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ON LIE GROUPS WITH MINIMAL GENERATING 
SETS OF ORDER EQUAL TO THEIR DIMENSION 

RICHARD M. KOCH AND FRANKLIN LOWENTHAL 

ABSTRACT. Let G be a connected Lie group with Lie algebra g, 
{Xu . . . , X,\ a minimal generating set for g. The order of genera
tion of G with respect to [Xl9 ..., X,\ is the smallest integer M 
such that every element of G can be written as a product of M 
elements taken from expfyXJ, . . . , exp(tX,). We find all G which 
admit minimal generating sets {Xu . . . , Xn] with n = dim G; for 
each such set we construct an algorithm for computing the order of 
generation of G. 

I. Introduction. A connected Lie group G is generated by one-parameter 
subgroups exp(^Ar

1), . . . , exp(f A",) if every element of G can be written as 
a finite product of elements chosen from these subgroups. In this case, 
define the order of generation of G to be the least positive integer M such 
that every element of G possesses such a representation of length at most 
M ; if no such integer exists let the order of generation of G be infinity. 
The order of generation will, of course, depend upon the one-parameter 
subgroups. Computation of the order of generation of G for given Xh ..., 
X/ is analogous to finding the greatest wordlength needed to write each 
element of a finite group in terms of generators gh . . . , g,. 

The subgroups exp(fZi), . . . , exp(^Ar
/) generate G just in case Xi, . . . , 

X/ generate the Lie algebra g of G. Indeed the set of all finite products of 
elements from exp(rAr

1), . . . , e x p ( ^ ) is an arcwise connected subgroup 
of G and so a Lie subgroup by Yamabe's theorem [10] ; clearly the Lie 
algebra of this subgroup is the subalgebra of g generated by Xh . . . , X,. 

It is natural to restrict attention to minimal generating sets; from now 
on, then, suppose that no subset of {XÌ9 . . . , X,} generates g. Call two 
generating sets {Xl9 . . . , X,} and {YÌ9 . . . , Y,} equivalent if it is possible 
to find an automorphism G of C7, a permutation % of {1, . . . , / } , and 
non-zero constants Xi, ...,%, such that X( = Àt<7^(YTU)). The order of 
generation of G depends only on the equivalence class of the generating 
set. 

If {Xl9 . . . , X,} is a minimal generating set for G and dim G > 1, 2 g / 
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^ dim G. In this paper we consider the case / = dim G. We classify all 
connected Lie groups G whose Lie algebras admit such generating sets; 
for each G on our list, we find all minimal generating sets with dim G ele
ments. Finally, we produce an algorithm for computing the order of gen
eration of G with respect to each minimal generating set obtained. 

When {Xl9 . . . , X„} is a minimal generating set for G and n = dim G9 it 
is easy to show that the map Qxp(tiX{) o . . . o çxp(tnXn) from Rn to G is a 
local diffeomorphism near 0. Our calculations show that this map is rarely 
onto. 

In a series of papers [3, 4, 5, 6, 7, 8], the order of generation problem 
was completely solved for all two and three dimensional Lie groups. In 
particular, groups locally isomorphic to SL(2, R) were discussed in [4]. It 
turns out that 57(2, R) is the only simple Lie algebra which admits minimal 
generating sets with order equal to the dimension of the algebra, so the 
techniques used in [4] reappear here. 

II. Classification of Lie algebras. 

THEOREM 1. Let g be a real semisimple Lie algebra, dim g = n. Let 
{Xl9..., Xn} be a minimalgenerating set for g. There is an isomorphism carry
ing g to sl(2, R) x • •. x sl(29 R) and Xh . . .9Xnto real scalar multiples of 

•••>° X---X ( o - ! ) x " ' x °> 
0 x " • * x (o _ l) x * * ' x °> 
0 x "•• x (_ 2 - ? ) x '" x 0 > " - -

PROOF. Since the X{ form a minimal generating set for g9 [Xi9 X;] = 
AijXi + BgjXj, Aij9 BtJ e R. Let gc = g ® C, Y{ = Xt ® 1. Of course 
g= {EkYAheR}. 

LEMMA 1. If[Yi9 Y3] = A0Yi + B{jYj, either A4j = B{j = 0 or Aa # 0 
and Bij ^ 0. 

PROOF. Suppose, for example, [Yh Y2] = AYh A # 0. If ì ^ 3, 0 = 

[[Yl9 r2], Yt] + [[r,, yj , Y2] + [[r2, r4], r j = AAUY1 + ABUY< -
AAXiYx + BXiA2iY2 + BuB2iYt - AA2iY2 - AliB2iY1 - BuB2iYi9 so 
the coefficient of Yi9 ABlh vanishes and Blt = 0. In short, [Yl9 Yt] = 
AyYi for all i and Yi generates a solvable ideal in gc; contradiction. 

LEMMA 2. Each ad Y{ is diagonalizable. 

PROOF. Since [Yi9 Y3] = A0Yt- + B{jYJ9 (ad r , ) ^ ^ ^ + B„Yj) = 
Bj^AijYi + BijYj). Therefore, ad 7,is diagonal with respect to the basis 
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obtained from {Yh . . . , Yn} by replacing Yj with v4t;F, + BtjYj whenever 
BtJ # 0. 

REMARK. Let {F l5 . . . , Yk} be a maximal commuting subset of {Fi, . . . , 
Yn}. Recall that an abelian subalgebra a of a complex Lie algebra gc is 
contained in a Cartan subalgebra of gc if and only if ad Zis diagonalizable 
whenever X e a (see, for instance, exercise 21 on page 105 of Jacobson's 
book [2]). By the above lemma, then, there is a Cartan subalgebra $? of 
gc containing Yl9 . . . , Yk. Letg c = «#* © L a Ce a t>e t n e corresponding 
decomposition of gc. If < , > is the Killing form of gc and Â 6 / , recall 
that [A, ea] = <A, a > a . 

For each j > k, write Yj = Ay 4- Z>a,/^a where Ay G J4? and raJ e C. 

LEMMA 3. F l5 . . . , Yk generate Jif. 

PROOF. If 7 > A;, there is an i ^ & such that [Yi9 Yj\ ^ 0; thus [F„ Fy] 
= ^ F , + BtJYj = (^,yF, + ^7Ay) + ZaB0raJea = Lra ,y <F,, a> ea. 
By Lemma 1, B{j ^ 0, so Ay = — 04t;/2?,y)F,. The lemma follows. 

LEMMA 4. 7/7 > fc, raj ^ § for exactly one root a. 

PROOF. By the previous calculation, raj 7É 0 implies B{j = <Ff-, a>. If 
ra,y ^ 0 and r f t / * 0, <F,-, a> = <F„ j8> for all /, so <A, ct - j3> = 0 
when A = F1? . . . , Yk and thus whenever A e «^ by Lemma 3. Since the 
Killing form is nondegenerate on #?, a = /3. 

REMARK. Let a be the root corresponding to j ; from now on write Ya 

instead of Yj. We can replace ea by the equivalent eigenvector ra> jea and 
thus assume Ya = Aa + ea. 

LEMMA 5.1fa^ ± ß, then [ea, eß] = 0. 

PROOF. [Aa + ea9 hß + ^ ] = Aaßa + ea) + Baß(hß + ^ ) = <Aa, ß}eß 

~ <fys> a >^a + \ea-> eßi '•> s i n c e cc ¥* ± ß, [ea, ^ ] *s n o t a linear combination 
of ea, e ,̂ and elements of #? unless it is zero. 

LEMMA 6. Cea © Ce_a © C[ea, e_a] is an ideal in gc. 

PROOF. This subspace is clearly invariant under ad #f9 ad ea, and ad e_a; 
if ß ^ ±a, it is invariant under ad eß by the equation [eßi [ea9 e_a]] = 
H>/3> e<xl e-a\ + [ea> leß> e-aïi and Lemma 5. 

