï 
(2.1) satisfying ait) ^ y(t) g /3(f) in [a, b]. Thus he was not only able to 
prove that a solution exists, but also to give an estimate for this solu-
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tion in terms of the bounding functions a and ß. This latter facet of 
Nagumo's result provides the crucial connection with later work on 
singularly perturbed boundary value problems of the form 

ey" = Au y, y'\ a < t < b, 

y(a, e) = A, y(b, e) = B, 

for small, positive values of e ; cf. §3 below. 
Later writers have extended this theory to problems like (2.1) with 

Neumann and Robin boundary data, and to second-order systems with 
fairly general types of boundary conditions. We mention only the papers 
[9], [26], [22] which the interested reader can consult for details and 
additional references. 

The second paper of Nagumo [30] was published in 1939 and it concerns 
the singularly perturbed initial value problem 

ey" =Auy,y'),o<t^ T< oo, 
y(0, e) = y0, / ( 0 , e) = yl9 

where fis a continuous function on [0, T] x R2 and £ is a small, positive 
parameter. (A specific problem of this form was suggested to Nagumo by 
a chemist.) In order to get some idea of how the solution of (2.2) behaves 
as e -> 0+, let us consider the simple example 

ey" = -ky\ 0 < t < T, 
(2.3) 

X0, e) = y0, / ( 0 , è) = y1 * 0, 

for k a positive constant. (The results that follow are not valid if k ^ 0.) 
The exact solution y = y(t, e) of (2.3) satisfies in [0, T] 

y(U e) = y0 + Ofcfc-^ilexpl-fcte-i]) 

and 

y'(Ue) = 0(\y1\exp[-kte-1])9 

that is, 

lim y(U e) = y0for0 <> t ^ T 
£->0+ 

and 

lim y'(t, e) = 0 for 0 < ö ^ t ^ T -
£->0+ 

(0 < ö < T). Thus the solution of (2.3) converges uniformly to the 
constant value y0 as e -> 0+ in [0, T], while its derivative converges uni
formly to zero as e -+ 0+ in any proper closed subinterval of (0, T\. The 
nature of this nonuniformity is made even clearer when we note that 
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yx = lim lim y'(t, e) ^ lim lim y'(t, e) = 0. 

The limiting value y0 is of course the solution of the "reduced" initial 
value problem 0 = — ku\ w(0) = yQ, obtained from (2.3) by formally 
setting e = 0 and dropping the second initial condition. 

Based on the behavior of the solution of the simple linear problem 
(2.3) we expect that the solution of the general problem (2.2) should 
behave in a similar manner provided the function/has certain properties. 
In [30] Nagumo was able to prove such a result by assuming the following: 
(1) the reduced problem 0 = f(t, w, u'\ 0 < t <L T, w(0) = y0, has a 
solution u = u(t) of class C(2)[0, T]; 
(2) the function u is "stable" in the sense that there exists a positive 
constant k such that 

fy,(t, w(0, u'(t)) ^ -k < 0 in [0, 71; and 

(3) The function u is "stable in the boundary layer (region of nonuniform 
behavior)" at t = 0 in the sense that if w'(0) ^ yl9 then 

fy>(0,y0,X)^ -k<0, 

for all values of A between w'(0) and yv 

The precise result of Nagumo is that under these assumptions there 
exists an so > 0 such that for each e in (0, e0] the problem (2.2) has a 
C(2) -solution y = y(t, e) satisfying in [0, T] 

(2 4) yiU e) = U(t) + °(£k~l{yi ~ w/(0)|exp[-Â;te-i]) + 0(e\ 
y'(t, e) = u'(t) + 0(\yx - wXOilexpt-fcte-1]) + 0(e). 

Nagumo proved this theorem by means of a differential inequality lemma 
on first-order systems, which we now describe. 

