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LEBESGUE AND STRONG UNICITY CONSTANTS FOR 
ZOLOTAREFF POLYNOMIALS 

MYRON S. HENRY AND JOHN J. SWETITS 

ABSTRACT. For each/e C(/), let B„(f) denote the best uniform 
polynomial approximation of degree less than or equal to n. If 
fix) = xn+2 — ff„xn+1, then the Zolotareff polynomial of degree 
n + 2 is given by Zn+2(x) = xn+z - <r„xn+1- Bn(f)(x)9 x e /, 
where 0 ̂  an ^ (n + 2) tan2(rc/2(« + 2)). Let Un represent the set 
of extreme points of Zn+2 ; then U = {U„} £=0 is an infinite triangular 
array of nodes. If on > 0 for each n, then it is shown that the orders 
of growth of the Lebesgue and strong unicity constants determined 
by U are precisely n + 1 and n3, respectively. If a„ = 0 for every n, 
these orders of growth are precisely log(« + 2) and /i, respectively. 

1. Introduction. Let - 1 ^ xg < x\ < • • • < xn
n < x%+l ̂  1 be any 

n + 2 points in the interval / = [—1,1]. Then 

(1.1) Xn = {x?}?^1 

defines a set of nodes contained in /, and 

(1.2) X = {Xn}2* 

is an infinite triangular array of nodes [12, p. 88]. Let 

(1.3) {&\x)}7iè 

be the fundamental Lagrange polynomials determined by (1.1) [12, p. 88]. 
The Lebesgue function of order n + 1 determined by X is then 

w+l 

(1.4) ;u(**)-gm*)i, 
and the Lebesgue constant A„+\ of order n + 1 determined by A'is defined 
by 

(1.5) A„+i(X) = mas X„+i(X, x), 
- lSzSl 

[12, p. 89]. 
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A classical problem in approximation theory is to estimate the growth 
of An+\{X) as a function of n and X. 

Let C(I) denote the space of real valued, continuous functions on the 
interval /, and let IIn E C(I) be the space of polynomials of degree at 
most n. Denote the uniform norm on C(I) by || • ||. For each / e C(J) with 
best approximation Bn(f) from lìw, there is a smallest constant Mn(f) > 0 
such that for any/? e IIn9 

(1.6) \\p - Bn(f)\\ ^ Mn(f)(\\f-p\\ - | | / - Bn(f)\\). 

Inequality (1.6) is the well known strong unicity theorem [2], and hereafter 
Mn(f) is defined to be the strong unicity constant. Recently a number of 
papers [1, 3, 5, 6, 8, 9, 10] have examined the growth of the strong unicity 
constant 

(1-7) M„(f) 

as a function of n and / . Considering the similarity of the questions in
vestigated regarding the growth of Lebesgue and strong unicity constants, 
it is natural to explore the behaviors of (1.5) and (1.7) on common infinite 
triangular arrays of nodes. 

In this regard, Theorem 1 below gives the strong unicity constant in 
terms of an appropriate set of nodes. First, some preliminary notation is 
needed. 

F o r / e C(I) with best approximation Bn(f), the error function en(f) 
is defined by en(f)(x) = f(x) — Bn(f)(x), xel, and the set of extreme 
points of the error function is denoted by En(f) = {xel: \en(f)(x)\ = 
lkn(/)ll}. 

THEOREM 1. (BARTELT AND SCHMIDT [1].) Iff e C(J) - nn, then 

(1.8) Mn(f) = max {\\p\\ : sgn en(f)(x)p(x) ^Iforxe En(f)}. 

Theorem 1 demonstrates that Mn(f) is also defined in terms of a set of 
nodes, namely the set of extreme points of en(f). If En(f) consists of 
precisely n + 2 points, Theorem 1 can be sharpened [6]. In particular, 
if En(f) consists of 

(1.9) - 1 ^ x0 < *i < .* • • < x» < xn+i ^ 1> 

and ifqin e IIn satisfies 

Vin(xj) = sgn en(f)(xj),j = 0, 1, . . . , « + 1, 

(1.10) ; = 0, . . . , / * + 1, 

then 
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(1.11) M„(f) = max | | fJ | . 

Now let {fn}%=o E C(/), and assume that £w(/w) contains precisely 
n + 2 points {JC?}JÖJ. Then 

(1.12) E(F) = {^(/w)}r=o 

is an infinite triangular array of nodes and consequently determines 
a Lebesgue constant An+i[E(F)] in the manner outlined by (1.2)—(1.5). 
Similarly, for n = 0 ,1 , . . . , a strong unicity constant Mn(/n) is determined 
by (1.9) through (1.11). 