REMARK. Write gc as a direct sum gi © • • • © g, of simple ideals. Every 
ideal in gc has the form gh © • • • © gir for some choice of 1 ^ ^ < i'2 

< . • • < ir ^ /. Since the dimension of the ideal Cea © Ce_a © 
C[ea, e_a] is three, it is one of the g{\ therefore ZJa>o[Cea © Ce_a © 
C[ea9 e_J] is a direct sum. This ideal contains all the ea9 so gc = ZI«>o © 
{Cea © Ce_a © C K , e_a]}. Notice that tf = £ a > ( ) © {C[ea9 e_a]}. 
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LEMMA l.Ifi^k and <r,-, a) T̂  0, ha is a non-zero real multiple of Y{ 

{and consequently Y{ is a non-zero real multiple ofha). Moreover, (Yi9 a} 
is real. 

PROOF. [Yi9 ha + ea] = <7,-, a)ea = AY{ + B(ha + ea); thus B = 
(Yi9 a} and AY{ = -<Yi9 a} ha. By Lemma 1, B # 0 implies ^ ^ 0. 

LEMMA 8. Ifi ^ &, //zere w an a such that Y{e C[ea9 e_a]. Conversely, each 
C[ea9 e_a] contains a unique Yj. 

PROOF. For each a9 there is exactly one i such that < Yi9 a} ^ 0. Indeed 
there is at least one such i because Yl9 ..., Yk generate ^ ; if < Yi9 a> ^ 0 
and < Yj, a} ^ 0, Yj and Yj are non-zero multiples of ha by the previous 
lemma, but Y( and Yj are linearly independent. 

Let Sf be the set of all pairs {a, —a} and consider the map £"-• {1, 2, 
. . . , k} defined by mapping {a, — a} to the unique / such that < Yi9 a} # 0. 
The decomposition^ = Z]a>0 © C[ea9 e_a] shows that \S?\ = k; since 
the map just defined is clearly onto, it is one-to-one. Thus each Yt- is as
sociated with a unique pair {a, — a} such that < Yi9 a) ^ 0. But Y{ e #f 
= Hß>o ® C[eß> e-fù a n d <]3, [ev, e_J> # 0 if and only if ß = ± v, so Yt e 
C[ea9 e_a\ 

Finally Yl9 . . . , Yk generate Jf = 2JSX> ® cleß> e-ßi s o e a c h c\e& e-ß] 
must contain a Yj. 

LEMMA 9.IfYa = ha + ea9 then ha e C[ea9 e_a]. 

PROOF. Let Yj e C[ea9 e_a]. Since <F,-, a} ¥= 0, ha is a non-zero multiple 
of Yj by Lemma 7. 

REMARK. From now on, call the Y{ associated with the pair {cc9 — a] 
"Ha". Notice that Ha9 Ya9 Y_a generate Cea ® Ce__a © C[ea9 e_a] and that 
g is the set of real multiples of {Ha9 Ya9 Y_a}a>0. 

By Lemma 7, (Ha9 a} is real; after multiplying Ha by a suitable non
zero real constant we can suppose (Ha9 a} = 2. By Lemma 7, Ya = XaHa 

+ ea for Xa real and non-zero. After multiplying Ya by a suitable non-zero 
real constant (and choosing a new ea) we can suppose Ya = Ha + ea. 
Similarly we can suppose Y_a = Ha + e_a. 

LEMMA 10. [# a , e j = 2ea, [ i / a , e_a] = -2e_ a , [ea, e_a] = -4Ha. 

PROOF. [# a , e j = <# a , a>ea = 2^a; [Ha9 e_a] = -<Jï B , a>e_a = 
-2e_ a . Finally [ # a + eB, Ha + e_a] = - < # B , a}e_a - (Ha9 a)ea + 
for, *-«] = - 2 e B - 2e_a + [ea9 e_a] = A(Ha + ea) + 5(iya + e_a)9 so 
-4 = 5 = - 2 and [<?a, e_J = -4Ha. 

REMARK. This completes the proof of Theorem 1 because 
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Ha = (J _ ° ) , ea = (o o ) a n d e - = ( _ 2 o) 

satisfy these commutation relations and RHa © Rea © Re_a = .s/(2, i£). 

THEOREM 2. Lef g be a real Lie algebra with dimension n, <% the radical 
of g. Let {Xh . . . , Xn} be a minimal generating set for g. There is an 
isomorphism carrying g to sl(2, R) x • • • x sl(2, R) x <% and Xh . . . , Xn 

to real scalar multiples of 

. . , 0 x ••• x ( J _ 0 ) x . 

O x ••• x ( J _ 2 ) x . 

Ox ••• x ( _ » _ J ) x 

• • •, 0 x • • • x 0 x v,-

where {v1? . . . , v/} is a minimal generating set for <% and/ = dim ». 

PROOF. AS before, real constants Aih B{j exist such that [Xh X,] = 
AijXi + BijXj. After renumbering if necessary, we can suppose that the 
elements Xx . . . , Xn-r in gj<% induced by Xl9 . . . , Xnr./ form a basis for 
g/ûê. Since [X„ Xy] = A^Xj + B^Xj, the subspace of g generated by 
A^, . . . , Xn_/ is a subalgebra isomorphic to the semisimple algebra gj<% 
and Xl9 . . . , Ar

w_/ is a minimal generating set for this subalgebra. By 
theorem 1, then, g = sl(2, R) © . •. © sl(2, R) © ^ and Z l9 . . . , A; . , 
are, up to scalar multiples, 

• ••,o© ... e ( i _ î ) e ••• 0o®o, 

0 ® • • • ® (J « o) ® • " ® ° ® 0j 

LEMMA 11. .$7(2, R) © • « • © .$7(2, R) is an ideal in g. 

PROOF. If j > n - / , write Xj = Yy + Zy where Y; e .y/(2, #) © • •. © 
sl(2, R) and Zy e ». Whenever i < n - /, [Xh Yj + Zj[ = [J5Tf., Yy] + 
[Xi9 Zj] = (^l7Jr,. + BaYj) + jBl7Zy; since » is an ideal, [X,, Yj] = 
AijXi + BijYj and [Xh Zy] = i^yZy. Look at this last equation carefully; 
it implies that whenever X belongs to si (2, R) © . . . © sl(2, R), there is a 
constant l(X) such that [X, Zy] = X(X)Zj. The map A: sl(2, R) © • • • © 
.s7(2, R) -+ R is clearly linear; by the Jacobi identity it vanishes on 

x 0, 

x 0, 

• x 0, 
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brackets. Since sl(29 1Q 0 • - - 0 sl(29 R) is generated by such brackets, 
X is identically zero and [sl(2, R) © . - • © sl(2, R), Zy] = 0. But the 
Zj generate ^ . 

LEMMA 12. If j > n — / , then Xje &. Consequently Xn_/+l9 . . . , Xn 

is a minimal generating set for <%. 

PROOF. Consider the equation in the second sentence of the previous 
proof; since BtJ = 0, [Xi9 X}] = A^X^ In particular, the component of 
Yj in the r-th sl(29 R) must be a matrix U such that 

It is easy to show that U = 0. 

REMARK. The affine algebra a(m) is by definition {<^4|v>|y4 is an 
m x m matrix, v e Rm}; the Lie bracket is given by [<^4|v>, <i?|w>] = 
<[A,B],Aw-Bvy. 

THEOREM 3. Let g be a solvable real Lie algebra with dimension n, {Xl9 

. . . , Xn} a minimal generating set for g. There is an integer m, a linear 
subspace Q) of the set of all m x m diagonal matrics, and an isomorphism 
carrying g to {{A \ v> e a(m)\A e@} and Xl9 ..., Xn to real scalar multi
ples ofiA^Oy, . . . , <^r|0>, < ^ k ! > , . . . , <BJemy where {Al9 ...,Ar} 
is a basis of @, {̂ 1? . . . , em} is the canonical basis of Rm, and Bl9 ..., Bm 

belong to Q). 

