ON LIE GROUPS WITH MINIMAL GENERATING SETS OF ORDER EQUAL TO THEIR DIMENSION

RICHARD M. KOCH AND FRANKLIN LOWENTHAL

Abstract

Let G be a connected Lie group with Lie algebra g, $\left\{X_{1}, \ldots, X_{i}\right\}$ a minimal generating set for g. The order of generation of G with respect to $\left\{X_{1}, \ldots, X_{\lambda}\right\}$ is the smallest integer M such that every element of G can be written as a product of M elements taken from $\exp \left(t X_{1}\right), \ldots, \exp \left(t X_{1}\right)$. We find all G which admit minimal generating sets $\left\{X_{1}, \ldots, X_{n}\right\}$ with $n=\operatorname{dim} G$; for each such set we construct an algorithm for computing the order of generation of G.

I. Introduction. A connected Lie group G is generated by one-parameter subgroups $\exp \left(t X_{1}\right), \ldots, \exp \left(t X_{t}\right)$ if every element of G can be written as a finite product of elements chosen from these subgroups. In this case, define the order of generation of G to be the least positive integer M such that every element of G possesses such a representation of length at most M; if no such integer exists let the order of generation of G be infinity. The order of generation will, of course, depend upon the one-parameter subgroups. Computation of the order of generation of G for given X_{1}, \ldots, X, is analogous to finding the greatest wordlength needed to write each element of a finite group in terms of generators g_{1}, \ldots, g_{l}.

The subgroups $\exp \left(t X_{1}\right), \ldots, \exp \left(t X_{\iota}\right)$ generate G just in case X_{1}, \ldots, X, generate the Lie algebra g of G. Indeed the set of all finite products of elements from $\exp \left(t X_{1}\right), \ldots, \exp \left(t X_{\ell}\right)$ is an arcwise connected subgroup of G and so a Lie subgroup by Yamabe's theorem [10]; clearly the Lie algebra of this subgroup is the subalgebra of g generated by $X_{1}, \ldots, X_{,}$.

It is natural to restrict attention to minimal generating sets; from now on, then, suppose that no subset of $\left\{X_{1}, \ldots, X_{\ell}\right\}$ generates g. Call two generating sets $\left\{X_{1}, \ldots, X_{<}\right\}$and $\left\{Y_{1}, \ldots, Y_{\ell}\right\}$ equivalent if it is possible to find an automorphism σ of G, a permutation τ of $\{1, \ldots, \ell\}$, and non-zero constants $\lambda_{1}, \ldots, \lambda$, such that $X_{i}=\lambda_{i} \sigma_{*}\left(Y_{\tau(i)}\right)$. The order of generation of G depends only on the equivalence class of the generating set.

If $\left\{X_{1}, \ldots, X_{\ell}\right\}$ is a minimal generating set for G and $\operatorname{dim} G>1,2 \leqq \ell$

Received by the editors on October 19, 1979.
Copyright © 1982 Rocky Mountain Mathematics Consortium
$\leqq \operatorname{dim} G$. In this paper we consider the case $/=\operatorname{dim} G$. We classify all connected Lie groups G whose Lie algebras admit such generating sets; for each G on our list, we find all minimal generating sets with $\operatorname{dim} G$ elements. Finally, we produce an algorithm for computing the order of generation of G with respect to each minimal generating set obtained.

When $\left\{X_{1}, \ldots, X_{n}\right\}$ is a minimal generating set for G and $n=\operatorname{dim} G$, it is easy to show that the map $\exp \left(t_{1} X_{1}\right) \circ \cdots \circ \exp \left(t_{n} X_{n}\right)$ from R^{n} to G is a local diffeomorphism near 0 . Our calculations show that this map is rarely onto.

In a series of papers $[3,4,5,6,7,8]$, the order of generation problem was completely solved for all two and three dimensional Lie groups. In particular, groups locally isomorphic to $\operatorname{SL}(2, R)$ were discussed in [4]. It turns out that $s l(2, R)$ is the only simple Lie algebra which admits minimal generating sets with order equal to the dimension of the algebra, so the techniques used in [4] reappear here.

II. Classification of Lie algebras.

Theorem 1. Let g be a real semisimple Lie algebra, $\operatorname{dim} g=n$. Let $\left\{X_{1}, \ldots, X_{n}\right\}$ be a minimal generating set for g. There is an isomorphism carrying g to sl $(2, R) \times \cdots \times \operatorname{sl}(2, R)$ and X_{1}, \ldots, X_{n} to real scalar multiples of

$$
\begin{aligned}
\cdots, & 0 \times \cdots \times\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \times \cdots \times 0, \\
& 0 \times \cdots \times\left(\begin{array}{rr}
1 & 2 \\
0 & 1
\end{array}\right) \times \cdots \times 0, \\
& 0 \times \cdots \times\left(\begin{array}{rr}
1 & 0 \\
-2 & -1
\end{array}\right) \times \cdots \times 0, \cdots
\end{aligned}
$$

Proof. Since the X_{i} form a minimal generating set for $g,\left[X_{i}, X_{j}\right]=$ $A_{i j} X_{i}+B_{i j} X_{j}, A_{i j}, B_{i j} \in R$. Let $g_{C}=g \otimes C, Y_{i}=X_{i} \otimes 1$. Of course $g \cong\left\{\sum \lambda_{i} Y_{i} \mid \lambda_{i} \in R\right\}$.

Lemma 1. If $\left[Y_{i}, Y_{j}\right]=A_{i j} Y_{i}+B_{i j} Y_{j}$, either $A_{i j}=B_{i j}=0$ or $A_{i j} \neq 0$ and $B_{i j} \neq 0$.

Proof. Suppose, for example, $\left[Y_{1}, Y_{2}\right]=A Y_{1}, A \neq 0$. If $i \geqq 3,0=$ $\left[\left[Y_{1}, Y_{2}\right], Y_{i}\right]+\left[\left[Y_{i}, Y_{1}\right], Y_{2}\right]+\left[\left[Y_{2}, Y_{i}\right], Y_{1}\right]=A A_{1 i} Y_{1}+A B_{1 i} Y_{i}-$ $A A_{1 i} Y_{1}+B_{1 i} A_{2 i} Y_{2}+B_{1 i} B_{2 i} Y_{i}-A A_{2 i} Y_{2}-A_{1 i} B_{2 i} Y_{1}-B_{1 i} B_{2 i} Y_{i}$, so the coefficient of $Y_{i}, A B_{1 i}$, vanishes and $B_{1 i}=0$. In short, $\left[Y_{1}, Y_{i}\right]=$ $A_{1 i} Y_{1}$ for all i and Y_{1} generates a solvable ideal in g_{C}; contradiction.

Lemma 2. Each ad Y_{i} is diagonalizable.
Proof. Since $\left[Y_{i}, \quad Y_{j}\right]=A_{i j} Y_{i}+B_{i j} Y_{j},\left(\operatorname{ad} Y_{i}\right)\left(A_{i j} Y_{i}+B_{i j} Y_{j}\right)=$ $B_{i j}\left(A_{i j} Y_{i}+B_{i j} Y_{j}\right)$. Therefore, ad Y_{i} is diagonal with respect to the basis
obtained from $\left\{Y_{1}, \ldots, Y_{n}\right\}$ by replacing Y_{j} with $A_{i j} Y_{i}+B_{i j} Y_{j}$ whenever $B_{i j} \neq 0$.

REMARK. Let $\left\{Y_{1}, \ldots, Y_{k}\right\}$ be a maximal commuting subset of $\left\{Y_{1}, \ldots\right.$, $\left.Y_{n}\right\}$. Recall that an abelian subalgebra a of a complex Lie algebra g_{C} is contained in a Cartan subalgebra of g_{C} if and only if ad X is diagonalizable whenever $X \in a$ (see, for instance, exercise 21 on page 105 of Jacobson's book [2]). By the above lemma, then, there is a Cartan subalgebra \mathscr{H} of g_{C} containing Y_{1}, \ldots, Y_{k}. Let $g_{C}=\mathscr{H} \oplus \sum_{\alpha} C e_{\alpha}$ be the corresponding decomposition of g_{C}. If \langle,$\rangle is the Killing form of g_{C}$ and $h \in \mathscr{H}$, recall that $\left[h, e_{\alpha}\right]=\langle h, \alpha\rangle e_{\alpha}$.

For each $j>k$, write $Y_{j}=h_{j}+\sum r_{\alpha, j} e_{\alpha}$ where $h_{j} \in \mathscr{H}$ and $r_{\alpha, j} \in C$.
Lemma 3. Y_{1}, \ldots, Y_{k} generate \mathscr{H}.
Proof. If $j>k$, there is an $i \leqq k$ such that $\left[Y_{i}, Y_{j}\right] \neq 0$; thus $\left[Y_{i}, Y_{j}\right.$] $=A_{i j} Y_{i}+B_{i j} Y_{j}=\left(A_{i j} Y_{i}+B_{i j} h_{j}\right)+\sum_{\alpha} B_{i j} r_{\alpha, j} e_{\alpha}=\sum r_{\alpha, j}\left\langle Y_{i}, \alpha\right\rangle e_{\alpha}$. By Lemma $1, B_{i j} \neq 0$, so $h_{j}=-\left(A_{i j} / B_{i j}\right) Y_{i}$. The lemma follows.

Lemma 4. If $j>k, r_{\alpha, j} \neq 0$ for exactly one root α.
Proof. By the previous calculation, $r_{\alpha, j} \neq 0$ implies $B_{i j}=\left\langle Y_{i}, \alpha\right\rangle$. If $r_{\alpha, j} \neq 0$ and $r_{\beta, j} \neq 0,\left\langle Y_{i}, \alpha\right\rangle=\left\langle Y_{i}, \beta\right\rangle$ for all i, so $\langle h, \alpha-\beta\rangle=0$ when $h=Y_{1}, \ldots, Y_{k}$ and thus whenever $h \in \mathscr{H}$ by Lemma 3. Since the Killing form is nondegenerate on $\mathscr{H}, \alpha=\beta$.

REMARK. Let α be the root corresponding to j; from now on write Y_{α} instead of Y_{j}. We can replace e_{α} by the equivalent eigenvector $r_{\alpha, j} e_{\alpha}$ and thus assume $Y_{\alpha}=h_{\alpha}+e_{\alpha}$.

Lemma 5. If $\alpha \neq \pm \beta$, then $\left[e_{\alpha}, e_{\beta}\right]=0$.
Proof. $\left[h_{\alpha}+e_{\alpha}, h_{\beta}+e_{\beta}\right]=A_{\alpha \beta}\left(h_{\alpha}+e_{\alpha}\right)+B_{\alpha \beta}\left(h_{\beta}+e_{\beta}\right)=\left\langle h_{\alpha}, \beta\right\rangle e_{\beta}$ $-\left\langle h_{\beta}, \alpha\right\rangle e_{\alpha}+\left[e_{\alpha}, e_{\beta}\right]$; since $\alpha \neq \pm \beta,\left[e_{\alpha}, e_{\beta}\right]$ is not a linear combination of e_{α}, e_{β}, and elements of \mathscr{H} unless it is zero.

Lemma 6. $C e_{\alpha} \oplus C e_{-\alpha} \oplus C\left[e_{\alpha}, e_{-\alpha}\right]$ is an ideal in g_{C}.
Proof. This subspace is clearly invariant under ad \mathscr{H}, ad e_{α}, and ad $e_{-\alpha}$; if $\beta \neq \pm \alpha$, it is invariant under ad e_{β} by the equation $\left[e_{\beta},\left[e_{\alpha}, e_{-\alpha}\right]\right]=$ $\left[\left[e_{\beta}, e_{\alpha}\right], e_{-\alpha}\right]+\left[e_{\alpha},\left[e_{\beta}, e_{-\alpha}\right]\right]$ and Lemma 5.

Remark. Write g_{C} as a direct sum $g_{1} \oplus \cdots \oplus g$, of simple ideals. Every ideal in g_{C} has the form $g_{i_{1}} \oplus \cdots \oplus g_{i_{r}}$ for some choice of $1 \leqq i_{1}<i_{2}$ $<\cdots<i_{r} \leqq \ell$. Since the dimension of the ideal $C e_{\alpha} \oplus C e_{-\alpha} \oplus$ $C\left[e_{\alpha}, e_{-\alpha}\right]$ is three, it is one of the g_{i}; therefore $\sum_{\alpha>0}\left[C e_{\alpha} \oplus C e_{-\alpha} \oplus\right.$ $\left.C\left[e_{\alpha}, e_{-\alpha}\right]\right]$ is a direct sum. This ideal contains all the e_{α}, so $g_{C}=\sum_{\alpha>0} \oplus$ $\left\{C e_{\alpha} \oplus C e_{-\alpha} \oplus C\left[e_{\alpha}, e_{-\alpha}\right]\right\}$. Notice that $\mathscr{H}=\Sigma_{\alpha>0} \oplus\left\{C\left[e_{\alpha}, e_{-\alpha}\right]\right\}$.