Consider then the initial value problem 

x' = g(U x),0<t£T, 

x(0) = ft 

where x, g and f are in Rw, and g is a continuous function on [0, T] x Rw. 
If there exists a C(1) -bounding pair of functions (H% W) for the problem 
(2.5) (that is, functions w = (wl9 . . . , wn) and W = (Wh . . . , Wn) of 
class C(1)[0, 71 satisfying w, g FK,-, w,(0) g £, ^ FT,<0), and for f in 
(0, T], wi S g AU *,•), »7 ä; g,{^ Wt) for i = 1, . . . , n, where wt = (xb 

. . . , x,-_i, w„ x m , . . . , x„) and W{ = (xls . . . , xf-_x, Wh xi+1, . . . , xn) for 
all Xy in [w7, ^y],7 T̂  0» Nagumo showed the existence of a C(1)-solution 
x = x(t) = (JCI(0, • • •> *w(0) o f (2-5) satisfying w,(0 ^ *,{*) g FFf{f) in 
[0, 71 for i = 1, . . . , n. Let us hasten to point out that the differential 
inequalities for the bounding functions w and W place no restriction on 
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the monotonicity properties of the function g. However, if g is quasi-
monotone nondecreasing with respect to x for each fixed t in (0, T] 
(that is, if for / = 1, . . . , «, g{(t9 x) ^ gt{t, y) for any vectors x9 y such 
that x{ = y{ and Xj ^ yj9 j ^ i), then the differential inequalities for w{ 

and Wi simplify to w'{ ̂  gt{t9 w) and W- ^ gt{t9 W)\ cf. [3]. 
Using this result Nagumo was able to study the perturbed problem 

(2.2) by converting it to the first-order system 

*1 = *2> * l ( ° ) = JU 
(2.6) 

£*2 = AU xl9 x2\ x2(0) = yl9 

and then constructing a C(1)-bounding pair (M% W) in order to obtain the 
estimates in (2.4). This construction is based on the expectation that the 
actual solution of (2.6) for small e > 0 follows the solution u of the 
corresponding reduced problem except in a vanishingly small neighbor
hood of t = 0. Near t = 0 the functions u and u' must be supplemented 
by the "boundary layer corrector" terms containing the rapidly changing 
exponential function (cf. (2.4)). Thus, in one stroke, Nagumo established 
the existence of a solution of (2.2) and gave an estimate for it which 
improves as e decreases to zero. 

This basic result has been improved to include a sharper estimate for 
the admissible "boundary layer jump" |yx — u'(0)\ (cf. Assumption (3) 
above) in [15]. It was also extended to system analogs of the problem 
(2.2) in [27] and [16], which the reader can consult for further discussion 
and additional references. 4 

In the remainder of this paper we shall examine how these results of 
Nagumo have been used by later writers to examine singularly perturbed 
boundary value problems. 

3. The work of Brish. In 1954 the Soviet mathematician N. I. Brish 
published a short Doklady note [2] (cf. also [10]) in which he successfully 
applied Nagumo's result on the boundary value problem (2.1) to the 
singularly perturbed Dirichlet problems 

ef = F(U y, y'\ a< t <b, 

y(a, e) = A9 y(b9 e) = B, 

where e is a small, positive parameter, and F(t9 y9 y') = h(t9 y) or 
F(U y, y') = AU y, y') with fy, & O are continuous functions on their 
appropriate domains. He also applied Nagumo's result on the perturbed 
initial value problem (2.2) to the Robin problem 

ef =AUy,y'\a < t <b9 

Piy(a, e) - p2y'(a9 e) = A9 qxy{b9 e) + q2y'(b9 e) = B9 
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where ph q{ ^ 0, i = 1,2, and p\ + p\ > 0, q\ + q\ > 0. Let us take a 
moment to discuss his results. 