The example that follows demonstrates the above theory. Let Gn(x) = 
JCW+1, xel. Then it is well known that 

(1.13) en(Gn){x) = (l/2»)Cw+1(x), xel, 

where Cn+1 is the Chebyshev polymomial of degree n + 1 . Thus the set 
of extreme points En(Gn) of en(Gn) consists of the extreme points of Cw+1. 
Consequently, if G = {En(Gn)}™=0, then [4] 

(1.14) An+1(G) = 0(log(n + 1)). 

On the other hand, it can be shown [3, 5, 8] that 

(1.15) Mn(Gn) = In + 1. 

Thus if G is the infinite triangular array of nodes whose n-th row consists 
of the n H- 2 extreme points of Cn+1, then the growth of An+i(G) and 
Mn(Gn) are known precisely. 

The principal objective of the present paper is to calculate the com
panions to (1.14) and (1.15) for the natural but somewhat more complex 
extensions of the Chebyshev polynomials, namely the Zolotareff poly
nomials [11, p. 41]. 

2. Zolotareff polynomials. 

DEFINITION 1. Let {<?n}£L0
 a n ( l {ïn}^=o b e sequences of positive real 

numbers, and let a and ß be positive real numbers not depending on n. 
If there exists a natural number N such that for all n ^ N, 

(2.1) ccTn ^ön^ ßT„ 

then ön is said to be of precise order yn. 

We note from Definition 1, (1.14), and (1.15), that An+\(G) is of precise 
order log(n + 1), and Mn(Gn) is of precise order n. The goal of the present 
section is to establish the precise orders of the Lebesgue and strong 
unicity constants determined by infinite triangular arrays whose rows 
consist of the extreme points of certain Zolotareff polynomials. 
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Let 

(2.2) fn(x) = x^-a„x^\xel9 

where 

(2.3) 0 ^ ^ ( / i + 2)tan2(^/2(« + 2)). 

Then it is known [11, p. 41] that the error function en(fn) satisfies 

(2.4) en(fn)(x) = (l/2»+i)(l + aj(n + 2))*« C w + 2 ( ^ ^ + | ) , xe/, 

where Cn+2 is the Chebyshev polynomial of degree n + 2. Hereafter the 
right side of (2.4) is designated by Zw+2> the (/* + 2)nd degree Zolotareff 
polynomial. If an > 0, there are precisely n + 2 extreme points 

(2.5) - 1 = xg < x? < • • • < x» < x ^ ^ 1 

of (2.4) in this interval /, [11]. Furthermore, if 

(2.6) - 1 = /g+2 < tp2 < • • • < KX\ < Ktl = 1 

are the n -f 3 extreme points of Cw+2> then for i = 0, . . . , « + 1, 

{ ° ' " 1 +*„/(* +2) " 

For tf"w in (2.3) positive, let 

(2.8) E„(fn) = {xflgf, 

and let 

(2.9) U = {EJWtìZ*. 

Then U is an infinite triangular array of nodes of the type given by (1.12), 
and consequently U determines a Lebesgue and strong unicity constant. 
The first theorem of the present section establishes the growth rate of the 
strong unicity constant determined by U. 

THEOREM 2. Let {/„}£L0 be as in (2.2) with error function (2.4). Assume 
Gn in (2.3) is positive. Then the precise order of Mn(fn) is «3. 

PROOF. For simplicity, the superscripts in (2.5), (2.6), (2.7), and (2.8) 
are henceforth assumed but are not explicitly displayed. Define Qn+1eIIn+i 
by 

(2.10) Qn+i(xt) = sgn en(fn)(xt), i = 0, 1, . . . , n + 1. 

From (2.4) and (2.7) it follows that 

(2.M) e,n(x),C^^^)-2^JT^^Y'"ÜX-X,, 
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Again appealing to (2.7) we have for y = (x - aj(n + 2)/(l -f a„/(n -f 2)) 
that 

= (y + i)cMHn + 2) 

Since max|C;+2(>>)| ^ max |C;+20>)|==(n + 2)2, - 1 £ y £ (i-ffj(n + 2)l 

(1 + <7„/(H + 2)), (2.11) and (2.12) imply that 

(2.13) Hßn+ill ^ 1 + 2(n + 2). 

For each / = 0, 1, . . . , « + 1 define qin as in (1.10). Then 

(2.14) ?,„(*) = ßw+i(x) - an+1 I\(x - xj), 
j=0 

where an+1 is the coefficient of xn+1 in ßw+1. From (2.11) and (2.12) a 
direct calculation shows that 

(2-15) K+1I . ( 1 + j ( n + 2 ) r 
Utilizing (2.7), (2.14), and (2.15) results in 

\q(n(x)\ è Ißn-iMI + 2»+i IT b - //l/l? - M 
,=o 

= lô„+i(*)l + l(y + l)C;+2(j)/(« + 2)(7 - 01, 

where again 
(2 16) v = * - ^ / ( * + 2 ) 

Thus \qjx)\ ^ \Qn+1(x)\ + (\y + l|/(n + 2))|C^2(e)|, where e is be
tween^ and ti9 i = 0,1, . . . , n. Since \\C"n+2\\ = 0[(n + 2)4], this inequality 
and (2.13) imply that there is a ß independent of« such that 

(2.17) \qin{x)\ HßnM = 09l, . . . , * + 1. 