Lemma 7. If $i \leqq k$ and $\left\langle Y_{i}, \alpha\right\rangle \neq 0, h_{\alpha}$ is a non-zero real multiple of Y_{i} (and consequently Y_{i} is a non-zero real multiple of h_{α}). Moreover, $\left\langle Y_{i}, \alpha\right\rangle$ is real.

Proof. [$Y_{i}, h_{\alpha}+e_{\alpha}$] $=\left\langle Y_{i}, \alpha\right\rangle e_{\alpha}=A Y_{i}+B\left(h_{\alpha}+e_{\alpha}\right)$; thus $B=$ $\left\langle Y_{i}, \alpha\right\rangle$ and $A Y_{i}=-\left\langle Y_{i}, \alpha\right\rangle h_{\alpha}$. By Lemma $1, B \neq 0$ implies $A \neq 0$.

Lemma 8. If $i \leqq k$, there is an α such that $Y_{i} \in C\left[e_{\alpha}, e_{-\alpha}\right]$. Conversely, each $C\left[e_{\alpha}, e_{-\alpha}\right]$ contains a unique Y_{i}.

Proof. For each α, there is exactly one i such that $\left\langle Y_{i}, \alpha\right\rangle \neq 0$. Indeed there is at least one such i because Y_{1}, \ldots, Y_{k} generate \mathscr{H}; if $\left\langle Y_{i}, \alpha\right\rangle \neq 0$ and $\left\langle Y_{j}, \alpha\right\rangle \neq 0, Y_{i}$ and Y_{j} are non-zero multiples of h_{α} by the previous lemma, but Y_{i} and Y_{j} are linearly independent.

Let \mathscr{S} be the set of all pairs $\{\alpha,-\alpha\}$ and consider the map $\mathscr{S} \rightarrow\{1,2$, $\ldots, k\}$ defined by mapping $\{\alpha,-\alpha\}$ to the unique i such that $\left\langle Y_{i}, \alpha\right\rangle \neq 0$. The decomposition $\mathscr{H}=\Sigma_{\alpha>0} \oplus C\left[e_{\alpha}, e_{-\alpha}\right]$ shows that $|\mathscr{S}|=k$; since the map just defined is clearly onto, it is one-to-one. Thus each Y_{i} is associated with a unique pair $\{\alpha,-\alpha\}$ such that $\left\langle Y_{i}, \alpha\right\rangle \neq 0$. But $Y_{i} \in \mathscr{H}$ $=\Sigma_{\beta>0} \oplus C\left[e_{\beta}, e_{-\beta}\right]$ and $\left\langle\beta,\left[e_{\nu}, e_{-\nu}\right]\right\rangle \neq 0$ if and only if $\beta= \pm \nu$, so $Y_{i} \in$ $C\left[e_{\alpha}, e_{-\alpha}\right]$.

Finally Y_{1}, \ldots, Y_{k} generate $\mathscr{H}=\Sigma_{\beta>0} \oplus C\left[e_{\beta}, e_{-\beta}\right]$ so each $C\left[e_{\beta}, e_{-\beta}\right]$ must contain a Y_{i}.

Lemma 9. If $Y_{\alpha}=h_{\alpha}+e_{\alpha}$, then $h_{\alpha} \in C\left[e_{\alpha}, e_{-\alpha}\right]$.
Proof. Let $Y_{i} \in C\left[e_{\alpha}, e_{-\alpha}\right]$. Since $\left\langle Y_{i}, \alpha\right\rangle \neq 0, h_{\alpha}$ is a non-zero multiple of Y_{i} by Lemma 7.

Remark. From now on, call the Y_{i} associated with the pair $\{\alpha,-\alpha\}$ " H_{α} ". Notice that $H_{\alpha}, Y_{\alpha}, Y_{-\alpha}$ generate $C e_{\alpha} \oplus C e_{-\alpha} \oplus C\left[e_{\alpha}, e_{-\alpha}\right]$ and that g is the set of real multiples of $\left\{H_{\alpha}, Y_{\alpha}, Y_{-\alpha}\right\}_{\alpha>0}$.

By Lemma 7, $\left\langle H_{\alpha}, \alpha\right\rangle$ is real; after multiplying H_{α} by a suitable nonzero real constant we can suppose $\left\langle H_{\alpha}, \alpha\right\rangle=2$. By Lemma 7, $Y_{\alpha}=\lambda_{\alpha} H_{\alpha}$ $+e_{\alpha}$ for λ_{α} real and non-zero. After multiplying Y_{α} by a suitable non-zero real constant (and choosing a new e_{α}) we can suppose $Y_{\alpha}=H_{\alpha}+e_{\alpha}$. Similarly we can suppose $Y_{-\alpha}=H_{\alpha}+e_{-\alpha}$.

Lemma 10. $\left[H_{\alpha}, e_{\alpha}\right]=2 e_{\alpha},\left[H_{\alpha}, e_{-\alpha}\right]=-2 e_{-\alpha},\left[e_{\alpha}, e_{-\alpha}\right]=-4 H_{\alpha}$.
Proof. [$\left.H_{\alpha}, e_{\alpha}\right]=\left\langle H_{\alpha}, \alpha\right\rangle e_{\alpha}=2 e_{\alpha} ;\left[H_{\alpha}, e_{-\alpha}\right]=-\left\langle H_{\alpha}, \alpha\right\rangle e_{-\alpha}=$ $-2 e_{-\alpha}$. Finally $\left[H_{\alpha}+e_{\alpha}, H_{\alpha}+e_{-\alpha}\right]=-\left\langle H_{\alpha}, \alpha\right\rangle e_{-\alpha}-\left\langle H_{\alpha}, \alpha\right\rangle e_{\alpha}+$ $\left[e_{\alpha}, e_{-\alpha}\right]=-2 e_{\alpha}-2 e_{-\alpha}+\left[e_{\alpha}, e_{-\alpha}\right]=A\left(H_{\alpha}+e_{\alpha}\right)+B\left(H_{\alpha}+e_{-\alpha}\right)$, so $A=B=-2$ and $\left[e_{\alpha}, e_{-\alpha}\right]=-4 H_{\alpha}$.

Remark. This completes the proof of Theorem 1 because

$$
H_{\alpha}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right), e_{\alpha}=\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right) \text { and } e_{-\alpha}=\left(\begin{array}{rr}
0 & 0 \\
-2 & 0
\end{array}\right)
$$

satisfy these commutation relations and $R H_{\alpha} \oplus R e_{\alpha} \oplus R e_{-\alpha}=s l(2, R)$.
Theorem 2. Let g be a real Lie algebra with dimension n, \mathscr{R} the radical of g. Let $\left\{X_{1}, \ldots, X_{n}\right\}$ be a minimal generating set for g. There is an isomorphism carrying g to $\operatorname{sl}(2, R) \times \cdots \times \operatorname{sl}(2, R) \times \mathscr{R}$ and X_{1}, \ldots, X_{n} to real scalar multiples of

$$
\begin{aligned}
& \cdots, 0 \times \cdots \times\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \times \cdots \times 0 \\
& \quad 0 \times \cdots \times\left(\begin{array}{rr}
1 & 2 \\
0 & -1
\end{array}\right) \times \cdots \times 0 \\
& \quad 0 \times \cdots \times\left(\begin{array}{rr}
1 & 0 \\
-2-1
\end{array}\right) \times \cdots \times 0, \\
& \cdots, 0 \times \cdots \times 0 \times v_{i}
\end{aligned}
$$

where $\left\{v_{1}, \ldots, v_{\ell}\right\}$ is a minimal generating set for \mathscr{R} and $\ell=\operatorname{dim} \mathscr{R}$.
Proof. As before, real constants $A_{i j}, B_{i j}$ exist such that $\left[X_{i}, X_{j}\right]=$ $A_{i j} X_{i}+B_{i j} X_{j}$. After renumbering if necessary, we can suppose that the elements $\bar{X}_{1} \ldots, \bar{X}_{n-}$ in g / \mathscr{R} induced by X_{1}, \ldots, X_{n-}, form a basis for g / \mathscr{R}. Since $\left[\bar{X}_{i}, \bar{X}_{j}\right]=A_{i j} \bar{X}_{i}+B_{i j} \bar{X}_{j}$, the subspace of g generated by X_{1}, \ldots, X_{n-} is a subalgebra isomorphic to the semisimple algebra g / \mathscr{R} and $X_{1}, \ldots, X_{n-,}$ is a minimal generating set for this subalgebra. By theorem 1, then, $g=\operatorname{sl}(2, R) \oplus \cdots \oplus \operatorname{sl}(2, R) \oplus \mathscr{R}$ and X_{1}, \ldots, X_{n-}, are, up to scalar multiples,

$$
\begin{gathered}
\cdots, 0 \oplus \cdots \oplus\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \oplus \cdots \oplus 0 \oplus 0 \\
0 \oplus \cdots \oplus\left(\begin{array}{rr}
1 & 2 \\
0 & -0
\end{array}\right) \oplus \cdots \oplus 0 \oplus 0 \\
0 \oplus \cdots \oplus\left(\begin{array}{rr}
1 & 0 \\
-2 & -1
\end{array}\right) \oplus \cdots \oplus 0 \oplus 0
\end{gathered}
$$

Lemma 11. $s l(2, R) \oplus \cdots \oplus \operatorname{sl}(2, R)$ is an ideal in g.
Proof. If $j>n-\ell$, write $X_{j}=Y_{j}+Z_{j}$ where $Y_{j} \in \operatorname{sl}(2, R) \oplus \cdots \oplus$ $s l(2, R)$ and $Z_{j} \in \mathscr{R}$. Whenever $i<n-\ell,\left[X_{i}, Y_{j}+Z_{j}\right]=\left[X_{i}, Y_{j}\right]+$ $\left[X_{i}, Z_{j}\right]=\left(A_{i j} X_{i}+B_{i j} Y_{j}\right)+B_{i j} Z_{j}$; since \mathscr{R} is an ideal, $\left[X_{i}, Y_{j}\right]=$ $A_{i j} X_{i}+B_{i j} Y_{j}$ and $\left[X_{i}, Z_{j}\right]=B_{i j} Z_{j}$. Look at this last equation carefully; it implies that whenever X belongs to $s l(2, R) \oplus \cdots \oplus \operatorname{sl}(2, R)$, there is a constant $\lambda(X)$ such that $\left[X, Z_{j}\right]=\lambda(X) Z_{j}$. The map $\lambda: \operatorname{sl}(2, R) \oplus \cdots \oplus$ $s l(2, R) \rightarrow R$ is clearly linear; by the Jacobi identity it vanishes on
brackets. Since $s l(2, R) \oplus \cdots \oplus s l(2, R)$ is generated by such brackets, λ is identically zero and $\left[s l(2, R) \oplus \cdots \oplus \operatorname{sl}(2, R), Z_{j}\right]=0$. But the Z_{j} generate \mathscr{R}.

Lemma 12. If $j>n-\ell$, then $X_{j} \in \mathscr{R}$. Consequently $X_{n-\iota+1}, \ldots, X_{n}$ is a minimal generating set for \mathscr{R}.

Proof. Consider the equation in the second sentence of the previous proof; since $B_{i j}=0,\left[X_{i}, X_{j}\right]=A_{i j} X_{i}$. In particular, the component of Y_{j} in the r-th $\operatorname{sl}(2, R)$ must be a matrix U such that

$$
\left[U,\left(\begin{array}{rr}
1 & 0 \\
0-1
\end{array}\right)\right]=\alpha\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right),\left[U,\left(\begin{array}{rr}
1 & 2 \\
0 & -1
\end{array}\right)\right]=\beta\left(\begin{array}{rr}
1 & 2 \\
0 & -1
\end{array}\right),\left[U,\left(\begin{array}{rr}
1 & 0 \\
-2 & -1
\end{array}\right)\right]=\nu\left(\begin{array}{rr}
1 & 0 \\
-2-1
\end{array}\right) .
$$

It is easy to show that $U=0$.
Remark. The affine algebra $a(m)$ is by definition $\{\langle A \mid v\rangle \mid A$ is an $m \times m$ matrix, $\left.v \in R^{m}\right\}$; the Lie bracket is given by $[\langle A \mid v\rangle,\langle B \mid w\rangle]=$ $\langle[A, B], A w-B v\rangle$.