The following lemmas supply the proof of this theorem. 

LEMMA 13. If g is a solvable Lie algebra of dimension n which admits a 
minimal generating set with n elements, there is a basis Z1? . . . , Zn of g 
such that whenever i < j , \Zh Zj] = A^Zj. 

PROOF. We work by induction on dim g. Since g is solvable, there is an 
ideal gì E g with dim gx = n — 1. Let Xl9 ..., Xn minimally generate g 
and suppose Xn$gx. For each i < n choose 1{ so X{ = X{ — ^Xn belongs 
to gx; then {Xh . . . , Xn_l9 Xn} is a basis for g. Moreover, {Xl9 . . . , Z„_l5 

Xn} is a minimal generating set, for [Xi9 Xn] can be written as a linear com
bination of Xi and Xn and thus as a linear combination of Xi9 Xn\ [Xi9 Xj\ 
can be written as a linear combination of Xi9 Xj9 and Xn9 but gx is a 
subalgebra, so the component of Xn in this linear expression must 
vanish. Notice that [Xi9 Xn] = Ain X{ because gx is an ideal. 

Separate the X( into two classes, those that do not commute with Xn 

and those that do. Call the elements of the first class Yl9 . . . , Ym_x\ let 
Ym = Xn\ call the elements of the second class Ym+l9 . . . , Yn. In short, g 

Mi-?) 
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has a minimal generating set {Yu ..., Y„_lt Ym, Ym_lt ..., Y„} where 
whenever i < m, [Yt, Ym] = X{Y{, X,- ¥= 0, and whenever m < i, 
[Ym, Y,] = 0. 

Let i<j< m; [[Y„ Y,\, YJ = [[7„ Y J, Yj\ + [Y„ [Y„ Ym]] so 
A,,*?, + BtjXfYj = UAuY, + BtjY,) + X{AUY, + B{JYj) and XjAa = 
Xfia = 0. Since X,- * 0, and X, # 0, Afj = Btj = 0 and [Y„ Y}] = 0. 

Let / <m<j; [[Yh Y,], YJ = [[Y{, Y J, Y3] + [Y„ [Yh YJ] so 
AijXiYi = X,{A{jYi + BijY,) and X{Bt/ = 0. Since X{ / 0, 5,7 = 0 and 
[7,-, Yj] = AM. 

The subalgebea of g generated by Ym+l9 . . . , Yn is solvable and has 
dimension less than «; by induction it has a basis Zm+1, . . . , Zn such that 
[Z,., Zj] = ^4f7Zf. whenever i < j . Clearly Yl9 . . . , Ym9 Zm+1, . . . , Zn is the 
desired basis for g. 

LEMMA 14. If g is a solvable Lie algebra of dimension n which admits a 
minimal generating set with n elements, there is a basis y1? . . . , Ym9 Ym+l9 

. . . , Ynfor g such that 
a) when i < j , [Yi9 Yj] = A£JYi9 

b) when 1 ^ i,j ^ m9 [Yi9 Yj] = 0, 
c) when m + 1 ^ z,y ^ «, [7,-, 7y] = 0, ««J 
d) no non-trivial linear combination of Fw+i, . . . , Yn acts trivially on the 

space generated by Yl9 . . . , Ym. 

PROOF. By Lemma 13, there is a basis satisfying a). For each such basis, 
there is an m such that the first m elements commute and the first m + 1 
elements do not commute. Choose a basis maximizing this m. This basis 
satisfies a) and b); we show it also satisfies c) and d). 

If i <j<k9 [[YÏ9 Yj], Yk] = [[Yi9 Yk}9 Yj] + [Yi9 [Yj9 Yk]] so A^A^Y, = 
A^ijYi + AjtAtjYt and AijA» = 0. In short, [Yi9 Y>] = 0 or [YJ9Yk] = 0. 

Suppose m+l<j<k^n and [Yj9 Yk] ^ 0. It is easy to see, using 
the calculation just concluded, that Yl9 . . . , Ym9 Yj9 Ym+Ì9 . . . , Yj9 . . . , Yn 

is a new basis satisfying a) ; at least the first m + 1 elements of this new 
basis commute, contradiction. 

Suppose S?=m+i hYi acts trivially on the subspace generated by Yi, . . . , 
Ym and Ay * 0. Then £? = w + 1 l>Yi9 Yl9...9 Ym9 Ym+l9 . . . , Yj9 . . . , Yn is a 
new basis satisfying a), and at least the first m + 1 elements of this new 
basis commute, contradiction. 

REMARK. Let Yl9 ..., Yn be a basis with the properties described in the 
previous lemma. Notice that ad Ym+l9 ..., ad Yn act on the space generated 
by 7j, . . . , Ym. Consider the associated m x m matrices; each is diag
onal. If @ is the space spanned by these matrices, clearly g ^ {(A | v> G 
a(m)\A e@}. 
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LEMMA 15. Let Al9 . . . , Ar be a basis for Qj. Let Xx = (Ax \ v{}9 . . . , 
Xr = <^4r|vr> belong to g = {<^4|v> e a(m) \ A e <&} and suppose 
[Xi9 Xj] = AjjXj + BjjXj. There is an automorphism of g taking Xl9 . . . , 
Z r ^ < ^ | 0 > , . . . , <^ r | 0> . 

PROOF. Since M, | v ,> , <^y|vy>] = <0 |^v y - Ajv,} = A{j <v4,|v,-> 
+ Btj<Aj\Vj>, AiVj = AjVf. 

Consider the map 0«2L>v4,|v» = <£rfv4f-| v — J^r^v/}. This map 
carries <̂ 4f-1 v,-> to <y4J0>; it is an automorphism precisely because 
AiVj = Ajv0 

REMARK. Clearly, Lemma 15 implies that any minimal generating set 
of «^4 | v> ea(m) \ Ae@} with n elements is equivalent to « ^ | 0>, 
...9<Ar\ 0>, (Bx | vj), . . . , <£m, vm>} where {Al9 . . . , Ar} is a basis of 
Q) and {v1? . . . , vm} is a basis of Rm. Notice that [(Ax | 0>, {Bj | vy>] = 
<0 | A-Vj} = Aij^Ai10> + B^B^Vj}, so each A{ acts diagonally with 
respect to the basis vl5 . . . , vm. Let el9 . . . , em be the standard basis 
of Rm and choose a matrix M such that Mv,- = e{\ then (p(A | v> = 
<M^M-!|Mv> maps g to {(A | v> e a(m) | i e M ^ M"1 = @}9 <^,-10> 
to (MAiM-i | 0> and <£,1 v,> to (MB^-1| e,>. 

THEOREM 4. y4 L ^ algebra g of dimension n admits a minimal generating 
set with n elements if and only if it is isomorphic to sl(29 R) x • • • x 
sl(2, R) x {{A | v> e a(m) \ Ae<3} where <3 is a linear subspace of the set 
of all m x m diagonal matrices. IfXl9 . . . , Xnis a minimal generating set 
for g with n elements, it is possible to choose the isomorphism so that Xh . . . , 
Xn are taken to real scalar multiples of 

•'•»0 x ••• x ( o - l ) x ••* x ° x <0|0>' 
0 x * " ' x (o - l) x ' * * x ° x <° I °>> 

O x . . . x ( j _ J ] x . . . x 0 x <010>, 

O x . . . x 0 x (Ax\ 0>, • - -, 0 x . . . x 0 x (Ar | 0>, 0 x • •. x 0 x 
<i?i | e{)9 . . . , 0 x . . . x O x <#m, emy where {Ah . . . , Ar} is a basis 
for 2)9 {eh . . . , em} is the canonical basis ofRm

9 and Bj e <&. 
This last set is a minimal generating set just in case Bj = 0 whenever two 

or more A{ are non-zero on ej9 Bj = XjA0^ whenever exactly one Ai9 say 
Aa(j), is non-zero on ey, and TBJ = juBk whenever Bkej = rey and Bjek = 
fj,ek. 