In the case of (3.1) with F(t, y, y') = h(t, y) we obtain an insight into 
the behavior of a solution as e -* 0+ by considering a simple example like 

£v" = my, 0 < f < 1, 
(3.3) 

y(0,e) = AïO,y(l,e) = BïO, 

for m a positive constant. The exact solution of (3.3) (to asymptotically 
negligible terms) is 

y(t, e) = 0(|^|exp[-(me-i)i'2(f - a)]) + 0(|£|exp[-(m*-i)i'2(ft - /)]), 

this is, 

(3.4) lim X'> e) = 0 for 0 < Ö ^ t ^ 1 - Ô < 1, (0 < ö < 1), 
e-K)+ 

and so the solution has boundary layers at both t = 0 and f = 1. We 
note that the limit w = 0 is the solution of the reduced (e = 0) equation 
mu = 0, and that the limiting relation (3.4) does not obtain if m g 0. 
For the general problem (3.1) with F = h Brish assumed the following: 

(1) the reduced equation h(t, u) = 0, a < t < b9 has a solution u = u(t) 
of class C(2>[tf, b]; 

(2) the function u is "stable" in the sense that there exists a positive 
constant m such that 

hyit, u(t)) ^ m > 0 in [a, b]; and 

(3) the function u is "stable in the boundary layers" at t — a and t — b 
in the sense that if u{a) # A, then 

h,(a, £)^m>0 

for all values of £ between w(a) and ^4, while if w(&) ^ B, then 

/*y(6, 57) à m > 0 

for all values of j] between u(b) and B. 
Under these assumptions he was able to show that there exists an 

£0 > 0 such that for each e in (0, £0] the problem (3.1) with F — h has a 
C(2)-solution y = y(t9 e) satisfying in [a, b] 

y{U e) = u(t) + 0(vL(t, e)) + 0(vR(t, e)) + 0(e), 

for 

Cfc(f, e) = M - w(«)|exp[-(m£-i)i/2(r - *)] 

and 

v*(f, e) = \B - W(ò)|exp[-(me-i)i/2(è - /)]. 
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Brish proved this result by setting 

a = a{t, e) = u{t) - vL(t, e) - vR(t, e) - eym,-1 

and 

ß = ß(t9 e) = w(0 + vL(t, e) + vR(t, e) + erm-\ 

with y = ||w"H«,, and verifying that these functions satisfy the required 
differential inequalities. 

As regards the problem (3.1) with F(t, y, y') = f(t9 y9 y'\ a simple ex
ample again reveals what to expect of a solution as e -• 0+. The problem 
is 

ey" = - ky',0 < t < 1, 
(3.5) 

y(0,e) = A,y(\9e) = B,A * B, 

for k a positive constant, and its exact solution (to asymptotically neg
ligible terms) is 

y(t, e) = B + 0(\B - ^lexpt-fcte-1]). 

Thus, we see that 

lim y(t, e) = B for 0 < Ö g t S 1, (0 < ô < 1), 

that is, y has a boundary layer at t = 0 and | / ( 0 , e)| = 0(£_1) -» oo as 
e -> 04". (If fc is a negative constant, then the roles of / = 0 and t = 1 
are reversed, and so the solution of (3.5) is 

y{U e) = A + 0(\A - * |exp[- |* |( l - 0*""1]), 

that is, y has a boundary layer at t = 1.) Let us hasten to point out that 
the limit u = B is the solution of the reduced equation — ku' = 0 which 
satisfies the right-hand boundary condition w(l) = B. (If fc is negative, 
then the limit of the solution away from t = 1 is u = A, which satisfies 
the reduced equation and the left-hand boundary condition w(0) = A.) 

For the general problem (3.1) with F(t, y, y') = f(t, y, y') Brish assumed 
the following: 
(1) the reduced problem/(/, u, u') = 0, a < t < b, u(b) = B, has a solu
tion u = u(t) of class C(2)[fl, b]; 
(2) the function u is "stable" in the sense that there exists a positive con
stant k such that 

fy,(U u{t\ II '(O) S - k < 0 in [a, b]; 

(3) the function u is "stable in the boundary layer" at t = a in the sense 
that if u(a) # ^4, then for all z in R, 

/y,(tf, X, z) <; — fc < 0 
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for all values of X between u(a) and A ; 
(4)/(f, y, z) = 0(|z|2) as |z|-+ oo, for (t, y)in the domain 2 which is the 
union of the sets 

{a£t<La + d,\y- "(01 ^ M - «(fl)|exp[-fc(f - a)^1] + ce} 

and 

{a + ô £ t ^ b, \y - u(t)\ ^ ce}, 

where 0 < ö < b — a and c is a known positive constant depending on 
/ a n d u. 