Theorem 3. Let g be a solvable real Lie algebra with dimension $n,\left\{X_{1}\right.$, $\left.\ldots, X_{n}\right\}$ a minimal generating set for g. There is an integer m, a linear subspace \mathscr{D} of the set of all $m \times m$ diagonal matrics, and an isomorphism carrying g to $\{\langle A \mid v\rangle \in a(m) \mid A \in \mathscr{D}\}$ and X_{1}, \ldots, X_{n} to real scalar multiples of $\left\langle A_{1} \mid 0\right\rangle, \ldots,\left\langle A_{r} \mid 0\right\rangle,\left\langle B_{1} \mid e_{1}\right\rangle, \ldots,\left\langle B_{m} \mid e_{m}\right\rangle$ where $\left\{A_{1}, \ldots, A_{r}\right\}$ is a basis of $\mathscr{D},\left\{e_{1}, \ldots, e_{m}\right\}$ is the canonical basis of R^{m}, and B_{1}, \ldots, B_{m} belong to \mathscr{D}.

The following lemmas supply the proof of this theorem.
Lemma 13. If g is a solvable Lie algebra of dimension n which admits a minimal generating set with n elements, there is a basis Z_{1}, \ldots, Z_{n} of g such that whenever $i<j,\left[Z_{i}, Z_{j}\right]=A_{i j} Z_{i}$.

Proof. We work by induction on $\operatorname{dim} g$. Since g is solvable, there is an ideal $g_{1} \subseteq g$ with $\operatorname{dim} g_{1}=n-1$. Let X_{1}, \ldots, X_{n} minimally generate g and suppose $X_{n} \notin g_{1}$. For each $i<n$ choose λ_{i} so $\tilde{X}_{i}=X_{i}-\lambda_{i} X_{n}$ belongs to g_{1}; then $\left\{\tilde{X}_{1}, \ldots, \tilde{X}_{n-1}, X_{n}\right\}$ is a basis for g. Moreover, $\left\{\tilde{X}_{1}, \ldots, \tilde{X}_{n-1}\right.$, $\left.X_{n}\right\}$ is a minimal generating set, for $\left[\tilde{X}_{i}, X_{n}\right]$ can be written as a linear combination of X_{i} and X_{n} and thus as a linear combination of $\tilde{X}_{i}, X_{n} ;\left[\tilde{X}_{i}, \tilde{X}_{j}\right]$ can be written as a linear combination of $\tilde{X}_{i}, \tilde{X}_{j}$, and X_{n}, but g_{1} is a subalgebra, so the component of X_{n} in this linear expression must vanish. Notice that $\left[\tilde{X}_{i}, X_{n}\right]=A_{i n} \tilde{X}_{i}$ because g_{1} is an ideal.

Separate the \tilde{X}_{i} into two classes, those that do not commute with X_{n} and those that do. Call the elements of the first class Y_{1}, \ldots, Y_{m-1}; let $Y_{m}=X_{n}$; call the elements of the second class Y_{m+1}, \ldots, Y_{n}. In short, g
has a minimal generating set $\left\{Y_{1}, \ldots, Y_{m-1}, Y_{m}, Y_{m-1}, \ldots, Y_{n}\right\}$ where whenever $i<m,\left[Y_{i}, \quad Y_{m}\right]=\lambda_{i} Y_{i}, \quad \lambda_{i} \neq 0$, and whenever $m<i$, $\left[Y_{m}, Y_{i}\right]=0$.

Let $i<j<m ;\left[\left[Y_{i}, Y_{j}\right], Y_{m}\right]=\left[\left[Y_{i}, Y_{m}\right], Y_{j}\right]+\left[Y_{i},\left[Y_{j}, Y_{m}\right]\right]$ so $A_{i j} \lambda_{i} Y_{i}+B_{i j} \lambda_{j} Y_{j}=\lambda_{i}\left(A_{i j} Y_{i}+B_{i j} Y_{j}\right)+\lambda_{j}\left(A_{i j} Y_{i}+B_{i j} Y_{j}\right)$ and $\lambda_{j} A_{i j}=$ $\lambda_{i} B_{i j}=0$. Since $\lambda_{i} \neq 0$, and $\lambda_{j} \neq 0, A_{i j}=B_{i j}=0$ and $\left[Y_{i}, Y_{j}\right]=0$.

Let $i<m<j ;\left[\left[Y_{i}, Y_{j}\right], Y_{m}\right]=\left[\left[Y_{i}, Y_{m}\right], Y_{j}\right]+\left[Y_{i},\left[Y_{j}, Y_{m}\right]\right]$ so $A_{i j} \lambda_{i} Y_{i}=\lambda_{i}\left(A_{i j} Y_{i}+B_{i j} Y_{j}\right)$ and $\lambda_{i} B_{i j}=0$. Since $\lambda_{i} \neq 0, B_{i j}=0$ and $\left[Y_{i}, Y_{j}\right]=A_{i j} Y_{i}$.

The subalgebea of g generated by Y_{m+1}, \ldots, Y_{n} is solvable and has dimension less than n; by induction it has a basis Z_{m+1}, \ldots, Z_{n} such that $\left[Z_{i}, Z_{j}\right]=A_{i j} Z_{i}$ whenever $i<j$. Clearly $Y_{1}, \ldots, Y_{m}, Z_{m+1}, \ldots, Z_{n}$ is the desired basis for g.

Lemma 14. If g is a solvable Lie algebra of dimension n which admits a minimal generating set with n elements, there is a basis $Y_{1}, \ldots, Y_{m}, Y_{m+1}$, \ldots, Y_{n} for g such that
a) when $i<j,\left[Y_{i}, Y_{j}\right]=A_{i j} Y_{i}$,
b) when $1 \leqq i, j \leqq m,\left[Y_{i}, Y_{j}\right]=0$,
c) when $m+1 \leqq i, j \leqq n,\left[Y_{i}, Y_{j}\right]=0$, and
d) no non-trivial linear combination of Y_{m+1}, \ldots, Y_{n} acts trivially on the space generated by Y_{1}, \ldots, Y_{m}.

Proof. By Lemma 13, there is a basis satisfying a). For each such basis, there is an m such that the first m elements commute and the first $m+1$ elements do not commute. Choose a basis maximizing this m. This basis satisfies a) and b); we show it also satisfies c) and d).

If $i<j<k,\left[\left[Y_{i}, Y_{j}\right], Y_{k}\right]=\left[\left[Y_{i}, Y_{k}\right], Y_{j}\right]+\left[Y_{i},\left[Y_{j}, Y_{k}\right]\right]$ so $A_{i j} A_{i k} Y_{i}=$ $A_{i k} A_{i j} Y_{i}+A_{j k} A_{i j} Y_{i}$ and $A_{i j} A_{j k}=0$. In short, $\left[Y_{i}, Y_{j}\right]=0$ or $\left[Y_{j}, Y_{k}\right]=0$.

Suppose $m+1<j<k \leqq n$ and $\left[Y_{j}, Y_{k}\right] \neq 0$. It is easy to see, using the calculation just concluded, that $Y_{1}, \ldots, Y_{m}, Y_{j}, Y_{m+1}, \ldots, \hat{Y}_{j}, \ldots, Y_{n}$ is a new basis satisfying a); at least the first $m+1$ elements of this new basis commute, contradiction.

Suppose $\sum_{i=m+1}^{n} \lambda_{i} Y_{i}$ acts trivially on the subspace generated by Y_{1}, \ldots, Y_{m} and $\lambda_{j} \neq 0$. Then $\sum_{i=m+1}^{n} \lambda_{i} Y_{i}, Y_{1}, \ldots, Y_{m}, Y_{m+1}, \ldots, \hat{Y}_{j}, \ldots, Y_{n}$ is a new basis satisfying a), and at least the first $m+1$ elements of this new basis commute, contradiction.

Remark. Let Y_{1}, \ldots, Y_{n} be a basis with the properties described in the previous lemma. Notice that ad Y_{m+1}, \ldots, ad Y_{n} act on the space generated by Y_{1}, \ldots, Y_{m}. Consider the associated $m \times m$ matrices; each is diagonal. If \mathscr{D} is the space spanned by these matrices, clearly $g \cong\{\langle A \mid v\rangle \in$ $a(m) \mid A \in \mathscr{D}\}$.

Lemma 15. Let A_{1}, \ldots, A_{r} be a basis for \mathscr{D}. Let $X_{1}=\left\langle A_{1} \mid v_{1}\right\rangle, \ldots$, $X_{r}=\left\langle A_{r} \mid v_{r}\right\rangle$ belong to $g=\{\langle A \mid v\rangle \in a(m) \mid A \in \mathscr{D}\}$ and suppose $\left[X_{i}, X_{j}\right]=A_{i j} X_{i}+B_{i j} X_{j}$. There is an automorphism of g taking X_{1}, \ldots, X_{r} to $\left\langle A_{1} \mid 0\right\rangle, \ldots,\left\langle A_{r} \mid 0\right\rangle$.

Proof. Since $\left[\left\langle A_{i} \mid v_{i}\right\rangle,\left\langle A_{j} \mid v_{j}\right\rangle\right]=\left\langle 0 \mid A_{i} v_{j}-A_{j} v_{i}\right\rangle=A_{i j}\left\langle A_{i} \mid v_{i}\right\rangle$ $+B_{i j}\left\langle A_{j} \mid v_{j}\right\rangle, A_{i} v_{j}=A_{j} v_{i}$.

Consider the map $\psi\left(\left\langle\sum_{i} r A_{i} \mid v\right\rangle\right)=\left\langle\sum r_{i} A_{i} \mid v-\sum r_{i} v_{i}\right\rangle$. This map carries $\left\langle A_{i} \mid v_{i}\right\rangle$ to $\left\langle A_{i} \mid 0\right\rangle$; it is an automorphism precisely because $A_{i} v_{j}=A_{j} v_{i}$.

Remark. Clearly, Lemma 15 implies that any minimal generating set of $\{\langle A \mid v\rangle \in a(m) \mid A \in \mathscr{D}\}$ with n elements is equivalent to $\left\{\left\langle A_{1} \mid 0\right\rangle\right.$, $\left.\ldots,\left\langle A_{r} \mid 0\right\rangle,\left\langle B_{1} \mid v_{1}\right\rangle, \ldots,\left\langle B_{m}, v_{m}\right\rangle\right\}$ where $\left\{A_{1}, \ldots, A_{r}\right\}$ is a basis of \mathscr{D} and $\left\{v_{1}, \ldots, v_{m}\right\}$ is a basis of R^{m}. Notice that $\left[\left\langle A_{1} \mid 0\right\rangle,\left\langle B_{j} \mid v_{j}\right\rangle\right]=$ $\left\langle 0 \mid A_{i} v_{j}\right\rangle=A_{i j}\left\langle A_{i} \mid 0\right\rangle+B_{i j}\left\langle B_{j} \mid v_{j}\right\rangle$, so each A_{i} acts diagonally with respect to the basis v_{1}, \ldots, v_{m}. Let e_{1}, \ldots, e_{m} be the standard basis of R^{m} and choose a matrix M such that $M v_{i}=e_{i}$; then $\psi\langle A \mid v\rangle=$ $\left\langle M A M^{-1} \mid M v\right\rangle$ maps g to $\left\{\langle A \mid v\rangle \in a(m) \mid A \in M \mathscr{D} M^{-1}=\widetilde{\mathscr{D}}\right\},\left\langle A_{i} \mid 0\right\rangle$ to $\left\langle M A_{i} M^{-1} \mid 0\right\rangle$ and $\left\langle B_{i} \mid v_{i}\right\rangle$ to $\left\langle M B_{i} M^{-1} \mid e_{i}\right\rangle$.

Theorem 4. A Lie algebra g of dimension n admits a minimal generating set with n elements if and only if it is isomorphic to $s l(2, R) \times \cdots \times$ sl $(2, R) \times\{\langle A \mid v\rangle \in a(m) \mid A \in \mathscr{D}\}$ where \mathscr{D} is a linear subspace of the set of all $m \times m$ diagonal matrices. If X_{1}, \ldots, X_{n} is a minimal generating set for g with n elements, it is possible to choose the isomorphism so that X_{1}, \ldots, X_{n} are taken to real scalar multiples of

$$
\begin{aligned}
\cdots, & 0 \times \cdots \times\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \times \cdots \times 0 \times\langle 0 \mid 0\rangle \\
& 0 \times \cdots \times\left(\begin{array}{rr}
1 & 2 \\
0 & -1
\end{array}\right) \times \cdots \times 0 \times\langle 0 \mid 0\rangle \\
& 0 \times \cdots \times\left(\begin{array}{rr}
1 & 0 \\
-2 & -1
\end{array}\right) \times \cdots \times 0 \times\langle 0 \mid 0\rangle
\end{aligned}
$$

$0 \times \cdots \times 0 \times\left\langle A_{1} \mid 0\right\rangle, \cdots, 0 \times \cdots \times 0 \times\left\langle A_{r} \mid 0\right\rangle, 0 \times \cdots \times 0 \times$ $\left\langle B_{1} \mid e_{1}\right\rangle, \cdots, 0 \times \cdots \times 0 \times\left\langle B_{m}, e_{m}\right\rangle$ where $\left\{A_{1}, \ldots, A_{r}\right\}$ is a basis for $\mathscr{D},\left\{e_{1}, \ldots, e_{m}\right\}$ is the canonical basis of R^{m}, and $B_{j} \in \mathscr{D}$.

