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1. Introduction and preliminaries. Two-point boundary value problems 
(BVP's) for delay differential equations have been studied extensively, 
beginning with the work of G. A. Kamenskiï, S. B. Norkin and others 
(see [5], [7]) which was motivated by variational problems and problems 
in oscillation theory. L. J. Grimm and K. Schmitt [4] and Ju. I. Kovac 
and L. I. Savcenko [6] employed solutions of various differential ine­
qualities for the study of two-point problems with retarded argument. 
In this paper, we show how a bilateral iteration procedure can be de­
veloped to yield existence and inclusion theorems for multipoint boundary 
value problems of conjugate type for nonlinear functional-differential 
equations. 

Let n > 1, / = [a, b] be a real compact interval, let a = xx < x2 < • • • 
< xk = b, let Pi(x), p2(x), • • • > pn(x) be continuous on /, and define the 
linear differential operator L by 

(1.1) Ly = y^ + pAxW»-» + • • • + pn(x)y. 

A Ju. Levin (see Coppel [1]) has obtained the following result which 
will play a central role in our work. 

THEOREM 1.1. Let L and I be as above, and suppose that L is disconjugate 
on I. Then the Green's function G(x9 s) for the k-point conjugate type 
boundary value problem 

(1.2) Ly = 0, 

(1.3) y^(Xj) = 0, / = 0, . . . , «y - I , ; = 1, . . . , K 

where 2y=i nj = «> satisfies the inequality 

(1.4) G(x, s)(x - x^{x - x2)*2 . . . (x-xkY* ^ 0, xx < s < xk. 
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2. Multipoint problems. Let / be as above, with L defined by (1.1) and 
disconjugate on J; let / : / x R2 -* R and g: / -* R be continuous, 
and let cij9 i = 0, . . . , rij — 1, j = 1, . . . , k, be real constants, where 
Ek

J=1rij = n. Define a = minOnin^j g(x), a), ß = max(maxxe/ g(x)9 b), 
J\ = [a, a], and J2 = [è, j3]. 

Consider the conjugate type BVP 

(2.1) Ly(x)=f(x9y(x)9y(g(x)))9 

(2 2) yii)^ = °ih ° = ' = w' ~ ^ = ^ ' * ' k> 
y(x) = fa(x)9 xeJ/9 / = 1, 2, 

where 0/x) is continuous on / , and <f>i(a) = c01, <f>2(b) = co*- We shall 
denote (2.1) by 

(2.3) Ly=f[x,y], 

and the boundary conditions (2.2) by 

(2.4) Ty ={;}• 
Assume that/satisfies the uniform Lipschitz condition 

(2.5) \f(x, yl9 Zi) - f(x, y29 z2)\ ^ P(\yx - y2\ + |zx - z2\) 

for all (x, yh zx)9 (x9 y29 z2) in / x R2, where P is a constant. Suppose 
there exist functions vi(x) and w^x) continuous on Ji [j I \J J2 and « 
times continuously differentiate on /, such that 

and such that, for x e /, 

( 2 6 ) i v i - / [ ^ v j + i4i(x) ^ 0 , 
Livx - /[x, wj - ^i(x) ^ 0, 

where Ax(x) = Pflvrfx) - wx(x)\ + Iv^x)) - Wife(x))|). Let lc(x) de­
note the unique solution of the problem Lu = 0, u(i){xj) = cij9 i = 0, 
. . . , rij - 1, j = 1, . . . , k9 and construct sequences {vm(x)} and {wm(x)} 
as follows: 

(fa(x)9 * e / b 

vm+iW = y&c) + J/G(x, *)(/[>, v j - AJs))ds9 xel9 

[<f>2(x)9 x e J2; 
(2.7) 

(faix), x e Jl9 

V i W = k(*) + J/G(x, s)(f[s9 wm] + AJs))ds9 xel9 

[<f>2(x)9 x G /2, 
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where 

(2.8) AJx) = P(\vjx) - wjx)\ + \vjg(x)) - wjg(x))\), m*l. 

THEOREM 2.1. Let L be given by (1.1) and be disconjugate on I = [a, b]. 
Letf: I x R2 -» R andg: I x R -* R fee continuous and let f satisfy (2.5). 
Suppose there exist functions vx(x) and wx(x) which satisfy (2.4) and (2.6), 
and define the sequences {vm(x)} and {wm(x)} by (2.7). Then the BVP (2.1)-
(2.2) has a solution y(x) such that, for each m ^ 1, 

(2.9) 
vm(x) ^ vw+1(x) ^ X*) è "VuCx) ^ wm(x), x e fa 

y mix) è vm+1(x) g X^) ^ wm+1(x) ^ wm(x), x e fa 

where Ix = {x e I: G(x, s) ^ 0} and I2 = {x e I: G(x, s) ^ 0}. 

