COMPARISON TECHNIQUES AND THE METHOD OF LINES FOR A PARABOLIC FUNCTIONAL EQUATION

J. BEBERNES AND R. ELY

Dedicated to Professor Lloyd K. Jackson on the occasion of his sixtieth birthday.

1. Introduction. In a recent paper [3], a detailed mathematical analysis for the implicit integro-differential equation

$$
\begin{equation*}
\theta_{t}-\Delta \theta=\delta e^{\theta}+((\gamma-1) / \gamma)(1 / \operatorname{vol} \Omega) \int_{\Omega} \theta_{t} d y \tag{I}
\end{equation*}
$$

was given. Equation (I) is the model for the induction period for the thermal explosion process of a compressible reactive gas in a bounded container.

In particular in [3], it was shown that the solution of (I) is always dominated by the solution of the explicit integro-differential equation

$$
\begin{equation*}
u_{t}-\Delta u=\delta e^{u}+((\gamma-1) / \operatorname{vol} \Omega) \delta \int_{\Omega} e^{u} d y \tag{E}
\end{equation*}
$$

on their common interval of existence, if $\Omega=\mathscr{B}$, a ball in \mathbf{R}^{n}.
The purpose of this paper is to analyse initial-boundary value problems for a class of explicit integro-differential equations (see IBVP (1)-(2)) which include (E) (see IBVP (13)-(14)) as a special case.
2. Known existence results. Consider the scalar integro-partial differential equation

$$
\begin{equation*}
u_{t}-\Delta u=f(t, u)+\int_{\Omega} g(t, u) d x \tag{1}
\end{equation*}
$$

with the initial-boundary conditions

$$
\begin{align*}
& u(x, t)=u_{0}(x), \tag{2}\\
& u(x, t)(x, t) \in \Omega \times\{0\} \\
& u(x, t) \in \partial \Omega \times[0, \infty)
\end{align*}
$$

Research supported by the U.S. Army Research Office under grant DAAG 29-79-C-0084.
Received by the editors on August 17, 1981.
where Ω is a bounded domain in \mathbf{R}^{n}, f, g are continuous on $[0, \infty) \times \mathbf{R}^{n}$, locally Lipschitz with respect to u, are convex functions of $u, f(t, 0)>0$, $g(t, 0)>0$, and g is increasing in u.

We use the following three theorems.
Theorem 1. If $u_{0} \in L^{2}(\Omega), \sup _{x \in \Omega} u_{0}(x)<\infty$, then IBVP (1)-(2) has a unique classical solution on $\Omega \times[0, \sigma$), where either $\sigma=+\infty$ or $\sigma<+\infty$ and

$$
\lim _{t \rightarrow \sigma^{-}} \sup _{x \in Q} u(x, t)=+\infty .
$$

Theorem 2. If $u_{0}(x) \equiv 0$ for $x \in \bar{\Omega}$, then the solution $u(x, t)$ of IBVP (1)-(2) is nonnegative and nondecreasing as a function of t on $\Omega \times[0, \sigma$), provided f, g are independent of t, and f^{\prime}, g^{\prime} are Lipschitz continuous.

Theorem 3. If $\Omega=\mathscr{B} \equiv\{x:\|x\|<1\} \subset \mathbf{R}^{n}$ and $u_{0}(x) \equiv 0$ for $x \in \mathscr{B}$, then the solution $u(x, t)$ is radially symmetric in x for each $t \in[0, \sigma)$.
Theorems 1 and 3 can be proven as in [3], as can Theorem 2 for $\Omega=\mathscr{B}$. But Theorem 2 also holds for arbitrary Ω, using known comparison techniques [7].
3. Extending Kaplan's theorem. In order to obtain more precise information concerning the blow-up time σ for the solution of IBVP (1)-(2), we utilize the following extensions of known comparison theorems. The first theorem is an easy extension of the classical Nagumo-Westphal Theorem. Let $I_{T}=\Omega \times(0, T)$ and $\Gamma_{T}=(\partial \Omega \times[0, T]) \cup(\Omega \times\{0\})$.
Theorem 4. Let $u, v \in C^{2,1}\left(I_{T}\right)$ satisfy

$$
\begin{aligned}
& v_{t}-\Delta v \geqq f(t, v)+\int_{\Omega} g(t, v) d y \\
& u_{t}-\Delta u \leqq f(t, u)+\int_{\Omega} g(t, u) d y
\end{aligned}
$$

with $v(x, t) \geqq u(x, t)$ on Γ_{T}. Then $v(x, t) \geqq u(x, t)$ on I_{T}.
As a corollary, we have the following result.
Corollary. If $\beta(t)$ is the solution of

$$
\begin{align*}
& y^{\prime}=f(t, y)+(\operatorname{vol} \Omega) g(t, y), \\
& y(0)=y_{0} \geqq \sup _{\Omega} u(x) \text { on }[0, T), \tag{3}
\end{align*}
$$

and if $u(x, t)$ is the solution of IBVP (1)-(2) then $\beta(t) \geqq u(x, t)$ on $[0, T)$ and $\sigma>T$.