For i = n + 1, (2.14) yields 

|<7w+1,w(x)| ^ \an+1\ f[ \x - JCyl - |ßn+i(*)|. 

Therefore, if x = xw+1, 
n 

l?»+l,»(*n+l)l è k+l l IT l*«+l - Xj\ - 1. 
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Utilizing (2.7), (2.15), and (2.16) in this inequality results in 

i<7„+i„,(*„+i)i ^ 2»+i n \t„+i - tj\ - 1 

(2.18) ^»+2(^+l) - 1 
n + 2 

C:+2(cosfa/(/2 + 2))) 
« + 2 

— 1 ^ a«3, 

where a does not depend on n and a: ^ 0. Inequalities (2.17), (2.18), and 
equality (1.11) imply the conclusion of Theorem 2. 

In the next theorem the precise order of An+i(U) is established. First, 
a lemma that will facilitate the proof of Theorem 3 below is given. 

LEMMA 1. For ft C(/), suppose that En{f) contains exactly n + 2 points 
{jcjfij. Let Aj

n+i denote the Lebesgue constant determined by the infinite 
triangular array of nodes whose n-th row consists of the points EJ

n\f) = 
En{f) - {xj},j = 0, 1, . . . , n + 1. Then 

(2.19) Mn(f) = max A{+1. 

This lemma provides an interesting connection between the strong 
unicity constant and certain Lebesgue constants. The proof is given in [8]. 

THEOREM 3. Let U be the infinite triangular array of nodes given by (2.9). 
Assume dn satisfying (2.3) is positive. Then the Lebesgue constant ylM+1(U) 
is of precise order n + 1. 

PROOF. From (1.4), (2.7), (2.8), and (2.16) we have 

n+l n+l 
Àn+1(V, x) 

X; X j ti - tj 

Thus 

(2.20) 
n+l »+1 

An+1(V) ^ max 2 Ff 
y - t j 

t{ - tj 

Let Gn+1(y) = yn+2, y e I, and let An+2{T) be the Lebesgue constant de
termined by the infinite triangular array T whose n-th row consists of the 
n + 2 points {t0, tl9 . . . , tn+1}. Thus the «-th row of T consists of the first 
n + 2 extreme points of Cw+2- From (1.15) Mn+1(Gn+1) = In + 3. From 
Lemma 1 An+2(T) ^ In + 3, and consequently (2.20) implies that 

(2.21) An+1(V) S2n + 3. 

Now define Q^ e tfn+1 by (2.10). From (1.4), (1.5), and (2.10) it is clear 
that 
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(2.22) | |ßn+1 | | ^ A+1(U). 

On the other hand, if y is given by (2.16), then for x e /, — 1 ^ y g 
(1 - aj(n + 2))/(l + ajin + 2)). From (2.3), (2.5), and (2.7) it follows 
that cos(7c/(n + 2)) ^ (1 - aj(n + 2))/(l + an/(n + 2)). Therefore 
zn+1 = cos(3tf/(2« + 4)) S (1 - <7„/(w + 2))/(l + aj{n + 2)). We note 
that Cn+2(zn+i) = 0- Therefore (2.11), (2.12) and (2.16) imply that 

||Ô„+ill ^ |ßw+1[(l + aj(n + 2))zw+1 + aj(n + 2)] 

iiic;+2(zw+1)/(* + 2)i 

i = |cos(3;r/2(rt + 2)) + 1| 
sin(3^/2(« + 2)) 

This inequality implies that there exists a positive number a not depending 
on n such that ||ß„+i|| è a(n + 1). Now (2.22) implies that 

(2.23) An+1(V) ^ a(n + 1). 

Inequalities (2.21) and (2.23) are equivalent to the conclusion of Theorem 
3. 

Theorems 2 and 3 state that the strong unicity and Lebesgue constant 
determined by the infinite triangular array of nodes whose n-th row 
consists of the extreme points of the Zolotareff polynomial of degree 
n + 2 (with an > 0 satisfying (2.3)) are of precise order n3 and n + 1, 
respectively. 

In light of the corresponding results for the strong unicity and Lebesgue 
constants determined by the infinite triangular array of nodes whose 
«-th row consists of the extreme points of Cw+1 (precise order n and 
log(« + 1), respectively), the conclusions of Theorems 2 and 3 are perhaps 
somewhat surprising. If in (2.3) on = 0 for all «, the conclusions of 
Theorems 2 and 3 are significantly modified. Theorem 4 and 5 below 
address these modifications. 