PROOF. Set um(x) = vm(x) - ww(x), m ^ 1. By (2.6), Lw! ^ Ofor x e / , 
and 

Twi = 
0 

or 
thus, ux(x) = J/G(x, s)Lux(s)ds has sign opposite to that of G(x, s) for 
xel. Similarly, for each m > 1, 

wm+1(x) = J ,<?(*, s)(f[s9 v j - / | > , w j - 2AJs))ds, 

for each x e / . Noting that f[x, vn] — f[x, wm] — 2Am(x) g 0 for x e I, 
it follows that, for each m ^ 1, 

(2.10) vm(x) ^ wm(x), xefa vjx) g wm(x), x e fa 

We now show the monotonicity of the sequences {vjx)} and {wjx)} 
on li and on 72. From (2.6), note that L(v1 — v2) g 0 and L(wx — vt>2) ^ 0 
for xel. Since 

T(vi - v2) = T(wx - w2) - {& 
(vi - v2)(x) è 0 ^ (wx - w2)(x), x e Jj and (vx - v2)(x) ^ 0 ^ (H>I -
w2)(x), x 6 72. For each m ^ 2, 

£(vm - vm+1) = / [ x , vw_x] - / [ * , vm] - Am_i(x) + AJx) 

(fix, vw_J -f[x, vm] - P(vm_x(x) - vm(x)) 

+ ^(^w_iW - wm(x)) - P\vm_i(g(x)) - H>m_i(g(*))l 

= J + ?\Vm(g(x)) - ™Jg(x))\, X e fa 

)f[x, vm_J -f[x, v j + P(vm_x(x) - vm(x)) 

- P(Wm-l(x) - H>m(*)) - P | v m _ 1 ( ^ ) ) - W w _ 1 ( g ( x ) ) | 

1 + P|v„(g(x)) - wjg(x))\,x e 72. 
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(2.11) 

UVm- Wm+l) =f[x, Wm_J -f[x, Wm] + Am_X{x) - Am(x) 

(f[x> Wm-ll - / [ * » Wm] - P(Wm_j(x) - Wjpc)) 

+ P(vm^(x) - vjpc)) + Plv^ifefc*)) - M>w_i(g(*))| 

= J -P\vm(g(x)) - wm(g(x))|, x G 7 i ; 

j / [x, wm_J - / [ * , u>J + P(wm_i(A:) - wm(x)) 
- P(vm-i(x) - vwW)4-/>|vw_1(g(x))~wm_1(g(x))| 

l - P|vm(g(x)) - wm(g(x))\,x e 72. 

Assume now, as induction hypothesis, that for m > 1, 

(vw-i - vm)(x) ^ 0 ^ (wm_! - u>m)(x), x G 7l5 

(Vm-l - v j ( x ) ^ 0 ^ (Ww_i - W J ( x ) , X G 72. 

Consider Lvm — Lvm+1, for jce/ . Suppose first that xeIlm From (2.11), 
it follows that 

Lvm - Lvm+1 ^ P|vm_x(g(x)) - vm(g(x))\ + P(wm_!(x) - wm(x)) 

- P | v w - l ( g ( * ) ) - Ww_!(g(x))| + 7>|vm(g(*)) - Wm(g(x))|. 

If g(x) is in / x or /2 , then 

£vm - Lvm+1 S P(wm_!(x) - wm(x)) ^ 0. 

If g(x) is in Il9 then 

Lvw - Lvm+1 ^ P K - i W - ^ w W ) + ^ ( V i f e W ) - ww(g(x))) ^ 0. 

If g(x) is in72, then 

Lvm - Lvm+1 ^ P(wm_j(x) - wjx)) + P(wm(g(x)) - M;m_i(g(x))) ^ 0. 

Thus, for x G Il9 Lvm — 7,vm+1 ^ 0. Similarly, for x G 72, £vm — 7,vm+1 g 0. 
Since 

?Xvm - vm+1) = j j j j , 

vm — vm+i ^ 0, x e / j and vw — vm+1 ^ 0, xG7 2 . Analogously, we find 
that Lwm — Lwm+1 ^ 0 on 7 and that vvw — wm+1 ^ 0, x G IX and wm — 
wm+1 ^ 09 xe 72. Hence, 

y mix) ^ Vm+1(x) ^ Wm + i(x) ^ wjx), X G 7 b 

vw(*) ^ vm+1(x) ^ ww+i(*) ^ ww(x), X G 7 2 , m ^ 1. 