PROOF. This is a summary of our previous results; the proof of the 
last claim is straightforward. 
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III. The order of generation problem for solvable groups. 

THEOREM 5. Let G be a connected solvable n-dimensional Lie group, {Xh 

. . . , Xn} a minimal generating set for G. The order of generation of G with 
respect to {Xl9 . . . , Xn} is n. Every element of G can be written in the form 
expfoZi)© . . . o cxp(tnXn) if and only if (in the notation of Theorem 4) each 
Àj = 0. 

PROOF. By Theorem 3, the Lie algebra of G is isomorphic to {{A | v> e 
a(m) | A e <$} where 2 is a linear subspace of the set of diagonal matrices. 
Let A(m) be the affine group {{A, v> | A e GL(rn, R), v e Rm}; recall that 
(A, v> o (B, w> = (AB, Aw + v>. Consider the group G = {(A, v> e 
A(m) | A e exp(^)}. Its Lie algebra is clearly {(A | v> e a(m) | A e Qf\. 
Since each element of Q> is diagonal, exp: <$ -> exp {0) E GL(m, R) is a 
homeomorphism, so {(A, v> e A(m) \ A e exp &} is homeomorphic to 
ßdim®+m a n ( j ^ g simpie connected. Consequently G must be the uni
versal covering group of G. The center of G is easily seen to be {</, v> 
eA(m) | Q)\ = 0}; by general Lie theory, there is a discrete subgroup 
N g {</, v> | ^ v = 0} such that G s G/JV. 

The generators of g have the form <>4,| 0> or <2?y| ej) where Bj{ej) 
= ^ygy. A short calculation shows that exp t(A{ | 0> = (etAi, 0>, 
exp t(Bj\e>> = <e*B>, tey> if ftj = 0, and exp t(Bj \ ej) = (etBJ, (I/JLLJ) 

By Sard's theorem [9], the order of generation of a Lie group of dimen
sion n with respect to any {Xl9 . . . , X,} is at least n. Consider a typical 
expression of length n in G involving all the generators; it has the form 

< ^ i , Uh) ehy o . . . o < ^ A <l>n(tn) einy 

= <es«D<, 0i(*i) ^ + e ^ i 02('2) eh + • • • 

where each D{ is one of Al9 . . . , Ar, Bx, . . . , 2?m, each e{. is one of 0, eÌ9 

. . . , em, and each 0f{ff-) is f, or (l/{i)(etiß - 1). Moreover, ey occurs exactly 
once, say in the v(j)-th term. We want to make this expression equal 
<exp(Efif^i)> HOjej} by correctly choosing th . . . , ?„. This will be done 
as follows. First we shall choose f's for the terms <2?; | ej} where @ej = 0. 
Next we shall choose t 's for the terms <2?; | ey> where ^y = XjAff(j), Ay ^ 0, 
Aa(j)(ej) ^ 0. Simultaneously we choose f's for the terms <^ |0> . Finally 
we shall choose t's for the remaining <2?y | ey>, ^ ; = 0. 

Consider first those ej for which ^e;- = 0. Then JJLJ = 0, 0V (/>(*„(/)) 
= fv(y) and 

v(y)-i 
exp( S *,A) */ = */• 
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In short, e,- enters into the final product in the form tv(j)ej and we are 
forced to choose tv^ = Of, let this be done. 

Leaving the difficult case until last, suppose t's have been chosen for all 
terms except those of the form <£y | ey>, Bj = 0. Consider a typical 
<0 | ej}. The choice of tv{j) does not affect any of the terms of the form 
exp(l]t;Dt) and ej enters into the final product as tv(J)Gxp(J^riDt)eJ: 
Since exp(2*,-A-) ej *s a non-zero multiple of ey, there is a unique tv^ such 
that tv(j) exp(2*,-A-) ej equals Ojej. 

It remains to choose r's for (A{ \ 0> and (B; \ e,}. For each such7, there 
is exactly one Ai9 Aaij), such that A(7ij)ej =£ 0; Bj = ÀjAa(JU Ay # 0. Let us 
concentrate on a fixed A0^ ; call it A. Le t / i , . . . , / s be the {e7} correspond
ing to this^; order the/'s so that/i occurs furthest to the left in the pro
duct being considered, f2 occurs next, etc. Then Afa = rjifi where rji is a 
non-zero constant. Call the generator corresponding to f{ <A,v4|/>, 
Xt: # 0; this involves an abuse of notation, since the subscript i on A,- is 
supposed to refer to the i-th e rather than the i-th/, but it will not matter. 

If iß, I ey> is a generator and ^y/- 7e 0, ej is one of the/'s. Indeed, ^y 
is not zero, so <&ej = 0 or else exactly one Ak is non-zero on ej and Bj is a 
multiple of that ̂ Ä; in this last case Ak is clearly A and ey is one of the / ' s . 
If Q)ej = 0, apply the condition at the end of Theorem 4 to <ßj \ ef) and 
QiA I/ ,); Bjfi = *•/• so rA,v4 = 0, so z = 0. 

Suppose the term corresponding to (A | 0> occurs between the r-th and 
the (r - l)-stft. Call the t corresponding to Q{A | / > "«/' and the f cor
responding to <>4 I 0> "w". Consider the product <exp(2XA)> <fi(ti) eu 

+ • • •>; the coefficient of A in £* ,A is >liwi + • • • + Xsus -b w,/i occurs 
as 

/ 2 a s 

/ sas 

i^r^m-1>^ 

(^2172 __ l ) ^ l " l ^ / 2 , 

> ^ 2 

etc., up t o / r ; / r + 1 occurs as 

1 

A ^«3^373 _ l)^(^l»l+^2«2)^/3 

(^«r+1^+1^+1 — l)gWl«l+'"+A r ir r+«)i4y 
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etc. Consequently we must choose ul9 . . . , us, u so that (if/, = ez{i)) 

XiUi + • • • + lsus + u = eff(j), 

1 .(film- l) = 0r(1) 

J (e«2̂ 2% — 1)̂ 1«1% = ßr(, 

t (euArVr _ l)e(hui+-+*r-lUr-i)Vr =: Q , , 

(eUr+llr + lVr+l _ lV(^l«l+-+^r«r+«)'?r+l = $ ( -

h+lVr+1 

— (eftsisVs _ i)eWi«i+-+*s-i«*-i+«o% — g 

Substituting the first equation in the last s — r equations and reordering, 
we have 

e*i*m - 1 = Ai?i0r(i, 

^ 2 % - 1 = X2r]20r(2)e~hum 

euArVr _ 1 = XrT]rex{r)e-^U^-"-+Xr-\Ur-l)Vr 

1 -e~u^s = As7]sdHs)e-£<*»Vs 

1 « g-n,-i*,-i%-i = As-i^-iÔHs-l)^5"5 -^0 '*-1 

1 _ e-Ur+l*r+lVr+l = ^ r + 1 ^ r + 1 0 r ( r + 1 ) ^s«s+-+^+2'?r+2-e(T(y)7r+l 

" = £,(/) - /liWi - * • * - *sus 

These equations can be solved successively provided Xi7]idTa) è 0, . . . , 
KvA(s) ^ 0, XsVAis) ^ 0„ . . . , Ar+i97r+1ör(r+i) ^ 0. Consequently 
<exp(2]£f/4l), 20ye>> can be written in terms of some expression of length 
n; the order of the terms in this expression must be carefully chosen. Since 
the order of generation of G is thus g n, the order of generation of G 
is ^ n. 