The next theorem extends a result of Kaplan [4] to the class of integropartial differential equations considered here.

Theorem 5. Let $u_{0}(x) \equiv 0$ and let $u(x, t)$ be the nonnegative solution of IBVP (1)-(2) on $\Omega \times[0, T)$. Let $\phi(t)$ satisfy

$$
\begin{align*}
& \phi^{\prime}=f(t, \phi)-\lambda_{1} \phi+(\operatorname{vol} \Omega) g(t, \phi / M) \\
& \phi(0)=0 \tag{4}
\end{align*}
$$

on $[0, T)$ where λ_{1} is the first eigenvalue of

$$
\begin{array}{rlrl}
-\Delta \psi & =\lambda \psi, & x \in \Omega \tag{5}\\
\psi & =0, & & x \in \partial \Omega
\end{array}
$$

and $M=(\operatorname{vol} \Omega) \sup _{\Omega} \psi_{1}(x), \psi_{1}(x) \geqq 0$ is the eigenfunction of (5) associated with λ_{1} normalized by $\int_{\Omega} \psi_{1}(x) d x=1$. Then $\sup _{x \in \bar{\Omega}} u(x, t) \geqq \phi(t), t \in[0, T)$.

Proof. Define $v(t) \equiv\left\langle u(x, t), \psi_{1}(x)\right\rangle=\int_{\Omega} u(x, t) \psi_{1}(x) d x$. Multiply (1) by $\psi_{1}(x)$ and integrate over Ω. Then we have

$$
\begin{align*}
v_{t}=\int_{\Omega} \Delta u \psi_{1}(x) d x & +\int_{\Omega} \psi_{1}(x) f(t, u(x, t)) d x \\
& +\int_{\Omega} \psi_{1}(x)\left[\int_{\Omega} g(t, u(x, t)) d x\right] d x \tag{6}
\end{align*}
$$

Inspecting each of the three integrals on the right hand side, we have

$$
\begin{align*}
\int_{\Omega} \psi_{1}(x) \Delta u d x & =\int_{\Omega} u \Delta \psi_{1}(x) d x+\int_{\partial \Omega}\left(\psi_{1}(x)(\partial u / \partial n)-u\left(\partial \psi_{1} / \partial x\right) d x\right. \\
& =\int_{\Omega} u\left[-\lambda_{1} \psi_{1}\right] d x+0 \tag{7}\\
& =-\lambda_{1} v(t)
\end{align*}
$$

by Stokes' Theorem;

$$
\begin{align*}
\int_{\Omega} \psi_{1}(x) f(t, u) d x & \geqq f\left(t, \int_{\Omega} \psi_{1}(x) u(x, t) d x\right) \tag{8}\\
& =f(t, v)
\end{align*}
$$

by Jensen's inequality since f is convex in u and $\psi_{1}(x)$ has mass 1 ; and

$$
\begin{align*}
\int_{\Omega} \psi_{1}(x)\left[\int_{\Omega} g(t, u) d x\right] d x & =\int_{\Omega} g(t, u) d x \\
& =\operatorname{vol} \Omega \int_{\Omega} g(t, u)(1 / \operatorname{vol} \Omega) d x \tag{9}\\
& \geqq \operatorname{vol} \Omega g\left(t, \int_{\Omega}(u(x, t) / \operatorname{vol} \Omega) d x\right)
\end{align*}
$$

again by Jensen's inequality.
Furthermore, since g is increasing in its second argument and $M=$ $\operatorname{vol} \Omega \sup _{\bar{\Omega}} \psi(x)$,

$$
\begin{align*}
\int_{\Omega}(u(x, t) / \operatorname{vol} \Omega) d x & =\left(\sup \psi_{1}(x) / M\right) \int_{\Omega} u(x, t) d x \\
& \geqq(1 / M) \int \psi_{1}(x) u(x, t) d x \tag{10}\\
& =v(t) / M
\end{align*}
$$

From (9) and (10), we have

$$
\int_{\Omega} \psi_{1}(x)\left[\int_{\Omega} g(t, u) d x\right] d x \geqq \operatorname{vol} \Omega g(t, v(t) / M)
$$