Under these assumptions Brish showed that there exists an e0 > 0 
such that for each e in (0, e0] the problem (3.1) with F = / h a s a solution 
y = y(t9 e) satisfying in [a, b] 

y(t, e) = w(0 + 0(|,4 - u(a)\exp[-k(t - a)e~1]) + 0(e). 

Nagumo's result is applicable because of Assumption (4), and Brish 
constructed a C(2)-bounding pair of functions for (3.1) of the form (in 
the case where u(a) ^ A, for example) : 

a(t, e) = u(t) - {v{a) - ^ e x p ^ f - a)] - er/-i(expU2(f - 6 ) ] - l ) 

and 

/3(f, 0 = w(0 + eT/-\e*v[h(t - è)] - 1). 

Here ||/y(f, ;;, w'(0)IL ^ / , for (t,y) in 0 , ^ = -he"1 + /Ar1 + 0(e) 
and A2 = — /&"1 4- 0(e) are the negative zeros of the characteristic poly
nomial eX2 + kX + / of the linearized equation (provided e < fc2(4/)-1), 
andf = || t/"|l oo-

For the study of the Robin problem (3.2) Brish made use of Nagumo's 
result on the perturbed initial value problem (2.2) by arguing as follows. 
If p2 > 0 in the left-hand boundary condition, then this relation can be 
replaced by the two initial conditions 

y(a, e) = u(a) + X 
(3.6) 

y\a, e) = -p2
1[Pi(u(a) + X) - A] 

where X is an adjustable (shooting) parameter. Thus, a solution of the 
differential equation ey" = f(t9 y, y') satisfying the initial conditions (3.6) 
depends on the parameter X as well as on e, that is, y = y(t, e ; X). If there 
exists a value of X, say A*, such that q\y(b, e; X*) + qiVQy, e; X*) = 5, 
then the function y = y*(t, e) = y(t, e ; A*) is a solution of the original 
problem (3.2). Under the appropriate assumptions on the function/ this 
solution y* behaves like the solution of (2.2) near t = a, in that for t in 
la,b] 

y*(t,e) = w(0 + Oiek-^A - Plu(a) + p2u'(a)\Qxp[-k(t - c^e'1] + 0(e). 
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Here u = u(t) is the solution of the corresponding reduced problem 
/ ( / , w, w') = 0, a < t < b, q\u(b) + #2M'(£) = B. A sufficient condition for 
the existence of such a value A* is that q2fß)9 u(b), u'(b)) — qifyr(b9 u(b), 
«'(*)) * 0. 

Since the appearance of Brish's note several writers on singular per
turbations have used his approach coupled with Nagumo's theory to 
study the boundary value problems (3.1) and (3.2). We mention only the 
work of Dorr, Parter and Shampine [4], Habets and Laloy [8] and the 
author [10-12; 14], which contain many references and applications. 

4. Extensions to systems. The basic results of Nagumo in §2 on the 
scalar boundary value problem (2.1) and the vector initial value problem 
(2.5) can be combined to yield an existence and comparison theorem for 
the initial-boundary value problem in (a, b) 

(4.1) x' = g(t9 x, y, / ) , x(a) = £ 

(4.2) y" = M *, y, y'), y(a) = A, y(b) = B, 

where x, g and f are in Rw, and the functions g and / are continuous on 
their respective domains. Namely, suppose there exist vector-valued 
functions H% W and scalar functions a, ß such that {w, W) is a C(1)-
bounding pair for (4.1) uniformly with respect to (y, y') in [a, ß] x R 
and {a, ß} is a C(2)-bounding pair for (4.2) uniformly with respect to x 
in [w, W\ Suppose also that/(f, x, y, z) = 0(|z|2) as \z\ -* oo for (t, x, y) 
in [a, b] x [H% W\ X [a, ß]. Then it is not difficult to show (by combining 
Nagumo's original arguments) that the problem (4.1), (4.2) has a smooth 
solution (x,y) = (x(t\y(t)) satisfying w(t) g x(t) g W(t) and a(t) ^ y(t) 
^ ß(t) in [a, b]; cf. [19]. This result applies, in particular, to the scalar 
n-th order differential equation 