Our calculation shows that every element of G can be written in terms 
of the fixed expression exp(/1A

r
1) o . . . o cxp(tnXn) if each A,- = 0. If some 

A, is non-zero, the expression exp(r1Ä
r
1) o. •. o exp(tnXn) cannot give every 

element of G, for eUiXi7ii — 1 > —1 and 1 — e~UiXi^ < 1. 
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It follows that the expression cannot give every element of G = G/N. 
Indeed N E {</, v>| Q)v = 0}; if <3v = 0 and v is written as a linear 
combination of eh . . . , em, the coefficient off is zero because Av = 0, 
4̂ acts diagonally, and Af # 0. Thus elements in G equivalent modulo 

N have the same/ , components; if one cannot be written in the form 
exp(?1A

r
1) o . . . o Qxp(tnXn), neither can the others. 

IV. Reduction of the general case to the semisimple case. Let SL{2, R) 
be the universal covering group of SL(2, R), The simply connected Lie 
group corresponding to the Lie algebra g = sl(2, R) x • • • x sl(2, R) x 
{(A | v> e a{m) \ A e @} is clearly G = SL(2, R) x • • • x SL(2, R) x 
{(A, v> e A(m) \ A e exp Oi). Recall that the center of SL(2, R) is isomor
phic to Z [4]; the center <g of G is thus Z x . . . x Z x {</, v> | ®v = 0}. 
If G is a connected Lie group with Lie algebra g,G^ G/N for some dis
crete subgroup N of <£\ 

THEOREM 6. Let N be a discrete subgroup of Z x . . . x Z x {</, v> | 
$)v = 0} and suppose {Xl9 .. ., Xn} is a minimal generating set for g, 
as given in theorem 4. Let the order of generation of SL(2, R) x • • • x 
SL(2, R)/N with respect to 

•••>° x ••• x ( o - l ) x "" x °> 

O x . . . x (Q _ ^ x . . . x 0, 

O x . • • x ( 2 _ i ) x " • ' x 0 > 

be M, where N is the image of N under the projection Z x . . . x Z x 
{</, v> | Q)v = 0} -• Z x . . . x Z. The order of generation of G = G/N 
with respect to Xl9 • • •, Xn is N + m + dim $>. There is a fixed expression 
exp(r1A

r
ll) o exp(f2^2) o . . . of length M + m + dim Q) giving each ele

ment of G just in case there is a fixed expression of length M giving each 
element ofSL(2, R) x . . . x SL(2, R)/N and each X{ = 0. 

REMARK. We will later show that no fixed expression of length M gives 
each element of SL(2, R) x • • • x SL(2, R)/N. Consequently, unless G 
is solvable no fixed expression of length M + m + dim 3> gives each 
element of G. 

PROOF. Let <F be a family of expressions of length M giving the entire 
group SL(2, R) x . . . x SL(2, R)/N. Let ^ be a family of expressions of 
length m + dim Ç& giving the entire group {<^4, v> e A(m) \ A e exp ^ } ; 
such a & exists by Theorem 5. Write & x <g for the set of all expressions 
of length M + m + dim Q) obtained by multiplying expressions in 3F by 
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expressions in ^ . We claim &? x <g generates G. Indeed let ax x a2 be a 
representative of an element of G, where ax e SL(2, R) x • • • x SL(2, if) 
and a2

 G {{A v> I ^ e exp Qi). We can find nxeN and an expression in & 
giving a^ix. Let «x x n2 G JV. We can find an expression in & giving 
a2«2- Consequently there is an expression in 8F x <g giving Ö ^ x a2«2 = 
(Û! x a2)(

wi x nò- Thus the order of generation of G is at most M + m + 
dim££. In particular if a single expression generates SL(2, R) x • • • x 
SL(2, #)/JV and each /I,- = 0, <F and ^ can be chosen containing a single 
expression each, so G is generated by one fixed expression. 

Conversely let ^f be a family of expressions of fixed length / generating 
G. Each expression in ^f has the form exp(r1A

r
fl) o . . . © exp(r/A

r
f/). Let 

^f be the set of all expressions in 34? which involve each of the m + dim Çè 
generators of {(A | v> e a(m) \ A G ££} at least once. 

Since {iA1 | 0>, . . . , (Ar | 0>, < ^ | ex>, . . . , (Bm | O } is a minimal 
generating set for {(A \vy \ A e ^ } , the subalgebra generated by any 
m + dim <3 — 1 of these terms has dimension m + dim <2> — 1. Let i^, . . . , 
Äp be the subgroups of {(A, v> G A(m) \ A e exp Qy\ corresponding to all 
such subalgebras. Each R{ is a set of measure zero in {(A, v> | A G 
exp^}. Let N be the image of N under the map Z x • • • x Z x 
{</, v> I ®v = 0} -> {</, v> I ®v = 0}. Since # i s countable, (Jf=1 (JW.G£ 
A,-«/1 is a set of measure zero and we can choose a2 G {{A, v}\Ae exp ^ } 
not in any R^nj1 If ax e SL(2, R) x • • • x SL(2, 7?), ^ X a2 represents 
an element in G, so there is an element nx x n2eN and an expression in 
jj? giving (#! x a2)(rii x n2). But a2

w2 c a n o n ly be given by an expression 
involving all generators of {(A | v> | A e @}9 so $ is not empty and 
indeed the SL(2, R) x • • • x SL(2, R) terms of the expressions in # 
generate SL(2, R) x • • • x SL(2, R)/N. Consequently some expression 
in # involves at least M generators of sl(2, R) x • • • x sl(2, R) ; all ex
pressions in # involve at least m + dim g> generators of {{A | v> | A e ££} 
so / ^ M + m + dim ^ . 

Finally, suppose j-f contains only one expression and / = M + m + 
dim ^ . By the argument just concluded, the SL(2, R) x • • • x SL(2, R) 
part of this expression has length M and generates 5L(2, #) x • • • x 
SL(2, R)/N. The {(A, v> | 4̂ G exp <3} part of the expression has length 
m + dim Qi and generates {<>4, v> | A G exp ^}/{<7, v> | ̂ v = 0}. By the 
last step in the proof of theorem 5, each jlt is zero. 

V. The order of generation problem for semisimple groups. Define integer-
valued functions /^(x), h2(x), and h3(x) = h2( — x) on R as follows: h({x) = 
[3 I x I ] + 3 if x $ Z ([x] denotes, of course, the greatest integer less than 
or equal to x); /^(O) = 0, h2(0) = /z3(0) = 2; if n is a positive integer, 
hx(n) = h2(n) = hz( — n) = 3« + 3; if n is a negative integer, /*!(«) = 
3|/i| + 3 and h2(n) = Ä 3 ( - H ) = 3|«| + 2. 
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THEOREM 7. Let N be a subgroup ofZP=Zx • • • x Z. The order of 
generation of SL(2, R) x • . . x SL(2, R)/N with respect to 

•••>° x ••• x ( o - l ) x "" X °' 

Ox . . . x ( o _ i ) x ••• x 0, 

Ox . . . x ( 2 _ J j x . . . x 0, •-. 

is the smallest integer M such that whenever 1 ^ ij ^ 3, 

{(xl9 ...,x,)\ hh(Sl) + - - - + At>(^) ^ M} 

contains a representative of each element in RPjN. 

PROOF. The group PSL(2, R) = SL(2, R)/{± 1} = SL(2, R)/Zacts on 
the projective line P1 = R \J {oo} by 

\cd) ax + b 
x * ex + d ' 

Call an ordered triple (A^, X2, ̂ 3) m P1 x P1 x P1 oriented if there is a 
cyclic permutation a such that —00 < xff(1) < xa(2) < xa(S) ^ 00. If 
(JCJ, JC2, *3) and (yl9 y2, j>3) are oriented triples, PSL(2, R) contains a unique 
element mapping xt- to y{. 

Let L be the universal covering space of Pl, z:L-> P1 the covering map. 
Of course L is homeomorphic to R. Choose this homeomorphism so that 
T(0) = 00, T(1/3) = — 1, T(2/3) = 0 and x -» x + n is a covering trans
formation for each integer n. 