This last set is a minimal generating set just in case $B_{j}=0$ whenever two or more A_{i} are non-zero on $e_{j}, B_{j}=\lambda_{j} A_{\sigma(j)}$ whenever exactly one A_{i}, say $A_{\sigma(j)}$, is non-zero on e_{j}, and $\tau B_{j}=\mu B_{k}$ whenever $B_{k} e_{j}=\tau e_{j}$ and $B_{j} e_{k}=$ μe_{k}.

Proof. This is a summary of our previous results; the proof of the last claim is straightforward.

III. The order of generation problem for solvable groups.

Theorem 5. Let G be a connected solvable n-dimensional Lie group, $\left\{X_{1}\right.$, $\left.\ldots, X_{n}\right\}$ a minimal generating set for G. The order of generation of G with respect to $\left\{X_{1}, \ldots, X_{n}\right\}$ is n. Every element of G can be written in the form $\exp \left(t_{1} X_{1}\right) \circ \cdots \circ \exp \left(t_{n} X_{n}\right)$ if and only if (in the notation of Theorem 4) each $\lambda_{j}=0$.

Proof. By Theorem 3, the Lie algebra of G is isomorphic to $\{\langle A \mid v\rangle \in$ $a(m) \mid A \in \mathscr{D}\}$ where \mathscr{D} is a linear subspace of the set of diagonal matrices. Let $A(m)$ be the affine group $\left\{\langle A, v\rangle \mid A \in G L(m, R), v \in R^{m}\right\}$; recall that $\langle A, v\rangle \circ\langle B, w\rangle=\langle A B, A w+v\rangle$. Consider the group $\tilde{G}=\{\langle A, v\rangle \in$ $A(m) \mid A \in \exp (\mathscr{D})\}$. Its Lie algebra is clearly $\{\langle A \mid v\rangle \in a(m) \mid A \in \mathscr{D}\}$. Since each element of \mathscr{D} is diagonal, exp: $\mathscr{D} \rightarrow \exp (\mathscr{D}) \cong G L(m, R)$ is a homeomorphism, so $\{\langle A, v\rangle \in A(m) \mid A \in \exp \mathscr{D}\}$ is homeomorphic to $R^{\mathrm{dim} \mathscr{D}+m}$ and thus simple connected. Consequently \tilde{G} must be the universal covering group of G. The center of \widetilde{G} is easily seen to be $\{\langle I, v\rangle$ $\in A(m) \mid \mathscr{D} v=0\}$; by general Lie theory, there is a discrete subgroup $N \cong\{\langle I, v\rangle \mid \mathscr{D} v=0\}$ such that $G \cong \tilde{G} / N$.

The generators of g have the form $\left\langle A_{i} \mid 0\right\rangle$ or $\left\langle B_{j} \mid e_{j}\right\rangle$ where $B_{j}\left(e_{j}\right)$ $=\mu_{j} e_{j}$. A short calculation shows that $\exp t\left\langle A_{i} \mid 0\right\rangle=\left\langle e^{t A_{i}}, 0\right\rangle$, $\exp t\left\langle B_{j} \mid e_{j}\right\rangle=\left\langle e^{t B_{j}}, t e_{j}\right\rangle$ if $\mu_{j}=0$, and $\exp t\left\langle B_{j} \mid e_{j}\right\rangle=\left\langle e^{t B_{j}},\left(1 / \mu_{j}\right)\right.$ $\left.\left(e^{t \mu_{j}}-1\right) e_{j}\right\rangle$ if $\mu_{j} \neq 0$.

By Sard's theorem [9], the order of generation of a Lie group of dimension n with respect to any $\left\{X_{1}, \ldots, X_{\}}\right\}$is at least n. Consider a typical expression of length n in \tilde{G} involving all the generators; it has the form

$$
\begin{aligned}
& \left\langle e^{t_{1} D_{1}}, \psi_{1}\left(t_{1}\right) e_{i_{1}}\right\rangle \circ \cdots \circ\left\langle e^{t_{n} D_{n}}, \psi_{n}\left(t_{n}\right) e_{i_{n}}\right\rangle \\
& =\left\langle e^{\Sigma t_{i} D_{i}}, \psi_{1}\left(t_{1}\right) e_{i_{1}}+e^{t_{1} D_{1}} \psi_{2}\left(t_{2}\right) e_{i_{2}}+\cdots\right. \\
& \left.\quad+e^{t_{1} D_{1}++t_{n-1} D_{n-1}} \psi_{n}\left(t_{n}\right) e_{i_{n}}\right\rangle
\end{aligned}
$$

where each D_{i} is one of $A_{1}, \ldots, A_{r}, B_{1}, \ldots, B_{m}$, each $e_{i_{j}}$ is one of $0, e_{1}$, \ldots, e_{m}, and each $\psi_{i}\left(t_{i}\right)$ is t_{i} or $(1 / \mu)\left(e^{t_{i} \mu}-1\right)$. Moreover, e_{j} occurs exactly once, say in the $\nu(j)$-th term. We want to make this expression equal $\left\langle\exp \left(\sum \varepsilon_{i} A_{i}\right), \sum \theta_{j} e_{j}\right\rangle$ by correctly choosing t_{1}, \ldots, t_{n}. This will be done as follows. First we shall choose t 's for the terms $\left\langle B_{j} \mid e_{j}\right\rangle$ where $\mathscr{D} e_{j}=0$. Next we shall choose t 's for the terms $\left\langle B_{j} \mid e_{j}\right\rangle$ where $B_{j}=\lambda_{j} A_{\sigma(j)}, \lambda_{j} \neq 0$, $A_{\sigma(j)}\left(e_{j}\right) \neq 0$. Simultaneously we choose t 's for the terms $\left\langle A_{i} \mid 0\right\rangle$. Finally we shall choose t 's for the remaining $\left\langle B_{j} \mid e_{j}\right\rangle, B_{j}=0$.

Consider first those e_{j} for which $\mathscr{D} e_{j}=0$. Then $\mu_{j}=0, \psi_{\nu(j)}\left(t_{\nu(j)}\right)$ $=t_{\nu(j)}$ and

$$
\exp \left(\sum_{i=1}^{\nu(j)-1} t_{i} D_{i}\right) e_{j}=e_{j}
$$

In short, e_{j} enters into the final product in the form $t_{\nu(j)} e_{j}$ and we are forced to choose $t_{\nu(j)}=\theta_{j}$; let this be done.

Leaving the difficult case until last, suppose t 's have been chosen for all terms except those of the form $\left\langle B_{j} \mid e_{j}\right\rangle, B_{j}=0$. Consider a typical $\left\langle 0 \mid e_{j}\right\rangle$. The choice of $t_{\nu(j)}$ does not affect any of the terms of the form $\exp \left(\sum t_{i} D_{i}\right)$ and e_{j} enters into the final product as $t_{\nu(j)} \exp \left(\sum r_{i} D_{i}\right) e_{j}$. Since $\exp \left(\sum t_{i} D_{i}\right) e_{j}$ is a non-zero multiple of e_{j}, there is a unique $t_{\nu(j)}$ such that $t_{\nu(j)} \exp \left(\sum t_{i} D_{i}\right) e_{j}$ equals $\theta_{j} e_{j}$.

It remains to choose t 's for $\left\langle A_{i} \mid 0\right\rangle$ and $\left\langle B_{j} \mid e_{j}\right\rangle$. For each such j, there is exactly one $A_{i}, A_{\sigma(j)}$, such that $A_{\sigma(j)} e_{j} \neq 0 ; B_{j}=\lambda_{j} A_{\sigma(j)}, \lambda_{j} \neq 0$. Let us concentrate on a fixed $A_{\sigma(j)}$; call it A. Let f_{1}, \ldots, f_{s} be the $\left\{e_{j}\right\}$ corresponding to this A; order the f 's so that f_{1} occurs furthest to the left in the product being considered, f_{2} occurs next, etc. Then $A f_{i}=\eta_{i} f_{i}$ where η_{i} is a non-zero constant. Call the generator corresponding to $f_{i}\left\langle\lambda_{i} A \mid f_{i}\right\rangle$, $\lambda_{i} \neq 0$; this involves an abuse of notation, since the subscript i on λ_{i} is supposed to refer to the i-th e rather than the i-th f, but it will not matter.

If $\left\langle B_{j} \mid e_{j}\right\rangle$ is a generator and $B_{j} f_{i} \neq 0, e_{j}$ is one of the f 's. Indeed, B_{j} is not zero, so $\mathscr{D} e_{j}=0$ or else exactly one A_{k} is non-zero on e_{j} and B_{j} is a multiple of that A_{k}; in this last case A_{k} is clearly A and e_{j} is one of the f 's. If $\mathscr{D} e_{j}=0$, apply the condition at the end of Theorem 4 to $\left\langle B_{j} \mid e_{j}\right\rangle$ and $\left\langle\lambda_{i} A \mid f_{i}\right\rangle ; B_{j} f_{i}=\tau f_{i}$ so $\tau \lambda_{i} A=0$, so $\tau=0$.

Suppose the term corresponding to $\langle A \mid 0\rangle$ occurs between the r-th and the $(r-1)$-st f_{i}. Call the t corresponding to $\left\langle\lambda_{i} A \mid f_{i}\right\rangle$ " u_{i} " and the t corresponding to $\langle A \mid 0\rangle$ " u ". Consider the product $\left\langle\exp \left(\sum t_{i} D_{i}\right), \psi\left(t_{1}\right) e_{i_{i}}\right.$ $+\cdots\rangle$; the coefficient of A in $\sum t_{i} D_{i}$ is $\lambda_{1} u_{1}+\cdots+\lambda_{s} u_{s}+u, f_{1}$ occurs as

$$
\frac{1}{\lambda_{1} \eta_{1}}\left(e^{u_{1} \lambda_{1} \eta_{1}}-1\right) f_{1},
$$

f_{2} as

$$
\frac{1}{\lambda_{2} \eta_{2}}\left(e^{u_{2} \lambda_{2} \eta_{2}}-1\right) e^{\lambda_{1} u_{1} A} f_{2}
$$

f_{3} as

$$
\frac{1}{\lambda_{3} \eta_{3}}\left(e^{u_{3} \lambda_{3} \eta_{3}}-1\right) e^{\left(\lambda_{1} u_{1}+\lambda_{2} u_{2}\right) A} f_{3}
$$

etc., up to $f_{r} ; f_{r+1}$ occurs as

$$
\frac{1}{\lambda_{r+1} \eta_{r+1}}\left(e^{u_{r+1} \lambda_{r}+1 \eta_{r+1}}-1\right) e^{\left(\lambda_{1} u_{1}+\cdots+\lambda_{r} u_{r}+u\right) A} f_{r+1},
$$

etc. Consequently we must choose u_{1}, \ldots, u_{s}, u so that (if $f_{i}=e_{\tau(i)}$)

$$
\begin{gathered}
\lambda_{1} u_{1}+\cdots+\lambda_{s} u_{s}+u=\varepsilon_{\sigma(j)}, \\
\frac{1}{\lambda_{1} \eta_{1}}\left(e^{u_{1} \lambda_{1 \eta_{1}}}-1\right)=\theta_{\tau(1)} \\
\frac{1}{\lambda_{2} \eta_{2}}\left(e^{u_{2} \lambda_{2} \eta_{2}}-1\right) e^{\lambda_{1} u_{1} \eta_{2}}=\theta_{\tau(2)} \\
\vdots \\
\frac{1}{\lambda_{r} \eta_{r}}\left(e^{u_{r} \lambda_{r} \eta_{r}}-1\right) e^{\left(\lambda_{1} u_{1}+\cdots+\lambda_{r-1} u_{r-1}\right) \eta_{r}}=\theta_{\tau(r)} \\
\frac{1}{\lambda_{r+1} \eta_{r+1}}\left(e^{u_{r}+1 \lambda_{r}+1 \eta_{r}+1}-1\right) e^{\left(\lambda_{1} u_{1}+\cdots+\lambda_{r} u_{r}+u\right) \eta_{r+1}}=\theta_{\tau(r+1)} \\
\vdots \\
\frac{1}{\lambda_{s} \eta_{s}}\left(e^{\mu_{s} \lambda_{s} \eta_{s}}-1\right) e^{\left(\lambda_{1} u_{1}+\cdots+\lambda_{s}-1 u_{s}-1+u\right) \eta_{s}}=\theta_{\tau(s)}
\end{gathered}
$$