Thus, $v(t)$ satisfies the differential inequality

$$
\begin{equation*}
v^{\prime}(t) \geqq f(t, v)-\lambda_{1} v(t)+\operatorname{vol} \Omega g(t, v / M) \tag{11}
\end{equation*}
$$

with initial condition

$$
\begin{equation*}
v(0)=0 . \tag{12}
\end{equation*}
$$

Since $\phi(t)$ satisfies (4) on $[0, T), \phi(t) \leqq v(t)$ on $[0, T)$. But $v(t)=$ $\int_{\Omega} \psi_{1}(x) u(x, t) d x \leqq \sup _{x \in \Omega} u(x, t)$, and the conclusion

$$
\phi(t) \leqq \sup _{x \in \Omega} u(x, t) \text { on }[0, T)
$$

then follows.
4. Conclusions for an important special case. The particular initial boundary problem which is of special interest in our previous analyses of the thermal behavior of a reactive gas in a bounded container Ω is the following:

$$
\begin{align*}
u_{t}-\Delta u & =\delta e^{u}+((\gamma-1) / \operatorname{vol} \Omega) \delta \int_{\Omega} e^{u} d y, I I \tag{13}\\
u(x, t) & =0, \Gamma \tag{14}
\end{align*}
$$

By the results of the two previous sections, we can immediately make the following observations.

By Theorem 1 and 2, IBVP (13)-(14) has a unique classical solution $u(x, t)$ which is nonnegative and nondecreasing as a function of t on $\Omega \times[0, \sigma)$ where either $\sigma=+\infty$ or $\sigma<+\infty$ and $\lim _{t \rightarrow \sigma^{-}} \sup _{x \in \bar{\Omega}} u(x, t)$ $=+\infty$.

By Theorem 4, since $\beta(t)=\ln (1-\gamma \delta t)^{-1}$, the solution of the IVP: $v^{\prime}=\varepsilon \delta v, v(0)=0$, is an upper solution relative to $\operatorname{IBVP}(13)-(14), \beta(t) \geqq$ $u(x, t)$ on $\Omega \times[0,1 / \gamma \delta)$ and $\sigma \geqq 1 / \gamma \delta$ for any $\gamma \geqq 1, \delta>0$.

Again by Theorem 4, if $\psi(x)$ is any solution of the steady state inequality

$$
\begin{align*}
-\Delta \psi & \geqq \delta e^{\psi}+((\gamma-1) / \operatorname{vol} \Omega) \delta \int_{\Omega} e^{\psi} d x \tag{15}\\
\psi(x) & =0
\end{align*}
$$

then $\psi(x) \geqq u(x, t)$ on $\bar{\Omega} \times[0, \infty)$. If $\Omega=\mathscr{B}=\{x:\|x\|<1\} \subset \mathbf{R}^{n}$, then $\psi(x)=1-\|x\|^{2}$ is a solution of (15) provided

$$
\delta \leqq(2 n / e)(1 /(c \gamma+(1-c))) \equiv \delta
$$

where

$$
c \equiv(\operatorname{vol} \Omega)^{-1} \int_{\Omega} e^{-\|x\|^{2}} d x<1
$$

These observations can be summarized as follows.
Theorem 6. (a) For any $\delta>0, \gamma \geqq 1$, the solution $u(x, t)$ of $\operatorname{IBVP}(13)-$ (14) exist on $\bar{\Omega} \times[0, \sigma)$ where $\sigma>1 / \gamma \delta$ and $0 \leqq u(x, t) \leqq \ln (1-\delta \gamma t)^{-1}$ on $\bar{\Omega} \times[0,1 / \gamma \delta)$.
(b) If $\Omega=\mathscr{B} \subset \mathbf{R}^{n}$ and if $\delta \leqq(2 n / e)(1 /(c \gamma+(1-c)))$, then the solution $u(x, t)$ of IBVP (13)-(14) exists on $\Omega \times[0, \infty)$ and $0 \leqq u(x, t) \leqq \psi(x) \leqq 1$ for $(x, t) \in \bar{\Omega} \times[0, \infty)$.

We now can use Theorem 5 to determine a range of parameter values for δ and γ which will force $\sigma<\infty$ and hence forces the solution $u(x, t)$ of (13)-(14) to become unbounded in finite time. Recall that λ_{1} is the first eigenvalue of $(5), \psi_{1}(x) \geqq 0$ is the eigenfunction of (5) associated with λ_{1}, $\int_{\Omega} \psi_{1}(x) d x=1$, and $M=\operatorname{vol} \Omega \sup _{x \in \Omega} \psi_{1}(x)$.

Theorem 7. (a) The solution $\phi(t)$ of

$$
\begin{align*}
\phi^{\prime} & =\delta e^{\phi}-\lambda_{1} \phi+(\gamma-1) \delta e^{\phi / M}, \\
\phi(0) & =0 \tag{16}
\end{align*}
$$

exists on $[0, T)$ where

$$
T=\int_{0}^{\infty} d z /\left(\delta e^{z}-\lambda_{1} z+(\gamma-1) \delta e^{z / M}\right)
$$

(b) $T<\infty$ if and only if $\delta\left[e^{2}+(\gamma-1) e^{z / M}\right]>\lambda_{1} z$ for all $z>0$,
(c) if $T<\infty, \lim _{t \rightarrow T^{-}} \phi(t)=+\infty$.