It remains to show that there is a solution j(x) of (2.1)-(2.2) which 
satisfies (2.9). Note that, on 7l5 72, Jx and J2, the sequences {vm(x)} and 
{wjx)} are monotonie, bounded, and equicontinuous. By Ascoli's 
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theorem, they have uniform limits v(x) and w(x) with v(x) ^ wix), x e Il9 

v(x) ^ wix), x e I2, and v(x) = w(x) = (j>,(x) on / / 5 / = 1, 2. It follows 
from (2.7) that, for xel, 

Lv(x) = f[x, v] - A(x), 

Lw(x) = / [ * , w] + A(x), 

where v4(x) = P(\v(x) - w(x)| + \v(g(x)) - w(g(x))\), and that 

Tv = 7w = 

X*) = 

Now, for each function j>(*) e C{Jl (J / (J / 2 ) , define 7 by 

(0i(x), if x e /1? 

v(x), if X*) > v(x), Ì 

Xx), if v(x) ^ j(x) ^ w(x), U e Il9 

w(x), if yix) < wix), J 

v(x), if X » < v(x), ì 

X*), if v(x) ^ y(x) g w(x), I, x e /2, 

w(x), if X*) > wix), J 

^2(x), if ^ € / 2 , 

and define Fix, X*X Xg(*))) = /(*> jW» Xg(*)))- The function F is 
continuous and bounded on / x R2 and it follows from the Schauder 
Fixed Point Theorem that the problem 

Ly = Fix, yix), yigix))), 

Ty = 
<!> 

has a solution yix). We now show that yix) satisfies 

(2.12) w{x) ^ y(x) ^ v(x), x e Ih wix) ;> yix) ^ v(x), x e 12, 

and hence that yix) is a solution of (2.1)-(2.2) which satisfies (2.9). 
Consider wix) — yix). Using the definition of y, we find that 

Lvv - Ly = / [ * , w] + PQvix) - w(x)| + |v(g(x)) - w(g(*))|) 

-/(*,X*),Xg(*)))^o, 
and 

T(w - y) = 
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Thus, w(x) ^ y(x), x e Th w(x) ^ y(x), x e I2. Similarly, v(x) ^ y(x), 
xelh v(x) ^ y(x), xel2. Hence, y(x) satisfies (2.12) and the proof is 
complete. 

REMARKS, (a) The procedure developed here can be applied to addi­
tional kinds of boundary value problems, including fc-focal problems 
with retarded argument, see [2]. We obtained an analogous result for 
k-focal problems for ordinary differential equations in an earlier paper 
[3]. The computations in the two-point &-focal case are simpler because 
the Green's function is of constant sign on the entire interval. 

(b) If G = max^jl ^G(x, s)ds\ and if IP G < 1, a contraction mapping 
argument may be used to prove the existence and uniqueness of a solution 
of (2.1)-(2.2). If, in fact, 6PG < 1, then Am(x\ defined by (2.8), tends to 
zero asm-> oo. Thus, v(x) = w(x) is the unique solution of (2.1)-(2.2). 

(c) If G is as in (b), 2PG < 1, and \f(x, y, z)\ is bounded by a constant 
B for all (x, y9 z) e I x R2, the functions Vi(x) and wx(x) can be chosen as 

vi(x) = 

H>x(x) = 

0x(x), x e Jl9 

l02(*)> X G J2, 

^X(X), X G Jl9 

'*(*) + IJLPG L G ( X ? s)ds 

<f>2(x), x G J2. 

(d) The requirement that Vi(x) and w^x) satisfy the boundary condi­
tions (2.2) can be relaxed somewhat. If vx and w1 satisfy conditions 
analogous to the conditions (3.1)—(3.4) of Theorem 3.1 of [8], a modifi­
cation of the iteration procedure leads to the conclusion of Theorem 2.1. 

(e) As an example, consider the BVP 

(2.13) / " = 1 - xy(x) + y(2x - 1), 

y(x) = -x, xeJx = [-1,0], 

(2.14) y(0) = XI) = y(2) = 0, 

y(x) = x — 2, x G J2 = [2, 3]. 

For this problem, P = 2. Let w^x) = x(x — l)(x — 2), vx(x) = — wl9 

for x e / . Then it is easy to see that 

Lvi -f[x, v j + ^ ( x ) = - 6 -f[x, v j + ^i(x) ^ 0; 

LWi — / [ * , Wj — ^i(x) ^ 0, X G /. 
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Hence the problem (2.13)-(2.14) has a solution y(pc) between vx and wv 
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