Substituting the first equation in the last $s-r$ equations and reordering, we have

$$
\begin{gathered}
e^{u_{1} \lambda_{1} \eta_{1}}-1=\lambda_{1} \eta_{1} \theta_{\tau(1)} \\
e^{u_{2} \lambda_{2} \eta_{2}}-1=\lambda_{2} \eta_{2} \theta_{\tau(2)} e^{-\lambda_{1} u_{1} \eta_{2}} \\
\vdots \\
e^{u_{r} \lambda_{r} \eta_{r}}-1=\lambda_{r} \eta_{r} \theta_{\tau(r)} e^{-\left(\lambda_{1} u_{1}+\cdots+\lambda_{r-1} u_{r-1}\right) \eta_{r}} \\
1-e^{-u_{s} \lambda_{s} \eta_{s}}=\lambda_{s} \eta_{s} \theta_{\tau(s)} e^{-\varepsilon_{\sigma(j)} \eta_{s}} \\
1-e^{-u_{s-1} \lambda_{s}-1 \eta_{s}-1}=\lambda_{s-1} \eta_{s-1} \theta_{\tau(s-1)} e^{\left(\lambda_{s} u_{s}-\varepsilon_{\sigma(j)}\right) \eta_{s}-1} \\
\vdots \\
1-e^{-u_{r+1} \lambda_{r+1} \eta_{r+1}}=\lambda_{r+1} \eta_{r+1} \theta_{\tau(r+1)} e^{\left(\lambda_{s} u_{s}+\cdots+\lambda_{r+2} \eta_{r+2}-\varepsilon_{\sigma(j)} \eta_{r+1}\right.} \\
u=\varepsilon_{\sigma(j)}-\lambda_{1} u_{1}-\cdots-\lambda_{s} u_{s}
\end{gathered}
$$

These equations can be solved successively provided $\lambda_{1} \eta_{1} \theta_{\tau(1)} \geqq 0, \ldots$, $\lambda_{r} \eta_{r} \theta_{\tau(s)} \geqq 0, \lambda_{s} \eta_{s} \theta_{\tau(s)} \leqq 0, \ldots, \lambda_{r+1} \eta_{r+1} \theta_{\tau(r+1)} \leqq 0$. Consequently $\left\langle\exp \left(\sum \varepsilon_{i} A_{i}\right), \sum \theta_{j} e_{j}\right\rangle$ can be written in terms of some expression of length n; the order of the terms in this expression must be carefully chosen. Since the order of generation of \tilde{G} is thus $\leqq n$, the order of generation of G is $\leqq n$.

Our calculation shows that every element of \tilde{G} can be written in terms of the fixed expression $\exp \left(t_{1} X_{1}\right) \circ \cdots \circ \exp \left(t_{n} X_{n}\right)$ if each $\lambda_{i}=0$. If some λ_{i} is non-zero, the expression $\exp \left(t_{1} X_{1}\right) \circ \cdots \circ \exp \left(t_{n} X_{n}\right)$ cannot give every element of \tilde{G}, for $e^{u_{i} \lambda_{i} \eta_{i}}-1>-1$ and $1-e^{-u_{i} \lambda_{i} \eta_{i}}<1$.

It follows that the expression cannot give every element of $G=\tilde{G} / N$. Indeed $N \cong\{\langle I, v\rangle \mid \mathscr{D} v=0\}$; if $\mathscr{D} v=0$ and v is written as a linear combination of e_{1}, \ldots, e_{m}, the coefficient of f_{i} is zero because $A v=0$, A acts diagonally, and $A f_{i} \neq 0$. Thus elements in \tilde{G} equivalent modulo N have the same f_{i} components; if one cannot be written in the form $\exp \left(t_{1} X_{1}\right) \circ \cdots \circ \exp \left(t_{n} X_{n}\right)$, neither can the others.
IV. Reduction of the general case to the semisimple case. Let $\widetilde{S L}(2, R)$ be the universal covering group of $S L(2, R)$, The simply connected Lie group corresponding to the Lie algebra $g=s l(2, R) \times \cdots \times s l(2, R) \times$ $\{\langle A \mid v\rangle \in a(m) \mid A \in \mathscr{D}\}$ is clearly $\tilde{G}=\widetilde{S L}(2, R) \times \cdots \times \widetilde{S L}(2, R) \times$ $\{\langle A, v\rangle \in A(m) \mid A \in \exp \mathscr{D}\}$. Recall that the center of $\tilde{S L}(2, R)$ is isomorphic to Z [4]; the center \mathscr{C} of \tilde{G} is thus $Z \times \cdots \times Z \times\{\langle I, v\rangle \mid \mathscr{D} v=0\}$. If G is a connected Lie group with Lie algebra $g, G \cong \tilde{G} / N$ for some discrete subgroup N of \mathscr{C}.

Theorem 6. Let N be a discrete subgroup of $Z \times \cdots \times Z \times\{\langle I, v\rangle \mid$ $\mathscr{D} v=0\}$ and suppose $\left\{X_{1}, \ldots, X_{n}\right\}$ is a minimal generating set for g, as given in theorem 4. Let the order of generation of $\tilde{S L}(2, R) \times \cdots \times$ $\tilde{S L}(2, R) / \tilde{N}$ with respect to

$$
\begin{gathered}
\cdots, 0 \times \cdots \times\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \times \cdots \times 0, \\
0 \times \cdots \times\left(\begin{array}{rr}
1 & 2 \\
0 & -1
\end{array}\right) \times \cdots \times 0, \\
\\
0 \times \cdots \times\left(\begin{array}{rr}
1 & 0 \\
-2 & -1
\end{array}\right) \times \cdots \times 0,
\end{gathered}
$$

be M, where \tilde{N} is the image of N under the projection $Z \times \cdots \times Z \times$ $\{\langle I, v\rangle \mid \mathscr{D} v=0\} \rightarrow Z \times \cdots \times Z$. The order of generation of $G=\widetilde{G} / N$ with respect to X_{1}, \cdots, X_{n} is $N+m+\operatorname{dim} \mathscr{D}$. There is a fixed expression $\exp \left(t_{1} X_{i_{1}}\right) \circ \exp \left(t_{2} X_{i_{2}}\right) \circ \cdots$ of length $M+m+\operatorname{dim} \mathscr{D}$ giving each element of G just in case there is a fixed expression of length M giving each element of $\widetilde{S L}(2, R) \times \cdots \times \widetilde{S L}(2, R) / \tilde{N}$ and each $\lambda_{i}=0$.

Remark. We will later show that no fixed expression of length M gives each element of $\widetilde{S L}(2, R) \times \cdots \times \widetilde{S L}(2, R) / \widetilde{N}$. Consequently, unless G is solvable no fixed expression of length $M+m+\operatorname{dim} \mathscr{D}$ gives each element of G.

Proof. Let \mathscr{F} be a family of expressions of length M giving the entire group $\tilde{S L}(2, R) \times \cdots \times \widetilde{S L}(2, R) / \widetilde{N}$. Let \mathscr{G} be a family of expressions of length $m+\operatorname{dim} \mathscr{D}$ giving the entire group $\{\langle A, v\rangle \in A(m) \mid A \in \exp \mathscr{D}\}$; such a \mathscr{G} exists by Theorem 5 . Write $\mathscr{F} \times \mathscr{G}$ for the set of all expressions of length $M+m+\operatorname{dim} \mathscr{D}$ obtained by multiplying expressions in \mathscr{F} by
expressions in \mathscr{G}. We claim $\mathscr{F} \times \mathscr{G}$ generates G. Indeed let $a_{1} \times a_{2}$ be a representative of an element of G, where $a_{1} \in \widetilde{S L}(2, R) \times \cdots \times \widetilde{S L}(2, R)$ and $a_{2} \in\{\langle A, v\rangle \mid A \in \exp \mathscr{D}\}$. We can find $n_{1} \in \tilde{N}$ and an expression in \mathscr{F} giving $a_{1} n_{1}$. Let $n_{1} \times n_{2} \in N$. We can find an expression in \mathscr{G} giving $a_{2} n_{2}$. Consequently there is an expression in $\mathscr{F} \times \mathscr{G}$ giving $a_{1} n_{1} \times a_{2} n_{2}=$ $\left(a_{1} \times a_{2}\right)\left(n_{1} \times n_{2}\right)$. Thus the order of generation of G is at most $M+m+$ $\operatorname{dim} \mathscr{D}$. In particular if a single expression generates $\widetilde{S L}(2, R) \times \cdots \times$ $\widetilde{S L}(2, R) / \widetilde{N}$ and each $\lambda_{i}=0, \mathscr{F}$ and \mathscr{G} can be chosen containing a single expression each, so G is generated by one fixed expression.

Conversely let \mathscr{H} be a family of expressions of fixed length $/$ generating G. Each expression in \mathscr{H} has the form $\exp \left(t_{1} X_{i_{1}}\right) \circ \cdots \circ \exp \left(t_{l} X_{i}\right)$. Let $\tilde{\mathscr{H}}$ be the set of all expressions in \mathscr{H} which involve each of the $m+\operatorname{dim} \mathscr{D}$ generators of $\{\langle A \mid v\rangle \in a(m) \mid A \in \mathscr{D}\}$ at least once.

Since $\left\{\left\langle A_{1} \mid 0\right\rangle, \ldots,\left\langle A_{r} \mid 0\right\rangle,\left\langle B_{1} \mid e_{1}\right\rangle, \ldots,\left\langle B_{m} \mid e_{m}\right\rangle\right\}$ is a minimal generating set for $\{\langle A \mid v\rangle \mid A \in \mathscr{D}\}$, the subalgebra generated by any $m+\operatorname{dim} \mathscr{D}-1$ of these terms has dimension $m+\operatorname{dim} \mathscr{D}-1$. Let R_{1}, \ldots, R_{P} be the subgroups of $\{\langle A, v\rangle \in A(m) \mid A \in \exp \mathscr{D}\}$ corresponding to all such subalgebras. Each R_{i} is a set of measure zero in $\{\langle A, v\rangle \mid A \in$ $\exp \mathscr{D}\}$. Let \tilde{N} be the image of N under the map $Z \times \cdots \times Z \times$ $\{\langle I, v\rangle \mid \mathscr{D} v=0\} \rightarrow\{\langle I, v\rangle \mid \mathscr{D} v=0\}$. Since \tilde{N} is countable, $\bigcup_{i=1}^{P} \bigcup_{n_{j} \in \tilde{N}}$ $R_{i} n_{j}^{-1}$ is a set of measure zero and we can choose $a_{2} \in\{\langle A, v\rangle \mid A \in \exp \mathscr{D}\}$ not in any $R_{i} n_{j}^{-1}$ If $a_{1} \in \widetilde{S L}(2, R) \times \cdots \times \widetilde{S L}(2, R), a_{1} \times a_{2}$ represents an element in G, so there is an element $n_{1} \times n_{2} \in N$ and an expression in \mathscr{H} giving $\left(a_{1} \times a_{2}\right)\left(n_{1} \times n_{2}\right)$. But $a_{2} n_{2}$ can only be given by an expression involving all generators of $\{\langle A \mid v\rangle \mid A \in \mathscr{D}\}$, so $\tilde{\mathscr{H}}$ is not empty and indeed the $\tilde{S L}(2, R) \times \cdots \times \tilde{S L}(2, R)$ terms of the expressions in $\tilde{\mathscr{H}}$ generate $\tilde{S L}(2, R) \times \cdots \times \widetilde{S L}(2, R) / \tilde{N}$. Consequently some expression in $\check{\mathscr{H}}$ involves at least M generators of $s l(2, R) \times \cdots \times \operatorname{sl}(2, R)$; all expressions in $\check{\mathscr{H}}$ involve at least $m+\operatorname{dim} \mathscr{D}$ generators of $\{\langle A \mid v\rangle \mid A \in \mathscr{D}\}$ so $\ell \geqq M+m+\operatorname{dim} \mathscr{D}$.