The above theorem is easily proven since the IVP (16) is autonomous.
Corollary. The solution $u(x, t)$ of $\operatorname{IBVP}(13)-(14)$ exists on $\bar{\Omega} \times[0, \sigma)$ where $1 / \gamma \delta<\sigma \leqq T=\int_{0}^{\infty} d z /\left(\delta e^{z}-\lambda_{1} z+(\gamma-1) \delta e^{z / M}\right)$.

In order to determine the range of values of γ, δ for which T is finite, observe that the limiting case occurs when $\delta\left[e^{z}+(\gamma-1) e^{z / M}\right] \geqq \lambda_{1} z$ for all $z>0$ and $\delta\left[e^{z_{0}}+(\gamma-1) e^{z_{0} / M}\right]=\lambda_{1} z_{0}$ for some z_{0}. We note that if $(\gamma-1) / M$ is small, then $z_{0}=1-\eta, \eta>0$ small, and hence the critical value $\bar{\delta}$ for δ is approximately

$$
\begin{equation*}
\bar{\delta}=\lambda_{1} /\left(e+(\gamma-1) e^{1 / M}\right) \tag{17}
\end{equation*}
$$

Thus for $\delta>\bar{\delta}$, the solution $u(x, t)$ of IBVP(13)-(14) blows up in finite time $\sigma<T$.

For the standard container geometries, we can make the following comparison. Let Ω be an infinite slab S of half-width 1 in \mathbf{R}^{3} (or equivalently a bounded interval in \mathbf{R}^{1}), an infinite right circular cylinder C of radius 1 in \mathbf{R}^{3} (or, equivalently, a bounded circle in \mathbf{R}^{2}), or a ball B of radius 1 in \mathbf{R}^{3}. Let $\bar{\delta}$ be the critical value defined by (17), and let $\delta_{C R I T}$ be the numerically computed critical value for (13)-(14). Then, for $\gamma=1.4$, we have:

	$\underline{\delta} \equiv \frac{2 n}{e[c \gamma+(1-c)]}$	$\delta_{C R I T}$	$\bar{\delta}$
S	.562	.65	.71
C	1.175	1.53	1.73
B	1.777	2.61	3.03

5. Convergence of method of lines. In this section, we prove that the method of lines as developed by Walter [8] can be used to construct solutions to approximating systems of ordinary differential equations which converge to the solution $u(x, t)$ of IBVP (13)-(14). We choose to give the proof for the special case with $\Omega=S$ and $n=1$. The method of proof extends to IBVP (1)-(2) with $\Omega=\mathscr{B} \subset \mathbf{R}^{n}$.

Consider

$$
\begin{align*}
& \theta_{t}=\theta_{x x}+\delta e^{\theta}+((\gamma-1) / 2) \delta \int_{-1}^{1} e^{\theta} d x \tag{18}\\
& \theta(x, 0)=0 \\
& \theta(-1, t)=\theta(1, t)=0 \tag{19}
\end{align*}
$$

Since the initial-boundary conditions are not compatible with (18) at the corner points $(0,-1)$ and $(0,+1)$, we replace the boundary values by an approximating initial-boundary function which is compatible with (18) on the parabolic boundary. Let $\eta(t)$ denote such a boundary function. We see that η must satisfy

$$
\begin{equation*}
\eta(0)=0 \quad \text { and } \quad \eta^{\prime}(0)=\delta \gamma \tag{20}
\end{equation*}
$$

For a given $\varepsilon>0$, let $\eta_{\varepsilon}(t)$ be a C^{∞}-smooth function satisfying

$$
\begin{equation*}
\eta_{\varepsilon}(0)=0, \quad \eta_{\varepsilon}^{\prime}(0)=\gamma \delta, \quad\left|\eta_{\varepsilon}(t)\right| \leqq \varepsilon, \quad t \in[0, \infty) \tag{21}
\end{equation*}
$$

Consider the approximating IBVP:

$$
\theta_{t}=\theta_{x x}+\delta e^{\theta}+((\gamma-1) / 2) \delta \int_{-1}^{1} e^{\theta} d x
$$

(P_{ε})

$$
\begin{aligned}
& \theta(x, 0)=0 \\
& \theta(-1, t)=\theta(1, t)=\eta_{\varepsilon}(t)
\end{aligned}
$$

Next we replace e^{θ} in $\left(P_{\varepsilon}\right)$ by the function $g_{N}(\theta)$, where

$$
g_{N}(\theta)= \begin{cases}e^{\theta}, & \theta \leqq N, \\ e^{N}, & \theta>N\end{cases}
$$

Then the reaction terms in the right hand side of (18) are uniformly Lipschitz in θ for all $\theta \in \mathbf{R}$. In the following, we suppress the subscript N.

