HOLOMORPHIC FUNCTIONS COMMUTING WITH ABSOLUTE VALUES

JOHN P. D'ANGELO

Introduction. It is often possble in complex analysis to derive very strong conclusions about holomorphic functions from apparently weak information. Suppose, for example, that f is holomorphic in a disk centered at 0 in the complex plane, and that f commutes with absolute values in the sense that

(1)
$$f(|z|) = |f(z)|$$

One can then conclude that

(2) $f(z) = cz^m$, where $c \ge 0$, and m is a non-negative integer.

A proof of this exercise usually relies on a power series expansion for f. In this note we extend this result in two directions. First of all, we observe that if Ω is a simply connected domain, not containing 0, and such that (1) makes sense for all z in Ω , then we can conclude that

(3)
$$f(z) = cz^{\alpha}$$
 where $c \ge 0$, and α is an arbitrary real number.

Secondly, if Ω is a domain in \mathbb{C}^n for which real powers of z are holomorphic, and $|z| = (|z_1|, |z_2|, \ldots, |z_n|)$, we can still conclude that (3) holds, except α is then an arbitrary real multi-index.

Our proof relies on the polar form of the Cauchy-Riemann equations, and integration of some real ordinary differential equations.

Statement and proof of the result. Let Ω be an open domain in \mathbb{C}^n . We say Ω is *R*-like if whenever *z* lies in Ω , so does |z|, Here $|z| = (|z_1|, |z_2|, \ldots, |z_n|)$. We say Ω is *L*-like if the functions $g(z) = \log(z_j)$ are all holomorphic on Ω . In particular this implies that Ω does not intersect any of the coordinate axes. Furthermore, if Ω is *L*-like, the function $g(z) = z^{\alpha}$ is holomorphic for any real multi-index α . Note that both concepts, *L*-like and *R*-like, are not preserved under general holomorphic changes of coordinates, because the origin and the notion of absolute value must remain invariant.

We recall that f is holomorphic on Ω if any only if f is continuously dif-

Received by the editors on June 10, 1980.

ferentiable and satisfies the Cauchy-Riemann equations in each variable. These equations take the form

(4)
$$r_j \frac{\partial f}{\partial r_j} + i \frac{\partial f}{\partial \theta_j} = 0$$

if $z_j = r \exp(i\theta_j)$ for j = 1, 2, ..., n. We will write partial derivatives as subscripts, so $f_{r_j} = \partial f / \partial r_j$.

We are now ready to prove our theorem.

THEOREM. Let Ω be an L-like, R-like open domain in \mathbb{C}^n . Suppose that f is holomorphic on Ω , and that

(5)
$$f(|z|) = |f(z)|.$$

Then there is a non-negative number c, and a real multi-index α , so that $f(z) = cz^{\alpha}$.

PROOF. If f is identically 0, the result is trivial. Otherwise let V denote the zero set of f, and put $\tilde{\Omega} = \Omega - V$. On $\tilde{\Omega}$, there are continuously differentiable real functions g and h so that

(6)
$$f(z) = f(re^{i\theta}) = g(r, \theta) \exp(ih(r, \theta))$$

where $r = (r_1, \ldots, r_n)$ and $\theta = (\theta_1, \ldots, \theta_n)$ are polar coordinates. We have r > 0, and $0 \le \theta < 2\pi$.

By application of (5), we see immediately that g is actually independent of θ , so that (6) becomes

(7)
$$f(re^{i\theta}) = g(r) \exp(ih(r, \theta)).$$

We apply (4) to (7), and separate real and imaginary parts, This gives us the following system of partial differential equations.

(8)
$$r_j g_{r_j} = g h_{\theta_j}$$
 and $r_j g h_{r_j} = 0$ for all j.

on $\tilde{\Omega}, g \neq 0$, so we can rewrite (8) as

(9)
$$h_{\theta_i} = r_i g_{r_i} / g$$
 where h is independent of r.

Notice that the left side of (9) is independent of r, and the right side is independent of θ . Therefore there are real constants α_i so that

(10)
$$h_{\theta_j} = \alpha_j = r_j g_{r_j} / g \text{ for all } j.$$

We integrate (10) to obtain

(11)
$$g(r) = e^{\lambda} r^{\alpha}, h(\theta) = \alpha \theta + k,$$

where λ and k are real constants of integration. Here $\alpha\theta$ denotes $\sum \alpha_j \theta_j$ and $r^{\alpha} = \prod r_j^{\alpha_j}$ To insure that (5) holds we must choose k = 0. This finally gives HOLOMORPHIC FUNCTIONS

(12)
$$f(z) = c(re^{i\theta})^{\alpha},$$

where $c \ge 0$, and r, θ, α denote multi-indices.

This finishes the proof, if we note that the solution (12) is holomorphic in $\tilde{\Omega}$, and agrees with our original f on all of Ω . Since Ω is *L*-like, f is holomorphic on Ω .

COROLLARY. Suppose that Ω is a domain in \mathbb{C}^n , and that 0 lies in Ω . Then, if Ω is R-like and (5) holds, we can conclude that $f(z) = cz^m$, where $c \ge 0$, and m is a multi-index of non-negative integers.

PROOF. We apply the proof of previous theorem to Ω -W, where W denotes the union of the coordinate axes. Ω -W is still R-like, so the proof gives us that $f(z) = cz^{\alpha}$. Since f must extend to be analytic on all of Ω , we must have that α is a multi-index of non-negative integers.

COROLLARY. If n = 1, Ω is simply connected and does not contain 0, and (5) holds, then $f(z) = cz^{\alpha}$ some $c \ge 0$ and real number α .

PROOF. The hypothesis implies that Ω is *L*-like. The result therefore follows immediately from the theorem.

REFERENCE

1. R. C. Gunning, and H. Rossi, Analytic Functions of Several Complex variables, Prentice-Hall, Inc. Englewood Cliffs, N. J., 1965.

UNIVERSITY OF ILLINOIS, URBANA, IL 61801