Finally, suppose \mathscr{H} contains only one expression and $\ell=M+m+$ $\operatorname{dim} \mathscr{D}$. By the argument just concluded, the $\widetilde{S L}(2, R) \times \cdots \times \widetilde{S L}(2, R)$ part of this expression has length M and generates $\widetilde{S L}(2, R) \times \cdots \times$ $\tilde{S L}(2, R) / \tilde{N}$. The $\{\langle A, v\rangle \mid A \in \exp \mathscr{D}\}$ part of the expression has length $m+\operatorname{dim} \mathscr{D}$ and generates $\{\langle A, v\rangle \mid A \in \exp \mathscr{D}\} /\{\langle I, v\rangle \mid \mathscr{D} v=0\}$. By the last step in the proof of theorem 5 , each λ_{i} is zero.
V. The order of generation problem for semisimple groups. Define integervalued functions $h_{1}(x), h_{2}(x)$, and $h_{3}(x)=h_{2}(-x)$ on R as follows: $h_{i}(x)=$ $[3|x|]+3$ if $x \notin Z([x]$ denotes, of course, the greatest integer less than or equal to $x) ; h_{1}(0)=0, h_{2}(0)=h_{3}(0)=2$; if n is a positive integer, $h_{1}(n)=h_{2}(n)=h_{3}(-n)=3 n+3$; if n is a negative integer, $h_{1}(n)=$ $3|n|+3$ and $h_{2}(n)=h_{3}(-n)=3|n|+2$.

Theorem 7. Let N be a subgroup of $Z^{p}=Z \times \cdots \times Z$. The order of generation of $\widetilde{S L}(2, R) \times \cdots \times \widetilde{S L}(2, R) / N$ with respect to

$$
\begin{aligned}
& \cdots, 0 \times \cdots \times\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \times \cdots \times 0, \\
& \quad 0 \times \cdots \times\left(\begin{array}{rr}
1 & 2 \\
0-1
\end{array}\right) \times \cdots \times 0 \\
& \quad 0 \times \cdots \times\left(\begin{array}{rr}
1 & 0 \\
-2-1
\end{array}\right) \times \cdots \times 0, \cdots
\end{aligned}
$$

is the smallest integer M such that whenever $1 \leqq i_{j} \leqq 3$,

$$
\left\{\left(x_{1}, \ldots, x_{p}\right) \mid h_{i_{1}}\left(s_{1}\right)+\cdots+h_{i_{p}}\left(x_{p}\right) \leqq M\right\}
$$

contains a representative of each element in R^{p} / N.
Proof. The group $\operatorname{PSL}(2, R)=S L(2, R) /\{ \pm I\}=\widetilde{S L}(2, R) / Z$ acts on the projective line $P^{1}=R \cup\{\infty\}$ by

$$
x \xrightarrow{\binom{a b}{c d}} \frac{a x+b}{c x+d}
$$

Call an ordered triple $\left(x_{1}, x_{2}, x_{3}\right)$ in $P^{1} \times P^{1} \times P^{1}$ oriented if there is a cyclic permutation σ such that $-\infty<x_{\sigma(1)}<x_{\sigma(2)}<x_{\sigma(3)} \leqq \infty$. If $\left(x_{1}, x_{2}, x_{3}\right)$ and $\left(y_{1}, y_{2}, y_{3}\right)$ are oriented triples, $\operatorname{PSL}(2, R)$ contains a unique element mapping x_{i} to y_{i}.

Let L be the universal covering space of $P^{1}, \tau: L \rightarrow P^{1}$ the covering map. Of course L is homeomorphic to R. Choose this homeomorphism so that $\tau(0)=\infty, \tau(1 / 3)=-1, \tau(2 / 3)=0$ and $x \rightarrow x+n$ is a covering transformation for each integer n.

There is a natural map $\psi: \widetilde{S L}(2, R) \rightarrow\left\{\left(a_{L}, a, b, c\right) \in L \times P^{1} \times P^{1} \times\right.$ $P^{1} \mid \tau\left(a_{L}\right)=a,(a, b, c)$ an oriented triple $\}$ defined as follows. Suppose $\tilde{g} \in \widetilde{S L}(2, R)$. Let $\pi: \widetilde{S L}(2, R) \rightarrow P S L(2, R)$ be the canonical projection; $\pi(\tilde{g})$ maps $(\infty,-1,0)$ to an oriented triple (a, b, c). Choose a path $\nu(t)$: $[0,1] \rightarrow \widetilde{S L}(2, R)$ starting at the identity and ending at $\tilde{g} ;(\pi \nu(t))(\infty)$ is a path in P^{1} starting at ∞ and ending at a. This path uniquely lifts to a path in L starting at 0 and ending at a point a_{L} over a. Let $\psi(\tilde{g})=\left(a_{L}, a, c, b\right)$. The map ψ is one-to-one and onto; it carries the center of $\widetilde{S L}(2, R)$ to $\{(n, \infty,-1,0) \mid n \in Z\}$. Moreover, if $\psi(\tilde{g})=\left(a_{L}, a, b, c\right)$ and $\psi(\tilde{h})=$ $(n, \infty,-1,0), \psi(\tilde{g} \tilde{h})=\left(a_{L}+n, a, b, c\right)$. For details, see [4].

Lemma 16. Whenever $\tilde{g} \in \tilde{S L}(2, R)$ satisfies $\psi(\tilde{g})=\left(a_{L}, a, b, c\right), \tilde{g}$ can be represented by an expression of length $\left[3\left|a_{L}\right|\right]+3$. For each $a \in P^{1}$ there is a triple (a, b, c) such that no \tilde{g} for which $\psi(\tilde{g})=\left(a_{L}, a, b, c\right)$ and $a_{L} \neq 0$ can be represented by an expression of length $\left[3\left|a_{L}\right|\right]+2$.

Proof. For convenience let X, Y, and Z denote the one parameter groups

$$
\exp t\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right), \exp t\left(\begin{array}{rr}
1 & 2 \\
0 & -1
\end{array}\right), \text { and } \exp t\left(\begin{array}{rr}
1 & 0 \\
-2 & -1
\end{array}\right)
$$

respectively. Notice that each element of X leaves 0 and ∞ fixed; X acts transitively on $(-\infty, 0)$ and $(0, \infty)$. Similarly the fixed points of Y are $-1, \infty$ and those of Z are $-1,0 ; Y$ and Z act transitively on the connected components of the complements of their fixed point sets. We shall think of X, Y, and Z in four different ways: as one parameter groups in $\widetilde{S L}(2, R)$, as the corresponding one parameter groups in $\operatorname{PSL}(2, R)$, as one parameter groups acting on P^{1}, and as one parameter groups acting on L. No confusion results (we hope)!

In L, X leaves $0+Z$ and $2 / 3+Z$ fixed and acts transitively on $(-1 / 3+$ $n, 0+n$) and $(0+n, 2 / 3+n)$ (see figure). Similarly Y leaves $0+Z$ and $1 / 3+Z$ fixed and acts transitively on $(0+n, 1 / 3+n)$ and $(1 / 3+n$, $1+n) ; Z$ leaves $1 / 3+Z$ and $2 / 3+Z$ fixed and acts transitively on $(-1 / 3+n, 1 / 3+n)$ and $(1 / 3+n, 2 / 3+n)$. During the arguments in the following pages the reader will often find it useful to draw orbit pictures in L.

Notice that $Z(0)$ can be any point in $[0,1 / 3), X Z(0)$ any point in $[0,2 / 3), Y X Z(0)$ any point in $[0,1)$, etc. Similarly, $Z(0)$ can be any point in $(-1 / 3,0], Y Z(0)$ any point in $(-2 / 3,0], X Y Z(0)$ any point in $(-1,0]$, etc. In short, for each $a_{L} \in(-k / 3, k / 3)$ there is an expression $\ldots Z$ of length k mapping 0 to a_{L}. The inverse of the projection of this expression to $\operatorname{PSL}(2, R)$ maps a to ∞ and so maps (a, b, c) to $(\infty, \tilde{b}, \tilde{c})$.

If $-1<\tilde{c}$, there is an element in Y mapping 0 to \tilde{c}. If this expression maps \tilde{b} to \tilde{b}, it maps $(\infty, \tilde{b}, 0)$ to $(\infty, \tilde{b}, \tilde{c})$; since all triples are oriented, $\tilde{b}<0$ and there is an element in X mapping -1 to \tilde{b}, so $\ldots Z Y X$ maps $(\infty,-1,0)$ to (a, b, c) and $0 \in L$ to a_{L}.

If $\tilde{c} \leqq-1, \tilde{b}<\tilde{c}<0$ and there is an element in X mapping -1 to \tilde{b}. Let this expression map $\tilde{\tilde{c}}$ to \tilde{c}; then ($\infty,-1, \tilde{c}$) maps to ($\infty, \tilde{b}, \tilde{c}$), so $-1<\tilde{\boldsymbol{c}}$ and there is an element in Y mapping 0 to $\tilde{\boldsymbol{c}}$. Thus $\ldots Z X Y$ maps $(\infty,-1,0)$ to (a, b, c) and $0 \in L$ to a_{L}.

Thus whenever $-k / 3<\left|a_{L}\right|<k / 3$, the element in $\widetilde{S L}(2, R)$ corresponding to $\left(a_{L}, a, b, c\right)$ can be written as a product with $k+2$ terms. The first part of the lemma follows.

As for the second part of the lemma, if $a \in[\infty,-1]$ let $b=-1, c=0$. If $a \in[-1,0)$, let $b=0, c=\infty$. If $a \in[0, \infty)$, let $b=\infty, c=-1$. We shall discuss the case $a \in[\infty,-1]$, leaving all other cases to the reader.

Consider an expression in X, Y, Z of length $k+2$, where $k=\left[3\left|a_{L}\right|\right]$. One of $\infty,-1,0$ is left fixed by the first two terms in this expression. Let $\ell \in L$ be a point over this fixed element; ℓ is equivalent to $0,1 / 3$, or $2 / 3$. The image of ℓ under the third term in the expression must belong to ($\ell-1 / 3, \ell+1 / 3$), its image under the fourth term must belong to $(\ell-2 / 3, \ell+2 / 3)$, etc., and its final image must belong to $(\ell-k / 3$, / $+k / 3$).

If the first two terms leave ∞ fixed, the image of 0 in L belongs to $(-k / 3, k / 3)$ and so cannot equal a_{L}. Otherwise, suppose for a moment $a_{L}>0$. Since $\tau\left(a_{L}\right)=a \in[\infty,-1), a_{L}=m+\eta$, where m is a nonnegative integer and $0 \leqq \eta<1 / 3 ;\left[3 a_{L}\right]=3 m, k=3 m$. If the first two terms leave -1 fixed, the image of $1 / 3$ in L belongs to $(1 / 3-m, 1 / 3+m$); since -1 is mapped to -1 , this image must be equivalent to $1 / 3$. Hence the image of $1 / 3$ is at most $1 / 3+m-1$; since $0<1 / 3$, the image a_{L} of 0 is smaller than the image of $1 / 3$, and so smaller than $1 / 3+m-1$, contradiction. If the first two terms leave 0 fixed, the image of $2 / 3$ in L belongs to ($2 / 3-m, 2 / 3+m$); since 0 is mapped to 0 , this image must be equivalent to $2 / 3$ and so must be at most $2 / 3+m-1$; as before, $a_{L}<2 / 3+m-1$, contradiction.

If $a_{L}<0$, let $a_{L}=-m+\eta$, where m is a non-negative integer and $\eta \in[0,1 / 3)$; then $\left[3\left|a_{L}\right|\right]=3 m-1$ or $3 m$ and at any rate $k \leqq 3 m$. If the first two terms leave -1 fixed, the image of $-2 / 3$ in L belongs to $(-2 / 3-$ $m,-2 / 3+m)$ and is equivalent to $-2 / 3$, so it is greater than or equal to $-2 / 3-m+1$; since $-2 / 3<0$, the image a_{L} of 0 is greater than the image of $-2 / 3$, so $-2 / 3-m+1<a_{L}$, contradiction. If the first two terms leave 0 fixed, the image of $-1 / 3$ in L belongs to $(-1 / 3-m$, $1 / 3+m$) and is equivalent to $-1 / 3$, so it is greater than or equal to $-1 / 3-m+1$; as before $-1 / 3-m+1<a_{L}$, contradiction.

Lemma 17. Let (∞, b, c) be an oriented triple. There is an $i, 1 \leqq i \leqq 3$, such that whenever $\tilde{g} \in \tilde{S L}(2, R)$ and $\psi(g)=(n, \infty, b, c), \tilde{g}$ can be represented by an expression of length $h_{i}(n)$. For each i, there is a triple (∞, b, c) such that no \tilde{g} for which $\psi(\tilde{g})=(n, \infty, b, c)$ can be represented by an expression of length $h_{i}(n)-1$.

Proof. The element corresponding to $(n, \infty,-1,0)$ can be represented by an expression of length $h_{1}(n)$, but not by an expression of length $h_{1}(n)-1$. Indeed, if $n=0$, this element is just the identity and the result is obvious. Otherwise Lemma 16 applies.