Consider

$$
\theta_{t}=\theta_{x x}+\delta g(\theta)+((r-1) / 2) \delta \int_{-1}^{1} g(\theta) d x
$$

$$
\begin{align*}
& \theta(x, 0)=0 \tag{P}\\
& \theta(-1, t)=\theta(1, t)=\eta_{\varepsilon}(t)
\end{align*}
$$

We will first apply the methods of lines of $\left(\bar{P}_{\varepsilon}\right)$. Approximate $\left(\bar{P}_{\varepsilon}\right)$ by the following system of $m-1$ first order ordinary differential equations

$$
\begin{align*}
& \frac{d}{d t} v_{k}^{m}=\frac{v_{k+1}^{m}-2 v_{k}^{m}+v_{k-1}^{m}}{h^{2}}+\delta g\left(v_{k}^{m}\right)+\left(\frac{\gamma-1}{2}\right) \delta h \sum_{i=1}^{m} g\left(v_{i}^{m}\right), \tag{P}\\
& v_{k}^{m}(0)=0, k=1, \ldots, m-1, h=2 / m
\end{align*}
$$

and define $\nu_{0}^{m}(t), v_{m}^{m}(t)$ by the boundary values

$$
v_{0}^{m}(t)=v_{m}^{m}(t)=\eta_{\varepsilon}(t)
$$

Denote the solution of $\left(\bar{P}_{m}\right)$ by $v^{m}=\left(v_{0}^{m}, \ldots, v_{m}^{m}\right)$. Let $\theta(x, t)$ be the solution of $\left(\bar{P}_{\varepsilon}\right)$ and let $\theta_{\kappa}(t)=\theta(-1+k h, t), k=0,1, \ldots, m$. Let θ^{m} denote the $m+1$ vector $\theta^{m}=\left(\theta_{0}, \theta_{1}, \ldots, \theta_{m}\right)$. For $\omega \in \mathbf{R}^{m+1}$, define

$$
\|\omega\|=\max _{i=0, \ldots, m}\left|\omega_{i}\right| .
$$

We will first prove that if $J=[0, a]$ is a common t-interval of existence for the solutions of $\left(\bar{P}_{\varepsilon}\right)$ and $\left(\bar{P}_{m}\right), m=1,2, \ldots$, then $\left\|\theta^{m}-v^{m}\right\| \rightarrow 0$ uniformly for $t \in[0, a]$ as $m \rightarrow \infty$. The superscript m will be dropped in the next discussion.

Define

$$
f_{i}\left(t, z, r_{i}\right) \equiv r_{i}+\delta g\left(z_{i}\right)+\left(\frac{\gamma-1}{2}\right) \delta h \sum_{j=1}^{m} g\left(z_{j}\right)
$$

where z is an $m+1$ vector. Then

$$
\begin{aligned}
f_{i}\left(t, z, r_{i}\right)-f_{i}\left(t, \bar{z}, \bar{r}_{i}\right) & \leqq\left(r_{i}-\bar{r}_{i}\right)+\delta L\left|z_{i}-\bar{z}_{i}\right|+(\gamma-1) \delta L\|z-\bar{z}\| \\
& \equiv \omega\left(t,\left|z_{i}-\bar{z}_{i}\right|,\|z-\bar{z}\|, r_{i}-\bar{r}_{i}\right)
\end{aligned}
$$

where L is the Lipschitz constant for g and $\omega(t, q, p, r) \equiv r+\delta L p+$ $(\gamma-1) \delta L q$.

Let $d^{2} \theta_{k}=\left(\theta_{k+1}-2 \theta_{k}+\theta_{k-1}\right) / h^{2}$ and $I(\theta)=h \sum_{i=1}^{m} g\left(\theta_{i}\right)$.
We first prove an error estimation theorem similar to Theorem III ([8], p. 278).