3. The zero case. Let an in (2.3) be zero for every «, and let U0 be the 
infinite triangular array of nodes whose w-th row consists of the extreme 
points of the corresponding Zolotareff polynomial of degree n + 2. From 
(2.2) and (2.4) we note for on = 0 that Zn+2(x) = (l/2»+1)Cw+2(x), xel. 
Consequently the extreme points of Zn+2 are merely the n + 3 extreme 
points of Cn+2, and the n-th row of U0 now consists of the n + 3 extreme 
points of Cw+2. 

Based on these observations and (1.14), it is immediate that 

(3.1) A+1(U0) = A„+2(G) = 0(log(« + 2)). 

The above analysis constitutes the proof of the next theorem. 

THEOREM 4. Let an in (2.3) equal zero for each n, and let U0 be the infinite 
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triangular array of nodes whose n-th row consists of the extreme points of 
Zn+2- Then ^w+i(U0) is of precise order log(/2 + 2). 

Let 

(3.2) fn(x) = **2 . 

To establish the precise order of Mn(fn) is somewhat more complex, 
primarily because the cardinality of En(fn) is now n + 3, and consequently 
(1.11) cannot be directly employed to estimate Mn(fn). 

THEOREM 5. Iffn is given by (3.2), then Mn(fn) is of precise order n. 

PROOF. Since En(fn) contains n + 3 points of alternation [2], it is 
clear that En(fn) = En+1(fn). Thus (1.13), (1.15), and (3.2) imply that 
Mn+1(Gn+1) = Mn+1(fn) = 2« + 3. Theorem 1 now implies that M„(fn) 
^ 2 « + 3. 

To complete the proof we must show that there exists an N and an 
a > 0 not depending on n such that an ^ M„(/„) for all n^N. Let the 
extreme points £„(/») of £„(/„) be labeled 

(3.3) - 1 = x0 < * ! < • • • < xw+1 < xn+2 = 1. 

Define qn e Un by 

(3.4) qn(xt) = sgn en(/„)(x,), 

i = 1, 2, . . . , n + 1. Since sgn en(fn)(xt) = - sgn en(f„)(xi+1), 2 = 0, . . . , 
« + 1 it follows from (3.4) that 

(3.5) sgn en(fn)(xt)qn(xt) ^ 1, i = 0, . . . , n + 2. 

Expressions (3.4), (3.5), and (1.8) now imply that 

(3.6) H?,! = M„(/w). 

Define Qn+1 e ün+1 by 

(3.7) Q»+i(xt) = sgn ew(/„)(x,.), 

*' = 0, 1, . . . , « + 1. If an+l is the coefficient of xn+1 in ßn+i, it follows 
from (3.7) and the theorem of de la Vallée Poussin [2,9] that 

(3.8) k + 1 | = 2«. 

Now (3.4) and (3.7) imply that 

n+l 

(3.9) qn(x) = Qn+l(x) - aw+1 FI (* - */). 

Therefore (3.6), (3.7), (3.8), and (3.9) imply that 
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M„(f„)^\\q„\\^\qn(-l)\ 
»-fi 

^ 2» fi H + *y| - 1 

, lCs ( - l ) | . 
2(n + 2) 

= (w 4- 2)/2 - 1 = n/2. 

REMARK. When compared with (1.14) and (1.15), Theorems 4 and 5 
portray an expected phenomena. These two theorems tend to reinforce 
an earlier assertion that the results of Theorems 2 and 3 are somewhat 
surprising. 

4. Conclusions and observations. In the preceeding sections, the precise 
orders of the Lebesgue and strong unicity constrants determined by the 
infinite triangular array of nodes whose n-th row consists of the extreme 
points of certain Zolotareff polynomials are calculated. In particular, the 
Zolotareff polynomial of degree n + 2 is 

Zn+2(x) = x»+z - onx»+i - Bn(f){x\ xel, 

where 0 ^ an ^ (n + 2)tan2(^r/2(w + 2)). If an is positive for every n, 
then the Lebesgue constant alluded to above is of precise order n + 1, 
and the strong unicity constant is of precise order rfi. If an = 0 for all n, 
then these precise orders are log(« + 2) and n, respectively. 

In a related paper [7], the authors have established the precise orders 
of the Lebesgue and strong unicity constants determined by (1.12) for a 
class of non-polynomial functions. In particular, if /„ = fe C°°(/) for 
n = 0, 1, 2, . . . , and if/ satisfies a certain derivative condition [7], then 
the Lebesgue constant determined by (1.2) is of precise order log(n + 1 ) , 
and the strong unicity constant is of precise order n. 
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