If $-1<b$ or $0<c$, the element corresponding to (n, ∞, b, c) can be represented by an expression of length $h_{2}(n)$; if $-1<b<0$ and $0<c$,
this element cannot be represented by an expression of length $h_{2}(n)-1$. Indeed suppose $-1<b$. If $n>0$, Lemma 16 shows that the element corresponding to (n, ∞, b, c) can be written as a product of length $h_{2}(n)$. It is easy to see that $(0, \infty, b, c)$ can be written as a product of length 2 . Suppose $n<0$; then $h_{2}(n)=3|n|+2$. But $1 / 3$ in L can be mapped to any point in $(0,1 / 3)$ by a single term, to any point in $(-1 / 3,1 / 3)$ by two terms, etc., and so to any point in $(-(3|n|-1) / 3,1 / 3)=(-|n|+1 / 3,1 / 3)$ by an expression with $3|n|$ terms. In particular, it can be mapped by such an expression to the element b_{L} in $(-|n|+1 / 3,-|n|+1)$ such that $\tau\left(b_{L}\right)=$ b. As in the proof of Lemma 16, it is then easy to find an expression of length $3|n|+2$ mapping $1 / 3$ to b_{L} and $(\infty,-1,0)$ to (∞, b, c). Since $0<1 / 3$, the image of 0 in L must be smaller than the image of $1 / 3$ in L, so $a_{L}<b_{L}<-|n|+1$. Since a_{L} is an integer, $\left|a_{L}\right| \leqq-|n|$. But expressions of length $3|n|+2$ carry 0 into $(-|n|-2 / 3,|n|+2 / 3)$, so $a_{L}=-|n|$ and the expression of length $3|n|+2$ obtained yields the element in $\widetilde{S L}(2, R)$ corresponding to $(-|n|, \infty, b, c)$. A similar argument works when $c<0$.

Suppose $-1<b<0$ and $0<c$. No expression of length $h_{2}(n)-1$ can represent (n, ∞, b, c). Indeed if $n=0, h_{2}(n)-1=1$ and all expressions with one term leave -1 or 0 fixed. If $n>0$, one of $\infty,-1,0$ is left fixed by the first two terms of a given expression of length $h_{2}(n)-1=3 n+2$. If this element is $\infty, 0$ in L is mapped to $a_{L}<n$. If it is $-1,1 / 3$ in L is mapped to an element less than $n+1 / 3$ and equivalent to an element in $(1 / 3,2 / 3)$ and consequently less than $n-2 / 3$, so $a_{L}<n-2 / 3$. If 0 is left fixed by the first two terms, $2 / 3$ in L is mapped to an element less than $n+2 / 3$ and equivalent to an element in $(2 / 3,1)$ and consequently less than n, so $a_{L}<n$.

If $n<0$, one of $\infty,-1,0$ is left fixed by the first two terms of a given expression of length $h_{2}(n)-1=3|n|+1$. If this element is $\infty,-|n|-$ $1 / 3<a_{L}$. If it is $-1,-2 / 3$ in L is mapped to an element greater than $-|n|-1 / 3$ and equivalent to an element in $(1 / 3,2 / 3)$ and consequently greater than $-|n|+1 / 3$, so $-|n|+1 / 3<a_{L}$. If 0 is left fixed by the first two terms, $-1 / 3$ in L is mapped to an element greater than $-|n|$, so $-|n|<a_{L}$.

If $b<-1$ or $c<0$, the element corresponding to (n, ∞, b, c) can be represented by an expression of length $h_{3}(n)$; if $b<-1$ and $-1<c<0$, this element cannot be represented by an expression of length $h_{3}(n)-1$. The proof is exactly as before.

The three statements just proved clearly imply Lemma 17.
CONCLUSION OF THE PROOF OF THEOREM 7. Let $\tilde{g}_{1} \times \cdots \times \tilde{g}_{p}$ belong to $\tilde{S L}(2, R) \times \cdots \times \widetilde{S L}(2, R)$, and suppose $\psi\left(\tilde{g}_{j}\right)=\left(a_{L, j}, a_{j}, b_{j}, c_{j}\right)$. By Lemmas 16 and 17 , there is an $i_{j}, 1 \leqq i_{j} \leqq 3$, such that whenever $n \in Z$,
the element in $\widetilde{S L}(2, R)$ corresponding to $\left(a_{L, j}+n, a_{j}, b_{j}, c_{j}\right)$ can be written as a product of at most $h_{i j}\left(a_{L, j}+n\right)$ terms. Since $\left(a_{L, 1}, \ldots, a_{L, p}\right)$ is equivalent modulo N to an element of $\left\{\left(x_{1}, \ldots, x_{p}\right) \mid h_{i_{1}}\left(x_{1}\right)+\cdots+\right.$ $\left.h_{i_{p}}\left(x_{p}\right) \leqq M\right\}$, there is an $n_{1} \times \cdots \times n_{p}$ in N such that $\tilde{g}_{1} n_{1} \times \cdots \times \tilde{g}_{p} n_{p}$ can be written as a product of length at most M.

Conversely suppose the order of generation of $\tilde{S L}(2, R) \times \cdots \times$ $\tilde{S L}(2, R) / N$ is M. Let $\left(x_{1}, \ldots, x_{p}\right) \in R^{p}$ and let $h_{i_{1}}, \ldots, h_{i_{p}}$ be given, $1 \leqq$ $i_{j} \leqq 3$. By Lemmas 16 and 17, for each j there is an oriented triple ($\tau\left(x_{j}\right), b_{j}, c_{j}$) such that whenever $n \in Z$, the element \tilde{g}_{j} in $\widetilde{S L}(2, R)$ corresponding to $\left(x_{j}+n, \tau\left(x_{j}\right), b_{j}, c_{j}\right)$ cannot be written as a product of fewer than $h_{i_{j}}\left(x_{j}+n\right)$ terms. But $\tilde{g}_{1} \times \cdots \times \tilde{g}_{p}$ is equivalent to an element that can be written as a product of length at most M, so there is an element $n_{1} \times \cdots \times n_{p}$ in N, depending on the x_{j} 's and the i_{j} 's, such that $h_{i_{j}}\left(x_{1}+n_{1}\right)+\cdots+h_{i_{p}}\left(x_{p}+n_{p}\right) \leqq M$.

COROLLARY 1. The order of generation of $\tilde{S L}(2, R) \times \cdots \times$ $\widetilde{S L}(2, R) / N$ is finite if and only if N has maximal rank.

Proof. By the theorem, the order of generation is finite if and only if there exists a compact subset of R^{p} containing a representative of each element of $R \times \cdots \times R / N$; it is well known that this happens just in case N has maximal rank.

Corollary 2. If $n>0$, the order of generation of $\tilde{S L}(2, R) / n Z$ is $[(3 n+6) / 2]$.

Proof. Notice that $\left\{x \mid h_{1}(x) \leqq M\right\}=(-(M-2) / 3,(M-2) / 3)$ whenever $M \geqq 3$. If $(M-2) / 3$ is not an integer, $\left\{x \mid h_{2}(x) \leqq M\right\}=$ $(-(M-2) / 3, \quad(M-2) / 3)$ and $\left\{x \mid h_{3}(x) \leqq M\right\}=(-(M-2) / 3$, $(M-2) / 3)$. If $(M-2) / 3$ is an integer, $\left\{x \mid h_{2}(x) \leqq M\right\}=[-(M-2) / 3$, $(M-2) / 3)$ and $\left\{x \mid h_{3}(x) \leqq M\right\}=(-(M-2) / 3,(M-2) / 3]$. The order of generation of $\widetilde{S L}(2, R) / n Z$ is thus the smallest M such that $[-n / 2, n / 2] \subseteq(-(M-2) / 3,(M-2) / 3)$; a little thought shows that $M=[3 n+6) / 2]$.

Remark. Think of P^{1} as a circle. Using our results, the reader can show that $\tilde{S L}(2, R) / n Z, n$ even, contains a unique element of maximal length; this element turns the circle through $n / 2$ revolutions. If n is odd, $\tilde{S L}(2, R) / n Z$ contains a family of elements of maximal length; each such element turns the circle through $(n-1) / 2$ revolutions and then twists it an extra half turn so that each fixed point goes into the open interval bounded by the other two fixed points.

Remark. When $N \subseteq Z \times \cdots \times Z$ has maximal rank, routine algebra
shows that N can be generated by the row vectors of a triangular matrix

$$
\left[\begin{array}{lllll}
n_{11} & n_{12} & n_{13} & \cdots & n_{1 p} \\
0 & n_{22} & n_{23} & \cdots & n_{2 p} \\
0 & 0 & n_{33} & \cdots & n_{3 p} \\
. & \cdot & \cdot & \cdots & \cdot \\
0 & 0 & 0 & \cdots & n_{p p}
\end{array}\right]
$$

Theorem 8. a) The order of generation of $\widetilde{S_{L}}(2, R) \times \cdots \times \widetilde{\operatorname{SL}}(2, R) / N$ is less than or equal to $\left[\left(3 n_{11}+6\right) / 2\right]+\cdots+\left[\left(3 n_{p p}+6\right) / 2\right]$.
b) If the off-diagonal entries in the above matrix vanish, the order of generation of $\widetilde{S L}(2, R) \times \cdots \times \widetilde{S L}(2, R) / N$ is exactly $\left[\left(3 n_{11}+6\right) / 2\right]+$ $\cdots+\left[\left(3 n_{p p}+6\right) / 2\right]$.

Proof. Let $\tilde{g}=\tilde{g}_{1} \times \cdots \times \tilde{g}_{p}$ belong to $\widetilde{S L}(2, R) \times \cdots \times \widetilde{S L}(2, R)$. The order of generation of $\tilde{S L}(2, R) / n_{11} Z$ is $\left[\left(3 n_{11}+6\right) / 2\right]$, so \tilde{g} is equivalent via a multiple of $n_{11} \times n_{12} \times \cdots \times n_{1 p}$ to $\tilde{h}_{1} \times \tilde{g}_{2}^{1} \times \cdots \times \tilde{g}_{p}^{1}$ where \tilde{h}_{1} can be written as a product of $\left[\left(3 n_{11}+6\right) / 2\right]$ terms. Similarly $\tilde{h}_{1} \times$ $\tilde{g}_{2}^{1} \times \cdots \times \tilde{g}_{p}^{1}$ is equivalent via a multiple of $0 \times n_{22} \times \cdots \times n_{2 p}$ to $\tilde{h}_{1} \times \tilde{h}_{2} \times \cdots \times \tilde{g}_{p}^{11}$ where h_{2} can be written as a product of $\left[\left(3 n_{22}+6\right) / 2\right]$ terms. Continue. Eventually \tilde{g} is equivalent modulo N to $\tilde{h}_{1} \times \cdots \times \tilde{h}_{p}$ where each \tilde{h}_{i} can be written as a product of $\left[\left(3 n_{i i}+6\right) / 2\right]$ terms.

Suppose next that all off-diagonal entries are zero. There are elements $\tilde{g}_{1}, \ldots, \tilde{g}_{p}$ in $\widetilde{S L}(2, R)$ such that no element equivalent to \tilde{g}_{i} via a multiple of $n_{i i}$ can be written using fewer than $\left[\left(3 n_{i i}+6\right) / 2\right]$ terms. Consequently no element equivalent to $\tilde{g}_{1} \times \cdots \times \tilde{g}_{p}$ via N can be written with fewer than $\left[\left(3 n_{11}+6\right) / 2\right]+\cdots+\left[\left(3 n_{p p}+6\right) / 2\right]$ terms.

Remark. One can calculate the order of generation of $\tilde{S L}(2, R) \times \ldots$ $\times \widetilde{S L}(2, R) / N$ for a fixed N in a finite number of steps. Indeed, $h_{i_{1}}\left(x_{1}\right)+$ $\cdots+h_{i_{p}}\left(x_{p}\right)$ is constant on subsets of the form $S_{1} \times \cdots \times S_{p}$ where $S_{i}=(\ell / 3, \iota+1 / 3)$ or $S_{i}=\{\iota / 3\}$. Each such subset is entirely inside or entirely outside $\left\{\left(x_{1}, \ldots, x_{p}\right) \mid h_{i_{1}}\left(x_{1}\right)+\cdots+h_{i_{p}}\left(x_{p}\right) \leqq M\right\}$. Moreover $\left(S_{1} \times \cdots \times S_{p}\right) \circ\left(n_{1} \times \cdots \times n_{p}\right)$ is again a set of the form $\tilde{S}_{1} \times \cdots \times$ \tilde{S}_{p}. Each $\left(x_{1}, \ldots, x_{p}\right)$ is equivalent to some $\left(y_{1}, \ldots, y_{p}\right)$ such that $\left|y_{i}\right| \leqq$ $n_{i i} / 2$. Consequently each $S_{1} \times \cdots \times S_{p}$ is equivalent to $\tilde{S}_{1} \times \cdots \times \tilde{S}_{p}$ such that $\tilde{S}_{i} \subseteq\left(-\left(3 n_{i i}+2\right) / 6,\left(3 n_{i i}+2\right) / 6\right)$. The set \mathscr{C} of such $\tilde{S}_{1} \times$ $\ldots \times \tilde{S}_{p}$ is finite. The order of generation is less than or equal to M if and only if whenever $1 \leqq i_{j} \leqq 3$, each element of \mathscr{C} is equivalent modulo N to an element of \mathscr{C} inside $\left\{x_{1}, \ldots, x_{p}\right) \mid h_{i_{1}}\left(x_{1}\right)+\cdots+h_{i_{p}}\left(x_{p}\right)$ $\leqq M\}$.