Theorem 8. Assume there exist continuous functions $\alpha(t), \beta(t)$ on $[0, a]$ such that

$$
\begin{gathered}
\left|\theta_{x x}\left(x_{k}, t\right)-d^{2} \theta_{k}(t)\right|<\alpha(t) \\
\left|\int_{-1}^{1} \theta(x, t) d x-I(\theta(t))\right|<\beta(t)
\end{gathered}
$$

Let $\rho(t)$ be a continuously differentiable function on $[0, a]$ satisfying $\rho^{\prime}>$ $\omega(t, \rho, \beta(t), \alpha(t)), \rho(0)>0$, where ω is defined on $J \times\{(p, q, r): q \geqq 0$, $r \geqq 0\}, J=[0, a]$. Then

$$
\left|\theta_{k}^{m}(t)-v_{k}^{m}(t)\right|=\left|\theta\left(x_{k}, t\right)-v_{k}^{m}(t)\right|<\rho(t) \text { for } t \in[0, a], k=0, \ldots, m
$$

Proof. Let $w_{k}=\theta_{k}^{m}+\rho$. We will show that $v_{k}^{m}(t) \leqq w_{k}(t)$ for all $k=0, \ldots, m$ and $t \in[0, a]$. The fact that $v_{k}^{m}(t) \geqq \theta_{k}^{m}(t)-\rho(t)$ follows similarly.

$$
\begin{aligned}
w_{k}^{\prime}= & \left(\theta_{k}^{m}\right)^{\prime}+\rho^{\prime} \\
> & \theta_{x x}\left(x_{k}, t\right)+\delta g\left(\theta\left(x_{k}, t\right)\right) \\
& +((\gamma-1) / 2) \delta \int_{-1}^{1} g(\theta) d x+w(t, \rho(t), \beta(t), \alpha(t)) \\
\geqq & f_{k}\left(t, \theta+\rho, d^{2} \theta_{k}^{m}\right)=f_{k}\left(t, w, d^{2} \theta_{k}^{m}\right)
\end{aligned}
$$

Since the system of ordinary differential equations is quasimonotone, by standard comparison results we will have the desired conclusion if we can show $f_{k}\left(t, w, d^{2} \theta_{k}^{m}\right) \geqq f_{k}\left(t, w, d^{2} w_{k}\right)$ for $k=1, \ldots, m-1$. Note that they are in fact equal for $k=2, \ldots, m-2$. Thus we need only check the ends $k=1$ and $k=m-1$. For $k=1$, we have

$$
\begin{aligned}
d^{2} w_{1} & =\left(w_{2}+\eta_{\varepsilon}-2 w_{1}\right) / h^{2}=\left(\theta_{2}+\rho+\eta_{\varepsilon}-2\left(u_{1}+\rho\right) / h^{2}\right. \\
& =d^{2} \theta_{1}-\left(\rho / h^{2}\right)<d^{2} \theta_{1}
\end{aligned}
$$

Similarly, $d^{2} \theta_{m-1}>d^{2} w_{m-1}$. Hence, the desired inequality holds and the theorem is proven.

Corollary. If $J=[0, a]$ is the common t-interval of existence for the solutions $\theta(x, t)$ and $v^{m}(t)$ of $\left(\bar{P}_{\varepsilon}\right)$ and $\left(\bar{P}_{m}\right)$, respectively, then $\left\|\theta^{m}-v^{m}\right\| \rightarrow 0$ uniformly for $t \in[0, a]$ as $m \rightarrow \infty$.

Proof. By the theorem, the difference between the solution $v^{m}(t)$ of (\bar{P}_{m}) and the solution $\theta^{m}(t)$ of $\left(\bar{P}_{s}\right)$ is bounded by the solution $\rho(t)$ of

$$
\rho^{\prime}=\alpha(t)+(\gamma-1) \delta L \beta(t)+\delta L \rho+\varepsilon_{1}, \rho(0)=\varepsilon_{1} .
$$

Since this is true for each $\varepsilon_{1}>0$ we have $\rho(t)$ as a bound where ρ solves

$$
\rho^{\prime}=\alpha(t)+(\gamma-1) \delta L \beta(t)+\delta L \rho, \rho(0)=0 .
$$

But $\alpha(t), \beta(t) \rightarrow 0$ in t as $m \rightarrow \infty$. Thus $\rho(t) \rightarrow 0$ as $m \rightarrow 0$ and we have convergence.

Let (\bar{P}_{0}) denote the following IBVP:

$$
\begin{align*}
& \theta_{t}=\theta_{x x}+\delta g(\theta)+((\gamma-1) / 2) \delta \int_{-1}^{1} g(\theta) d x, \\
& \theta(x, 0)=0 \tag{P}\\
& \theta(-1, t)=0=\theta(1, t) .
\end{align*}
$$

We next show that the solutions of $\left(\bar{P}_{\varepsilon}\right)$ converge to the solutions of $\left(P_{0}\right)$ as $\varepsilon \rightarrow 0$.