There is a natural map 0: SL(2, i£) -• {(aL, a, b, e) e L x P1 x P1 x 
Px\T(aL) = a, (a, b, c) an oriented triple} defined as follows. Suppose 
g e SL(2, R). Let %\ SLÇ2, R) -• PSL(2, i?) be the canonical projection; 
7u(g) maps (00, — 1, 0) to an oriented triple (a, b, c). Choose a path v(t): 
[0, 1] -> SL(2, i?) starting at the identity and ending at g; (7uv(t))(oo) is a 
path in P1 starting at 00 and ending at a. This path uniquely lifts to a path 
in L starting at 0 and ending at a point aL over a. Let 0(g) = (aL, a, c, b). 
The map 0 is one-to-one and onto; it carries the center of SL(2, R) to 
{(n, 00, — 1, 0) I n e Z}. Moreover, if 0(g) = (AL, a, è, e) and 0(A) = 
(«,00, — 1, 0), 0(gA) = (aL + n, a, b, c). For details, see [4]. 

LEMMA 16. Whenever g e SL(2, R) satisfies 0(g) = (aL, a, b, c), g caw 
6c represented by an expression of length [3\aL\] + 3. For each aeP1 there 
is a triple (a, b, c) such that no g for which 0(g) = (aL, a, b, c) and aL ^ 0 
can be represented by an expression of length [3|aJ] + 2. 
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PROOF. For convenience let X, Y, and Z denote the one parameter 
groups 

e x P'(o _ ?)' e xP '(o - l)> a n d e xP ' ( - 2 - 1 ) 

respectively. Notice that each element of X leaves 0 and oo fixed; X acts 
transitively on (— oo, 0) and (0, oo). Similarly the fixed points of Y are 
— 1, oo and those of Z are — 1, 0; Y and Z act transitively on the con
nected components of the complements of their fixed point sets. We shall 
think of X, Y, and Z in four different ways : as one parameter groups in 
SL(2, JR), as the corresponding one parameter groups in PSL(2, R), as one 
parameter groups acting on P1, and as one parameter groups acting 
on L. No confusion results (we hope) ! 

< > < » « • 

exq(fX) :—* o # * o # * o # *— 
- 4 / 3 - 1 - 2 / 3 - 1 / 3 0 1/3 2/3 1 4/3 5/3 

In L9Xleaves 0 + Zand 2/3 + Zfixed and acts transitively on(—1/3 + 
n, 0 + ri) and (0 + n, 2/3 4- ri) (see figure). Similarly Y leaves 0 + Z 
and 1/3 + Z fixed and acts transitively on(0 + n, 1/3 + ri) and (1/3 + n, 
I + n); Z leaves 1/3 + Z and 2/3 -+- Z fixed and acts transitively on 
(—1/3 + n9 1/3 + ri) and (1/3 + «, 2/3 + ri). During the arguments in 
the following pages the reader will often find it useful to draw orbit pictures 
in L. 

Notice that Z(0) can be any point in [0, 1/3), XZ(0) any point in 
[0, 2/3), YXZ(0) any point in [0, 1), etc. Similarly, Z(0) can be any point 
in ( -1 /3 , 0], YZ(0) any point in ( -2 /3 , 0], ATZ(0) any point in ( - 1 , 0], 
etc. In short, for each aL e ( — kß, k/3) there is an expression . . . Z of 
length k mapping 0 to aL. The inverse of the projection of this expression 
to PSLÇL, R) maps a to oo and so maps (a, b, c) to (oo, b, c). 

If — 1 < c, there is an element in Y mapping 0 to c. If this expression 
maps b to 5, it maps (oo, è, 0) to (oo, b, c); since all triples are oriented, 
b < 0 and there is an element in X mapping — 1 to b, so . . . ZYX maps 
(oo, — 1, 0) to (a, ò, c) and 0 e L to aL. 

I f c ^ — 1, 5 < c < 0 and there is an element in X mapping — 1 to 5. 
Let this expression map c to c; then (oo, — 1, c) maps to (oo, b, c), so 
— 1 < c and there is an element in Y mapping 0 to c. Thus . . . ZXY maps 
(oo, — 1, 0) to (a, b, c) and 0 e L to aL. 

Thus whenever —kß < \aL\ < kß, the element in SLÇL, i£) correspond
ing to (aL, a, b, c) can be written as a product with k 4- 2 terms. The 
first part of the lemma follows. 
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As for the second part of the lemma, if a e [oo, — 1] let ò = — 1, c = 0. 
If a e [ - 1 , 0), let b = 0, c = oo. If a e [0, oo), let b = oo, c = - 1 . We 
shall discuss the case a e [oo, — 1], leaving all other cases to the reader. 

Consider an expression in X9 Y, Z of length k + 2, where k = [3|tfJ]. 
One of oo, —1, 0 is left fixed by the first two terms in this expression. 
Let / e L be a point over this fixed element; / is equivalent to 0, 1/3, or 
2/3. The image of / under the third term in the expression must belong 
to ( / — 1/3, / + 1/3), its image under the fourth term must belong to 
( / — 2/3, / + 2/3), etc., and its final image must belong to ( / — k/3, 
/ + k/3). 

If the first two terms leave oo fixed, the image of 0 in L belongs to 
( — k/3, k/3) and so cannot equal aL. Otherwise, suppose for a moment 
aL > 0. Since z(aL) = a e [oo, —1), aL = m + 7], where m is a non-
negative integer and 0 ^ rj < 1/3; [3aL] = 3m, k = 3m. If the first two 
terms leave — 1 fixed, the image of 1/3 in L belongs to (1/3 — m, 1/3 + m); 
since — 1 is mapped to — 1, this image must be equivalent to 1/3. Hence 
the image of 1/3 is at most 1/3 + m — 1 ; since 0 < 1/3, the image aL of 
0 is smaller than the image of 1/3, and so smaller than 1/3 + m — 1, 
contradiction. If the first two terms leave 0 fixed, the image of 2/3 in L 
belongs to (2/3 — m, 2/3 + m); since 0 is mapped to 0, this image must 
be equivalent to 2/3 and so must be at most 2/3 + m — 1; as before, 
aL < 2/3 + m — 1, contradiction. 

If aL < 0, let aL = —m + 7], where m is a non-negative integer and 
7] e [0, 1/3); then [3\aL\] = 3m — 1 or 3m and at any rate k ^ 3m. If the 
first two terms leave — 1 fixed, the image of — 2/3 in L belongs to ( — 2/3 — 
m, — 2/3 + m) and is equivalent to — 2/3, so it is greater than or equal 
to — 2/3 — m + 1 ; since — 2/3 < 0, the image aL of 0 is greater than the 
image of —2/3, so — 2/3 — m + 1 < aL, contradiction. If the first two 
terms leave 0 fixed, the image of —1/3 in L belongs to (—1/3 — m, 
1/3 + m) and is equivalent to —1/3, so it is greater than or equal to 
—1/3 — m + 1 ; as before —1/3 — m + 1 < aL, contradiction. 

LEMMA 17. Let (00, b, c) be an oriented triple. There is an i, 1 ^ / ^ 3, 
such that whenever g e 5L(2, R) and (/>(g) = (n, 00, b, c), g can be repre
sented by an expression of length ht{n). For each i9 there is a triple (00, b, c) 
such that no g for which (/>(g) = (n, 00, b, c) can be represented by an 
expression of length ht{n) — 1. 

PROOF. The element corresponding to (n, 00, — 1, 0) can be represented 
by an expression of length /^(w), but not by an expression of length 
hi(n) — 1. Indeed, if n = 0, this element is just the identity and the 
result is obvious. Otherwise Lemma 16 applies. 