In practice, it pays to proceed in a less systematic manner.

Example. Let N be the subgroup of $Z \times Z$ generated by 1×2 and 0×5. By Theorem 8 , the order of generation of $\tilde{S L}(2, R) \times \tilde{S L}(2, R) / N$ is at most $[(3+6) / 2]+[(15+6) / 2]=14$. However the actual order of generation is 11 .

Indeed any point in R^{2} is equivalent to a point in $\left\{\left(x_{1}, x_{2}\right)\left|\left|x_{1}\right| \leqq 1 / 2\right.\right.$, $\left.\left|x_{2}\right| \leqq 5 / 2\right\}$. If $3 / 2 \leqq x_{2} \leqq 5 / 2,\left(x_{1}, x_{2}\right)$ is equivalent to $\left(x_{1}-1, x_{2}-2\right)$ and $-3 / 2 \leqq x_{1}-1 \leqq-1 / 2,-1 / 2 \leqq x_{2}-2 \leqq 1 / 2$. If $-5 / 2 \leqq x_{2} \leqq$ $-3 / 2,\left(x_{1}, x_{2}\right)$ is equivalent to $\left(x_{1}+1, x_{2}+2\right)$ and $1 / 2 \leqq x_{1}+1 \leqq 3 / 2$, $-1 / 2 \leqq x_{2}+2 \leqq 1 / 2$. Thus any point in R^{2} is equivalent to a point in $\left\{\left(x_{1}, x_{2}\right)\left|\left|x_{1}\right| \leqq 3 / 2,\left|x_{2}\right| \leqq 1 / 2\right\} \cup\left\{\left(x_{1}, x_{2}\right)\left|\left|x_{1}\right| \leqq 1 / 2,\left|x_{2}\right| \leqq 3 / 2\right\}\right.\right.$ For any $i=1,2$, or $3, h_{i}(x) \leqq 4$ if $|x| \leqq 1 / 2$ and $h_{i}(x) \leqq 7$ if $|x| \leqq 3 / 2$ so every point is equivalent to a point $\left(x_{1}, x_{2}\right)$ such that $h_{i_{1}}\left(x_{1}\right)+h_{i_{2}}\left(x_{2}\right) \leqq 11$ and the order of generation is at most 11 .

However consider $(-1 / 2,3 / 2)$; it is easy to see that $h_{1}(-1 / 2+n)+$ $h_{1}(3 / 2+2 n+5 m) \geqq 11$ for all m and n, so the order of generation is at least 11 .

Theorem 9. Suppose $\widetilde{S L}(2, R) \times \cdots \times \widetilde{S L}(2, R) / N$ has order of generation M. No fixed expression of length M generates $\widetilde{S L}(2, R) \times \cdots \times$ $\widetilde{S L}(2, R) / N$.

Proof. Pick $\tilde{g} \in \tilde{S L}(2, R)$ covering

$$
\left(\begin{array}{rr}
1 & 1 \\
-1 & 0
\end{array}\right)
$$

in $\tilde{S L}(2, R)$. The map $g \rightarrow \tilde{g} g \tilde{g}^{-1}$ is an automorphism of $\tilde{S L}(2, R)$ fixing the center Z of $\widetilde{S L}(2, R)$ pointwise; the induced automorphism of $\operatorname{sl}(2, R)$ takes

$$
\left(\begin{array}{rr}
1 & 0 \\
0-1
\end{array}\right) \text { to }-\left(\begin{array}{rr}
1 & 2 \\
0 & -1
\end{array}\right),\left(\begin{array}{rr}
1 & 2 \\
0-1
\end{array}\right) \text { to }\left(\begin{array}{rr}
1 & 0 \\
-2 & -1
\end{array}\right), \text { and }\left(\begin{array}{rr}
1 & 0 \\
-2 & -1
\end{array}\right) \text { to }-\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Consequently, any expression of length M giving each element of $\widetilde{S L}(2, R) \times \cdots \times \widetilde{S L}(2, R) / N$ can be carried by a suitable automorphism of $\widetilde{S L}(2, R) \times \cdots \times \widetilde{S L}(2, R) / N$ to a second such expression so that the first appearances of

$$
0 \times \cdots \times\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \times \cdots \times 0 \text { and } 0 \times \cdots \times\left(\begin{array}{rr}
1 & 2 \\
0 & -1
\end{array}\right) \times \cdots \times 0
$$

appear to the right of the first appearance of

$$
0 \times \cdots \times\left(\begin{array}{rr}
1 & 0 \\
-2 & -1
\end{array}\right) \times \cdots \times 0
$$

in the new expression. From now on, fix such a hypothetical expression. An element $\tilde{g}_{1} \times \cdots \times \tilde{g}_{p}$ in $\tilde{S L}(2, R) \times \cdots \times \tilde{S L}(2, R)$ for which
$\psi\left(\tilde{g}_{i}\right)=\left(a_{L, i}, a_{i}, b_{i}, c_{i}\right)$ can be written in terms of this expression only if $a_{L, 1} \times \cdots \times a_{L, p}$ is in $A_{1} \times \cdots \times A_{p}$ where $A_{i} \subseteq L$ is the interval of images of 0 in L under the induced action on L of the terms affecting the i-th component of the above expression. Each element of R^{p} must be equivalent modulo N to an element in $A_{1} \times \cdots \times A_{p}$.

Suppose n_{i} terms in the expression affect the i-th $\tilde{S L}(2, R)$. By an argument that has become standard in this paper, $A_{i} \subseteq\left(-\left(n_{i}-2\right) / 3\right.$, $\left.\left(n_{i}-2\right) / 3\right)$. Let $h(x)=[3|x|]+3$; notice that $h(x) \geqq h_{j}(x)$ whenever 1 $\leqq j \leqq 3$. Since $h \leqq n_{i}$ on $A_{i}, A_{1} \times \cdots \times A_{p} \subseteq\left\{\left(x_{1}, \ldots, x_{p}\right) \mid h\left(x_{1}\right)\right.$ $\left.+\cdots+h\left(x_{p}\right) \leqq n_{1}+\cdots+n_{p}=M\right\}$. We are going to show that each point in $A_{1} \times \cdots \times A_{p}$ is equivalent to a point in $\left\{\left(x_{1}, \ldots, x_{p}\right) \mid h\left(x_{1}\right)\right.$ $\left.+\cdots+h\left(x_{p}\right) \leqq M-1\right\}$. It will follow that the order of generation of $\widetilde{S L}(2, R) \times \cdots \times S L(2, R) / N$ is less than or equal to $M-1$ and we will be done.

Consider a typical A_{i}. The first two terms affecting A_{i} leave 0 fixed and the third term maps 0 into $(-1 / 3), 1 / 3)$. Since $1 / 2$ is not equivalent modulo Z to any point in $(-1 / 3,1 / 3)$, there must be a fourth term. This term carries 0 into $(-1 / 3,2 / 3)$ or $(-2 / 3,1 / 3)$. From now on throughout the rest of the argument we shall suppose all fourth terms carry 0 into $(-1 / 3$, $2 / 3$); the reader will soon see that our argument carries over to the general case with only minor notational changes. The fifth term carries 0 into $(-2 / 3,3 / 3)$, and the sixth term carries 0 into $(-3 / 3,3 / 3)$ or $(-2 / 3,4 / 3)$. However, if the sixth term carries 0 into $(-3 / 3,3 / 3), A_{i} \subseteq\left(-\left(n_{i}-3\right) / 3\right.$, $\left.\left(n_{i}-3\right) / 3\right), h\left(A_{i}\right) \leqq n_{i}-1$, and $A_{1} \times \cdots \times A_{p} \subseteq\left\{x_{1}, \ldots, x_{p} \mid h\left(x_{1}\right)\right.$ $\left.+\cdots+h\left(x_{p}\right) \leqq M-1\right\}$. So the sixth term carries 0 into $(-2 / 3,4 / 3)$.

In short, $n_{i} \geqq 4$; if $n_{i}=4, A_{i} \subseteq(-1 / 3,2 / 3)$; if $n_{i}=5, A_{i} \subseteq(-2 / 3$, $3 / 3)$; if $n_{i} \geqq 6, A_{i} \cong\left(-\left(n_{i}-4\right) / 3,\left(n_{i}-2\right) / 3\right)$.

Since $h\left(a_{i}\right)<n_{i}$ on $\left.\left(-\left(n_{i}-3\right) / 3\right),\left(n_{i}-3\right) / 3\right)$, every point in $A_{1} \times \cdots$ $\times A_{p}$ not in $\left[\left(n_{1}-3\right) / 3,\left(n_{1}-2\right) / 3\right) \times \cdots \times\left[\left(n_{p}-3\right) / 3,\left(n_{p}-2\right) / 3\right)$ already belongs to $\left\{\left(x_{1}, \ldots, x_{p}\right) \mid h\left(x_{1}\right)+\cdots+h\left(x_{p}\right) \leqq M-1\right\}$. Consider the point $\left(n_{1}-2\right) / 3 \times \cdots \times\left(n_{p}-2\right) / 3$; this point is equivalent modulo N to a point in $A_{1} \times \cdots \times A_{p}$, so there is an element $/_{1} \times \cdots \times$ ι_{p} in N such that $\left(n_{i}-2\right) / 3-\ell_{i} \in A_{i}$. If $n_{i}=4,-1 / 3<2 / 3-\iota_{i}<2 / 3$; there is not such integer ℓ_{i}. If $n_{i}=5,-2 / 3<3 / 3-\ell_{i}<3 / 3$ and $\ell_{i}=1$. If $n_{i} \geqq 6,-\left(n_{i}-4\right) / 3<\left(n_{i}-2\right) / 3-l_{i}<\left(n_{i}-2\right) / 3$. In each case, $\left[\left(n_{i}-3\right) / 3,\left(n_{i}-2\right) / 3\right)-l_{i} \cong\left(-\left(n_{i}-3\right) / 3,\left(n_{i}-3\right) / 3\right)$, so each element of $\left[\left(n_{1}-3\right) / 3,\left(n_{1}-2\right) / 3\right) \times \cdots \times\left[\left(n_{p}-3\right) / 3,\left(n_{p}-2\right) / 3\right)$ is equivalent modulo N to an element in $\left\{\left(n_{1}, \ldots, x_{p}\right) \mid h\left(x_{1}\right)+\cdots+h\left(x_{p}\right)\right.$ $\leqq M-1\}$ and we are done.

References

1. G. Hochschild, The Structure of Lie Groups, Holden-Day, San Francisco, 1965.
2. N. Jacobson, Lie Algebras, John Wiley, New York, 1962.
3. R. M. Koch and F. Lowenthal, Uniform finite generation of three dimensional linear Lie groups, Can. J. Math. 27 (1975), 396-417.
4. - Uniform finite generation of Lie groups locally-isomorphic to $\operatorname{SL}(\mathbf{2}, \mathrm{R})$, Rocky Mountain J. Math. 7 (1977), 707-724.
5. F. Lowenthal, Uniform finite generation of the isometry groups of Euclidean and nonEuclidean geometry, Can. J. Math. 23 (1971), 364-373.
6. -, Uniform finite generation of the rotation group, Rocky Mountain J. Math. 1 (1971), 575-586.
7. -_, Uniform finite generation of the affine group, Pacific J. Math. 40 (1972), 341-348.
8. -, Uniform finite generation of $\operatorname{SU}(2)$ and $S L(2, R)$, Can. J. Math. 24 (1972), 713-727.
9. S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, N.J., 1964.
10. H. Yamabe, On an arcwise connected subgroup of a Lie group, Osaka J. Math. 2 (1950), 13-14.

Department of Mathematics, University of Oregon, Eugene, OR 97403
Department of Mathematics, California State University, Hayward, CA 94542