z{n) =/(*, z9 z', . . . , z{n'l)\ a < t < b, 

with boundary conditions of the form 

z^(a) = Aj, z^-*(b) = Bn_2 

or 

z<»-»(a) = An_2,z<Hb) = BJ 

fory = 0, . . . , « — 2. 
One frequently encounters in applications boundary value problems 

for the perturbed equation 

ez<"> =f(t,z,z\ . . . ,z^V) 

(cf. for example similarity solutions of the Navier-Stokes equations at 
high Reynolds number [6]). So the above differential inequality theorem 
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can provide sharp estimates on the behavior of solutions and their deri
vatives as a -• 0+. The idea is the same as before: use the solution of 
an appropriate reduced problem to construct bounding functions which 
reflect the asymptotic behavior of the solution. Some results in this direc
tion are also contained in [19] together with existence and comparison 
results for the problem (4.1), (4.2) with (4.2) replaced by an analogous 
second-order system. 

5. Concluding remarks. The above theory has been extended to several 
classes of singularly perturbed systems of the form 

ey" = F(t, y)y' + H(t, y), a < t < b, 

y(a, e) = A, y(b, e) = B, 

where y, H, A, and B are «-vectors, and F is an (n x «)-matrix; cf. [17], 
[20], [23]. One can study these problems for small values of e > 0 by 
deriving estimates for the norm of the difference between y and the solu
tion of an appropriate reduced problem. As an illustration, suppose that 
in (5.1) Fis the zero matrix and H(t, 0) = 0 in [a, b]. If the Jacobian ma
trix J =dH/dy is positive definite along the reduced solution 0 and in 
the boundary layers at t = a and t = b (say y-Jy ^ m||^||2 for ||j>|| = 
(y-y)l/2 = (L?=i J>f)1/2 and m a positive constant), then (recall Brish's 
treatment of the scalar analog of (5.1) in §3) the problem (5.1) with F = 0 
has for each sufficiently small e > 0 a solution y = y(t, e) satisfying in [a, b] 

\\y\\(t, e) = 0(\\A\\txV[-{me-^r\t - a)]) 

+ Odl^llexpt-^-1)1/2^ - 0). 

Finally, we note that the theory of §2 for the boundary value problem 
(2.1) has been generalized by Nagumo and others (cf. [31], [1], [25]) to 
Dirichlet and Robin problems for the elliptic equation in û c R^ 

L[u] = 5(x, w, du). 

Here L is the linear, uniformly elliptic, second-order operator in N vari
ables x = (xi, . . . , xN), du is the gradient of u, and Û is a bounded do
main whose boundary T is a smooth (Af — 1) dimensional manifold. By 
means of these results it is then possible to discuss the existence and the 
asymptotic behavior as e -• 0+ of solutions of the perturbed elliptic prob
lems 

eL[u] = 3(x, w, du), x in Ö, 

(5-2) du 
a -=—h ßu\f prescribed, 

under various assumptions on the characteristic curves of the first-order 
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equation 5 = 0; cf. [7], [13], [24]. The differential inequality approach of 
Nagumo allows one to embellish the classical results of Levinson [28], 
Vishik and Liusternik [32] and Eckhaus and de Jager [5] on the linear 
Dirichlet problem (5.2), and to extend their theory to the case of nonlinear 
functions g and Robin boundary conditions. 

In conclusion let us note that many other interesting singular perturba
tion problems await solution (cf. [18]). We have every hope that the dif
ferential inequality techniques of Nagumo and Jackson can be reapplied 
or adapted to accommodate these new situations. 
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