If — 1 < b or 0 < c, the element corresponding to (n, 00, b, c) can be 
represented by an expression of length h2(n); if — 1 < b < 0 and 0 < c, 
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this element cannot be represented by an expression of length h2{ri) — 1. 
Indeed suppose — 1 < b, If n > 0, Lemma 16 shows that the element 
corresponding to («, oo, b, c) can be written as a product of length h2(n). 
It is easy to see that (0, oo, b, c) can be written as a product of length 2. 
Suppose n < 0; then h2(n) = 3\n\ + 2. But 1/3 in L can be mapped to any 
point in (0, 1/3) by a single term, to any point in ( —1/3, 1/3) by two terms, 
etc., and so to any point in ( - (3 |« | - l)/3, 1/3) = (-\n\ + 1/3, 1/3) by 
an expression with 3\n\ terms. In particular, it can be mapped by such an 
expression to the element bL in ( — \n\ + 1/3, — \n\ -h 1) such that T(bL) = 
b. As in the proof of Lemma 16, it is then easy to find an expression of 
length 3|«| + 2 mapping 1/3 to bL and (oo, —1, 0) to (oo, b, c). Since 
0 < 1/3, the image of 0 in L must be smaller than the image of 1/3 inL, 
so aL < bL < — \n\ + 1. Since aL is an integer, \aL\ ^ — \n\. But expres
sions of length 3 \n\ + 2 carry 0 into (—|«| — 2/3, \n\ + 2/3), soaL = — \n\ 
and the expression of length 3|w| + 2 obtained yields the element in 
SL(2,R) corresponding to (— \n\9 oo, b, c). A similar argument works 
when c < 0. 

Suppose — 1 < b < 0 and 0 < c. No expression of length h2(n) — 1 can 
represent^, oo, 6, c). Indeed if n = 0, h2(n) — 1 = 1 and all expressions 
with one term leave — 1 or 0 fixed. If n > 0, one of oo, — 1, 0 is left fixed 
by the first two terms of a given expression of length h2(n) — 1 = 3« + 2. 
If this element is oo, 0 in L is mapped to aL < n. If it is — 1, 1/3 in L is 
mapped to an element less than n + 1/3 and equivalent to an element in 
(1/3, 2/3) and consequently less than n — 2/3, so aL < n — 2/3. If 0 is 
left fixed by the first two terms, 2/3 in L is mapped to an element less 
than n + 2/3 and equivalent to an element in (2/3, 1) and consequently 
less than n, so aL < n. 

If n < 0, one of oo, — 1, 0 is left fixed by the first two terms of a given 
expression of length h2{n) — 1 = 3|«| + 1. If this element is oo, — \n\ — 
1/3 < aL. If it is — 1, —2/3 in L is mapped to an element greater than 
— \n\ — 1/3 and equivalent to an element in (1/3, 2/3) and consequently 
greater than — \n\ + 1/3, so — \n\ + 1/3 < aL. If 0 is left fixed by the 
first two terms, — 1/3 in L is mapped to an element greater than —1«|, so 
- \n\ < aL. 

If b < — 1 or c < 0, the element corresponding to («, oo, b, c) can be 
represented by an expression of length h^Qt) ; if b < — 1 and — 1 < c < 0, 
this element cannot be represented by an expression of length h3(n) — 1. 
The proof is exactly as before. 

The three statements just proved clearly imply Lemma 17. 

CONCLUSION OF THE PROOF OF THEOREM 7. Let gx x . . . x gp belong to 
SL(2, R) x . . . x SL(2, R), and suppose 0(gy) = (aLJ, ah bh cy). By 
Lemmas 16 and 17, there is an iy, 1 g ij g 3, such that whenever n e Z, 
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the element in SL(2, R) corresponding to (aLJ + n, aj9 bh cj) can be 
written as a product of at most hi(aLj + n) terms. Since (aLti, . . .,aLtP) 
is equivalent modulo N to an element of {(xl9 . . . , xp) \ hh{x{) + • • • + 
hip(xp) S M}9 there is an n± x • • • x npinN such that g ^ x • • • x gptip 

can be written as a product of length at most M. 
Conversely suppose the order of generation of SL(2, R) x • • • x 

SL(29R)/N is M. Let (xl9 ...,xp)eRP and let hiv . . .9hip be given, 1 ^ 
ij ^ 3. By Lemmas 16 and 17, for each j there is an oriented triple 
(T(XJ), bj9 Cj) such that whenever n e Z, the element gy in 5L(2, i?) cor
responding to (xj + «, r(xy), bj, cj) cannot be written as a product of fewer 
than h{ (xj + n) terms. But gj x • • • x gp is equivalent to an element 
that can be written as a product of length at most M9 so there is an 
element nx x • • • x np in N, depending on the x/s and the i/s, such that 
**y(*i + ni) + • • • + A ^ + w#) = M -

COROLLARY 1. TÂ  order of generation of SL(2, R) x • • • x 
5L(2, R)/N is finite if and only if N has maximal rank. 

PROOF. By the theorem, the order of generation is finite if and only if 
there exists a compact subset of RP containing a representative of each 
element of R x . . . x R/N; it is well known that this happens just in 
case N has maximal rank. 

COROLLARY 2. If n > 0, the order of generation of SL(2, R)/nZ is 
[(3n + 6)/2]. 

PROOF. Notice that {x \ h^x) ^ M} = ( - ( M - 2)/3, (M - 2)/3) 
whenever M ^ 3. If (M — 2)/3 is not an integer, {x | h2{x) ^ M} = 
( - (M - 2)/3, (M - 2)/3) and {x | A3(x) ^ M} = (- (M - 2)/3, 
(M - 2)/3). If (M - 2)/3 is an integer, {x | Ä2(x) g M} = [- (M - 2)/3, 
(M - 2)/3) and {x | A30c) ^ M} = ( - (M - 2)/3, (M - 2)/3]. The 
order of generation of SL(29 R)/nZ is thus the smallest M such that 
[- n/2, n/2] E ( - (M - 2)/3, (M - 2)/3); a little thought shows that 
M = [3n + 6)/2]. 

REMARK. Think of Pl as a circle. Using our results, the reader can show 
that SL(29 R)/nZ9 n even, contains a unique element of maximal length; 
this element turns the circle through n/2 revolutions. If n is odd, 
SL(29 R)/nZ contains a family of elements of maximal length; each such 
element turns the circle through (n — l)/2 revolutions and then twists it 
an extra half turn so that each fixed point goes into the open interval 
bounded by the other two fixed points. 

REMARK. When N E Z x . . . x Z has maximal rank, routine algebra 
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shows that N can be generated by the row vectors of a triangular matrix 

"ll "12 "13 ' • • «1/» 1 

0 /2 2 2 «23 • • • "2/> 

0 0 n33 . . . "3J 

THEOREM 8. a) The order of generation ofSL(2, R) x . . . x SL(2, R)/N 
is less than or equal to [(3«n + 6)/2] + . . . + [(3npp + 6)/2]. 

b) If the off-diagonal entries in the above matrix vanish, the order of 
generation of SL(2, R) x . . . x SL(2, R)/N is exactly [(3«n + 6)/2] + 
• • • + l<?n„ + 6)/2]. 

PROOF. Let g = gx x . . . x g^ belong to SL(2, if) x . . . x SL(2, R). 
The order of generation of SL(2, R)/nnZ is [(3«n + 6)/2], so g is equiva
lent via a multiple of nn x «12 x . . . x ^ t o ^ x g] x ••• x g] where 
hx can be written as a product of [(3«n + 6)/2] terms. Similarly Ax x 
g2 x • • • x ĝ  is equivalent via a multiple of 0 x «22

 x • • • x n2p t o 

hi x h2 x . . . x g^1 where A2 can be written as a product of [(3«22 + 6)/2] 
terms. Continue. Eventually g is equivalent modulo N to Ax x . . . x Â̂  
where each h{ can be written as a product of [(3«|V + 6)/2] terms. 

Suppose next that all off-diagonal entries are zero. There are elements 
gi, . . . , gp in SL(2, R) such that no element equivalent to g{ via a multiple 
of nu can be written using fewer than [(3nH + 6)/2] terms. Consequently 
no element equivalent to gi x . . . x gp via N can be written with fewer 
than [(3«n + 6)/2] + • • • + [(3«^ + 6)/2] terms. 