Theorem 9. Let $\theta_{\varepsilon}(x, t)$ be the solution of $\left(\bar{P}_{\epsilon}\right)$ and let $\theta(x, t)$ be the solution of $\left(\bar{P}_{0}\right)$. Then $\theta_{\varepsilon} \rightarrow \theta$ uniformly on compact subsets of $\bar{\Omega} \times J$, where J is a common t-interval of existence.
Proof. Let $K=L \delta \gamma+1$. Let $\rho(t)=\varepsilon e^{K t}$ be the solution of $\rho^{\prime}=K \rho$ $\rho(0)=\varepsilon$, and set $w=\theta+\rho$. Note that $w(x, t) \geqq \varepsilon \geqq \theta_{\varepsilon}(x, t)$ for all (x, t) on the parabolic boundary. We wish to prove: $w(x, t) \geqq \theta_{\epsilon}(x, t)$ for $(x$, $t) \in \bar{\Omega} \times \bar{J}$. Set $f\left(t, u, u_{x x}\right)=u_{x x}+\delta g(u)+((\gamma-1) / 2) \cdot \delta \int_{-1}^{1} g(u) d x$. Then $w_{t}(x, t)=\theta_{t}+\rho^{\prime}=f\left(t, \theta, \theta_{x x}\right)+L \rho \leqq f\left(t, w, w_{x x}\right)$. By Theorem 4, $w(x, t) \geqq \theta_{\epsilon}(x, t)$. Similarly, $\theta(x, t)-\rho(t) \leqq \theta_{\varepsilon}(x, t)$. Since $\rho(t) \rightarrow 0$ uniformly on compact subintervals as $\varepsilon \rightarrow 0$, we have that $\theta_{\varepsilon}(x, t)$ converges to $\theta(x, t)$ on compact subsets of $\Omega \times \bar{J}$.
Finally, we will show that the system of ordinary differential equations which approximates the IBVP $\left(\bar{P}_{0}\right)$ has a solution which converges uniformly to the solution $\theta(x, t)$ of $\left(\bar{P}_{0}\right)$ as the mesh size tends to zero. Consider
(\bar{P}_{0}^{m})

$$
\begin{aligned}
& d z_{k} / d t=d^{2} z_{k}+\delta g\left(z_{k}\right)+((\gamma-1) / 2) h \delta \sum_{i=1}^{m} g\left(z_{i}\right) \\
& z_{k}(0)=0, k=1, \ldots, m-1 \\
& z_{0}(t) \equiv 0, z_{m}(t) \equiv 0
\end{aligned}
$$

Theorem 10. Let $\theta(x, t)$ be the solution of $\operatorname{IBVP}\left(\bar{P}_{0}\right)$ on $\bar{\Omega} \times[0, \sigma)$ and let $z^{m}(t)$ be the solution of $\left(\bar{P}_{0}^{m}\right)$ on $[0, \sigma)$, then

$$
\left\|\theta^{m}(t)-z^{m}(t)\right\|=\max \left|\theta_{i}^{m}(t)-z_{i}^{m}(t)\right| \rightarrow 0
$$

as $m \rightarrow \infty$ uniformly on compact subsets of $[0, \sigma)$.
Proof. Let $\rho(t)=2 \varepsilon e^{K t}$ where $K=L \gamma \delta+1$ and $\varepsilon>0$ is given by the boundary function $\eta_{\varepsilon}(t)$ for $\left(\bar{P}_{m}\right)$. Set $w_{k}=z_{k}(t)+\rho(t)$ for $k=1, \ldots, m$. We will show $w_{k}(t)>v_{k}(t)$ for each k and for each $t \in[0, \sigma)$. Similarly, $v_{k}(t)>z_{k}(t)-\rho(t)$ where $v^{m}(t)$ is the solution of $\left(\bar{P}_{m}\right)$. Since

$$
\begin{aligned}
w_{k}^{\prime} & =z_{k}^{\prime}(t)+\rho^{\prime}(t) \\
& =d^{2} z_{k}+\delta g\left(z_{k}\right)+\left(\frac{\gamma-1}{2}\right) h \delta \sum_{i=1}^{m} g\left(z_{i}\right)+2 K \varepsilon e^{K t} \\
& >d^{2} w_{k}+\delta g\left(w_{k}\right)+\left(\frac{\gamma-1}{2}\right) h \delta \sum_{i=1}^{m} g\left(w_{i}\right) .
\end{aligned}
$$

since the right hand side is quasimonotone, and since $w_{k}(0) \geqq z_{k}(0)$ for $k=1, \ldots, m-1$, we have that $w_{k}(t)>z_{k}(t)$ for $t \in[0, \sigma)$ and $k=1$, $\ldots, m-1$. To see that this last inequality holds for $k=1$ and $k=$ $m-1$, observe that $d^{2} w_{1}<d^{2} z_{1}$ since

$$
\begin{aligned}
d^{2} w_{1}=\left(z_{2}+\rho-2\left(z_{1}+\rho\right)+\eta_{\varepsilon}(t)\right) / h^{2} & =\left(z_{2}-2 z_{1}\right) / h^{2}-\left(\rho-\eta_{\varepsilon}(t)\right) / h^{2} \\
& <d^{2} z_{1}
\end{aligned}
$$

and similarly $d^{2} w_{m-1}<d^{2} z_{m-1}$.
Hence, $\left\|v^{m}(t)-z^{m}(t)\right\|<2 \varepsilon e^{K t}$ and $\left\|\nu^{m}(t)-z^{m}(t)\right\| \rightarrow 0$ uniformly for $t \in[0, \sigma)$ as $\varepsilon \rightarrow 0$.

Let $\theta_{\varepsilon}(x, t)$ be the solution of $\left(P_{\varepsilon}\right)$. Then

$$
\begin{aligned}
\| \theta\left(x_{k}, t\right) & -z_{k}(t)\|\leqq\| \theta\left(x_{k}, t\right)-\theta_{\varepsilon}\left(x_{k}, t\right) \| \\
& +\left\|\theta_{\varepsilon}\left(x_{k}, t\right)-v_{k}(t)\right\|+\left\|v_{k}(t)-z_{k}(t)\right\| .
\end{aligned}
$$

Each term on the right hand side tends to zero uniformly on compact subsets of $[0, \sigma)$ as $\varepsilon \rightarrow 0$ and $m \rightarrow \infty$.

Corollary. The method of lines converges uniformly to the solution $u(x, t)$ of IBVP (18)-(19) on compact subsets of $\bar{\Omega} \times[0, \sigma)$.

Proof. Since N in the definition of $g(\theta)$ is arbitrary and the solution $\theta(x, t)$ of $\left(\bar{P}_{0}\right)$ agrees with the solution $u(x, t)$ of IBVP (18)-(19) for $|\theta(x, t)|<N$, the conclusion is immediate.

In [3], we proved that the solution $u(x, t)$ of the initial boundary value problem

$$
\begin{align*}
& u-\Delta u=\delta e+((\gamma-1) / \operatorname{vol} \Omega) \int_{\Omega}(\Delta u+\delta e) d y, I I \tag{22}\\
& u(x, t)=0, \Gamma
\end{align*}
$$

satisfies $\chi(x, t) \leqq u(x, t) \leqq \theta(x, t)$ for all $x \in \Omega$ and all $t \geqq 0$ on the common t-interval of existence for χ, u, θ for any $\delta>0, \gamma \geqq 1$ where $\theta(x, t)$ is the solution of IBVP (13)-(14) and $\chi(x, t)$ is the solution of IBVP:

$$
\begin{align*}
& \chi_{t}-\Delta \chi=\delta e^{\chi}, I \\
& \chi(x, t)=0, \Gamma \tag{23}
\end{align*}
$$

By the results of this section, we know that the method of lines converges to the solution χ for $\operatorname{IBVP}(23)$ and to the solution θ of IBVP (13)-(14). We have not however succeeded in proving that the method of lines converges for IBVP (22). The table below gives a comparison of blow-up times for the three problems in the one-dimensional case where $\Omega=S=(-1,1)$ and $\gamma=1.4$. In each case, the numerical computation employed the method of lines using a grid of 31 points on $[-1,1]$.

δ	t_{θ}	$\boldsymbol{t}_{\boldsymbol{u}}$	$\boldsymbol{t}_{\boldsymbol{\chi}}$
.91	1.755	6.123	7.940
1.00	1.401	2.732	3.537
2.00	0.454	0.528	0.680
2.47	0.347	0.390	0.502
20.0	0.037	0.038	0.050
50.0	0.0147		0.0148

References

1. J. Bebernes, A Mathematical Analysis of Some Problems from Combustion Theory, Quaderni dei Gruppi di Ricerca Matematica del CNR, 1981, 63 pp .
2. J. Bebernes and D. Kassoy, A mathematical analysis of blow up for thermal reac-tions-the spatially nonhomogeneous case, SIAM J. Appl. Math. 40 (1981), 476-484.
3. J. Bebernes and A. Bressan, Thermal behavior for a confined reactive gas, J. Differential Equations, to appear.
4. S. Kaplan, On the growth of solutions of quasilinear parabolic equations, Comm. Pure Appl. Math. 16 (1963), 327-330.
5. D. Kassoy and J. Poland, The thermal explosion in a confined reactive gas, I-the induction period solutions, submitted.
6. V. P. Politjukov, On the theory of upper and lower solutions and the solvability of quasilinear integro-differential equations, Math. USSR Sbornik 35 (1979), 499-507.
7. R. Redheffer and W. Walter, Comparison theorems for parabolic functional inequalities, Pacific J. Math. 85 (1979), 447-470.
8. W. Walter, Differential and Integral Inequalities, Springer-Verlag, 1970.

University of Colorado, Boulder, CO 80309