REMARK. One can calculate the order of generation of SL(2, R) x . . . 
x SL{2, R)/N for a fixed N in a finite number of steps. Indeed, hh(xi) + 
• . . + Af-/*j) is constant on subsets of the form Sx x . . . x Sp where 
Sj = ( / /3 , / + 1/3) or St = {V/3}. Each such subset is entirely inside or 
entirely outside {(xl5 . . . , xp)\ hh(xi) + . . . + hip(xp) ^ M}. Moreover 
(Si x . . . x Sp)o(ni x . . . x w )̂ is again a set of the form Si x . . . x 
Sp. Each (xi, . . . , xp) is equivalent to some (>>i, . . . , j ^ ) such that \y^\ ^ 
«lV/2. Consequently each Si x . . . x Sp is equivalent to Si x . . . x Sp 

such that S, g (-(3«,v + 2)/6, (3«|V + 2)/6). The set # of such S± x 
. . . x Sp is finite. The order of generation is less than or equal to 
M if and only if whenever 1 g ij ^ 3, each element of # is equivalent 
modulo N to an element of ^ inside {xx, . . . , xp) \ hh(x{) + • • • 4- hip(xp) 
è M}. 

In practice, it pays to proceed in a less systematic manner. 
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EXAMPLE. Let N be the subgroup of Z x Z generated by 1 x 2 and 
0 x 5. By Theorem 8, the order of generation of SL(2, R) x SL(29 R)/N 
is at most [(3 + 6)/2] + [(15 + 6)/2] = 14. However the actual order of 
generation is 11. 

Indeed any point in R2 is equivalent to a point in {(xl9x2)\ \xx\ ^ 1/2, 
\x2\ ^ 5/2}. If 3/2 ^ x2 ^ 5/2, (jtl5 x2) is equivalent to (x1 — 1, x2 — 2) 
and - 3 / 2 £ xx - 1 £ - 1 / 2 , - 1 / 2 ^ x2 - 2 ^ 1/2. If - 5 / 2 ^ x2 ^ 
— 3/2, (JC1? *2) is equivalent to(jCi + 1, x2 + 2) and 1 / 2 ^ ^ + 1 ^ 3/2, 
—1/2 ^ x2 + 2 <̂  1/2. Thus any point in R2 is equivalent to a point in 
{(*!, ^Mxil ^ 3/2, |x2| ^ 1/2} U {(*i, x2)\\Xl\ ^ 1/2, \x2\ ^ 3/2} For 
any/ = 1, 2, or 3,/*,<*) ^ 4if|*| ^ l/2andA,<*) ^ 7 if M ^ 3/2 so every 
point is equivalent to a point (jq, *2) such that htpc^ + A,-2(*2) ^ 1 1 and 
the order of generation is at most 11. 

However consider (—1/2, 3/2); it is easy to see that Aj(—1/2 + n) + 
Ai(3/2 + In + 5m) ^ 11 for all m and «, so the order of generation is at 
least 11. 

THEOREM 9. Suppose SL(2, R) x . . . x SL(2, i?)/N Aas 0/ïfer 0/ gen
eration M. No fixed expression of length M generates SL(2, R) x . . . x 
SL(2, R)/N. 

PROOF. Pick g e SL(2, R) covering 

(-! J) 
in SL(2, R). The map g -• ggg~l is an automorphism of SL(2, R) fixing 
the center Z of SL(2, ZÊ) pointwise; the induced automorphism of sl(2, R) 
takes 

(J> - (iJ>(J>(_L?), -(_J> - (i.ï). 
Consequently, any expression of length M giving each element of 
SL(2, R) x . . . x SL(2, R)/N can be carried by a suitable automorphism 
of 5L(2, if) x ••. x SL(2, R)/N to a second such expression so that the 
first appearances of 

0 x • ' • x (o - ?) x " - x 0 and 0 x . . . x ß _ ^\ x . . . x 0 

appear to the right of the first appearance of 

Ox • • • x ( _ 2 - l ) x , " x 0 

in the new expression. From now on, fix such a hypothetical expression. 
An element gi x . . . x ^ in SL(2, R) x . . . x SL(2, R) for which 
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<J>(gt) = (aL, i» ai> *i> c i ) c a n be written in terms of this expression only if 
aLfl x . . . x aLiPis in Ax x . *. x ^ where ,4, g L is the interval of 
images of 0 in L under the induced action on L of the terms affecting the 
i-th component of the above expression. Each element of R? must be equiv
alent modulo iV to an element in^i x . . . x Ap. 

Suppose n{ terms in the expression affect the i-th SL{2i R). By an 
argument that has become standard in this paper, A{ g ( — fa — 2)/3, 
(«,-2)/3). Let h{x) = [3|x|] 4- 3; notice that h(x) ^hj(x) whenever 1 
^ / ^ 3. Since h ^ n{ on A{, Axx . . . x Ap g {fa, . . . , xp)\ hfa) 
+ • • • + h(xp) ^ «i -h • • • 4- np = M}. We are going to show that each 
point in A1 x . . . x Ap is equivalent to a point in {fa, . . . , xp)\ hfa) 
-f • • • -b h(xp) ^ Af — 1}. It will follow that the order of generation of 
$L(2, R) x . . . x SL(2, R)/N is less than or equal to M - 1 and we will 
be done. 

Consider a typical A{. The first two terms affecting A{ leave 0 fixed and 
the third term maps 0 into ( —1/3), 1/3). Since 1/2 is not equivalent modulo 
Z to any point in (—1/3, 1/3), there must be a fourth term. This term 
carries 0 into (—1/3, 2/3) or ( — 2/3, 1/3). From now on throughout the 
rest of the argument we shall suppose all fourth terms carry 0 into(— 1/3, 
2/3); the reader will soon see that our argument carries over to the general 
case with only minor notational changes. The fifth term carries 0 into 
(-2/3, 3/3), and the sixth term carries 0 into (-3/3, 3/3) or (-2/3, 4/3). 
However, if the sixth term carries 0 into ( — 3/3, 3/3), A{ g { — fa — 3)/3, 
fa - 3)/3), h(At) ^ n{ - 1, and Ax x . . . x Ap g fa, . . . , xp\ hfa) 
+ • • • + h(xp) ^ M — 1}. So the sixth term carries 0 into ( — 2/3, 4/3). 

In short, n{ ^ 4; if n( = 4, A{ g (-1/3, 2/3); if n{ = 5, A{ g (-2/3, 
3/3); if n, è 6, A, g (-fa - 4)/3, (*, - 2)/3). 

Since h(at) < n{ on (-fa - 3)/3), fa - 3)/3), every point in A1 x . . . 
x Ap not in [fa - 3)/3, fa - 2)/3) x . . . x [(np - 3)/3, (/i, - 2)/3) 
already belongs to {fa, .. .,xp)\hfa) + . . . + h(xp) ^ M - 1}. Con
sider the point fa - 2)/3 x . . . x (np - 2)/3 ; this point is equivalent 
modulo JVto a point i n ^ x . . . x y4̂ , so there is an element /x x • • • x 
/p in TV such that fa - 2)/3 - <• e ^,, If «,- = 4, -1/3 < 2/3 - <• < 2/3; 
there is not such integer /,. lfn{ = 5, —2/3 < 3/3 — /{ < 3/3 and <• = 1. 
If n{ ^ 6, -fa - 4)/3 < fa - 2)/3 - /{ < fa - 2)/3. In each case, 
[fa - 3)/3, fa - 2)/3) - /, g (-fa - 3)/3, fa - 3)/3), so each ele
ment of [fa - 3)/3, fa - 2)/3) x . . . x [fa - 3)/3, (*, - 2)/3) is 
equivalent modulo N to an element in {fa, ..., xp) \ hfa) + • • • 4- h(xp) 
^ M — 1} and we are done. 
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