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THE MAXIMAL RING OF QUOTIENTS 
OF A FINITE VON NEUMANN ALGEBRA 

S. K. BERBERIAN 

ABSTRACT. Expository article on the embedding of finite von 
Neumann algebras into regular rings. The algebra of affiliated closed 
operators is identified with the maximal ring of right quotients. 
Applications of the theory of self-injective regular rings to operator 
algebras (matrix algebras, projection lattices, reduction theory). 

1. Introduction. Let A be a von Neumann algebra of finite class [4, Ch. 
Ill, §8]. In their 1936 paper [17], F. J. Murray and J. von Neumann showed 
that A can be embedded in a regular ring <%(A) of closed, densely defined 
operators "affiliated" with A (in a sense made precise below). Two de
cades later, Y. Utumi gave a general construction that embeds A in a 
regular ring ß , which he called its maximal ring of right quotients [22]. 
Twelve years later, J. E. Roos demonstrated that <%(A) and Q are the same 
ring [20]. This apparently glacial progress is due less to the difficulty of the 
subject than it is to the nearly perfect insulation separating ring theorists 
from operator theorists. Since the time of von Neumann, and even since 
the time of Roos' paper, the theory of regular rings has ripened significant
ly, the maturity of the subject being evident from K. R. GoodearPs recent 
monograph [8] ; the regular rings of operator theory can now be perceived 
in a very general light, and their algebraic properties proved neatly and 
efficiently. Moreover, these rings are seen, via the general theory of re
gular rings, to possess a striking property not foreseen from the perspec
tive of operator theory, namely, self-injectivity. This seems, therefore, to 
be a propitious time to review the regular rings of operator theory, taking 
advantage of the economies made possible by the algebraic theory of 
regular rings. The present article is written from the perspective of opera
tor theory, no knowledge of A W*-algebras being required for the main 
results; however, the arguments are sufficiently general to apply to AW*-
algebras, yielding, in particular, a brief new proof that the algebra of 
n x n matrices over an A W*-algebra is also an A W*-algebra. For a purely 
algebraic view of the subject, the reader should consult the books of 
Kaplansky and Goodearl ([15], [8]) and the paper of D. Handelman [12]. 
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The first part of the paper (§§2-4) is devoted to describing the maximal 
ring of right quotients of a finite von Neumann algebra in operator-the
oretic terms ; we stick closely to operators and keep the abstract ring the
ory to a minimum. The rest of the paper is devoted to applications. The 
main results are stated in terms of Baer *-rings; they specialize easily to 
the corresponding classical results on operator algebras, but it is hoped 
that the simplicity of the ring-theoretic formulation justifies what might 
otherwise be gratuitous generality. 

2. Unbounded operators. The basic objective in this circle of ideas is to 
embed a finite von Neumann algebra A in a regular ring R. {A ring R is 
regular (or von Neumann regular) if, for each element x e R, there exists 
an element y e R such that x = xyx.} Since a key feature of regularity is 
that it provides each element x with a "relative inverse" y, it is to be ex
pected that the creation of such relative inverses for the operators in A 
will entail the introduction of some unbounded operators (closely related 
to A, to be sure). The most algebraically tractable unbounded operators 
are the closed, densely defined operators [19, Chapter 8]; these are the 
linear mappings x, defined on a dense linear subspace of a Hilbert space 
H, such that the graph of x is a closed linear subspace of H © H. For such 
an operator x the adjoint operator, x*, is also densely defined, (x*)* = x 
[19, p. 304], and one has a canonical factorization x = wr with w a partial 
isometry and r = (x*x)1/2 a positive, self-adjoint operator [19, p. 284, 
Théorème]. One can then define the Cayley transform u = (r — i)(r + i)~l 

of r, which is a unitary operator such that r = /(l + w)(l — u)~l [19, p. 
318]; thus, x is completely determined in terms of the pair of bounded 
operators w, u. (Another expression for r in terms of bounded operators 
is the spectral decomposition r = \ldei [19, p. 318, Théorème].) 

A closed, densely defined operator x is said to be affiliated with the 
finite von Neumann algebra A if u'xu'* = x for every unitary operator 
u' in the commutant Ä of A; an intrinsic form of this condition is that 
in the notation of the preceding paragraph one has w e A and u e A (equi
valente, weA and ex e A for all À). Write ty(A) for the set of all such x. 
Evidently A cz %{A) ; more precisely, A is the set of bounded elements of 
<%(A) (cf. [4, p. 4, Corollary of Proposition 3]). The only obvious "algebraic" 
property of °U{A) is adjunction; x e fy(A) implies x* e fy(A). Linear opera
tions and multiplication are introduced as follows (cf. [17, p. 229], [24, p. 
89, (VI)], and [21, p. 414, Definition 2.2]). For any pair of operators x, 
y G <%(A), one can form the natural sum and composite of x and y (but 
these need not be closed operators) ; their closures are elements of %{A) 
(the finiteness of A is crucial here), called the strong sum and strong pro
duct of x and y, denoted x + y and xy. With these definitions, %{A) be
comes a ring with involution (briefly, a *-ring), containing A as a *-subring. 

file:///ldei
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Moreover, taking x = M, X complex, one sees that °U{A) is a complex 
algebra, with (Xy)* = Xy* for all X and all y e <%(A). One calls %{A) the 
algebra of unbounded operators affiliated with A. This algebra can be char
acterized in the following way. 

THEOREM 1. If A is a finite von Neumann algebra, then there exists a com
plex *-algebra R with unity, containing A as a *-subalgebra, such that (1) 
R is a regular ring, and (2) the relations x, y, z e R, x*x + y*y + z*z = 1 
imply x,y,zeA. These conditions determine R uniquely up to a ^isomor
phism that leaves fixed the elements of A. 

PROOF. For existence it is easy to see that °ii{A) satisfies the condition 
(2), and the proof that <%(A) is regular is a straightforward piece of spec
tral theory (cf. [24, p. 89, (VI)], [6, p. 567, Theorem 2]). {The theorem can 
also be given an "intrinsic" proof, valid for any finite ^4^*-algebra [3, p. 
237, Corollary].} 

For uniqueness suppose A is a *-subalgebra of a *-algebra R with unity 
element 1, satisfying the conditions (1) and (2). The *-algebra R contains 
no new partial isometries; if x e R and x*x = e, e a projection, then xeA 
(put y = 1 — e and z = 0 in (2)). In particular, R contains no new projec
tions, and if x e R is isometric (x*x = 1 ) , then x e A and therefore x is 
unitary by the finiteness of A. If x, y e R and x*x + y*y = 0, then x, 
y e A (put z = 1 in (2)) and therefore x = y = 0. Thus, the hypotheses of 
[3, p. 235, Proposition 3] are fulfilled; the identity mapping of A extends 
to a *-isomorphism R -> <%(A). {The basic idea is straightforward. If 
x e R is self-adjoint, then its Cayley transform u = (x — i)(x + i)~l is a 
unitary element of A, which in turn defines a self-adjoint element y — 
/(l + w)(l — u)~l of <%(A); the mapping in question sends x to y, and is ex
tended to arbitrary elements of R via the Cartesian decomposition.} 

3. Self-injectivity. With notations as in Theorem 1, the relations x e R, 
x*x = 0 imply xeA and therefore x = 0; thus R is a *-regular ring, 
therefore every principal ideal (right or left) of R is generated by a projec
tion (of ^)(cf. [24, p. 114, Theorem 4.5], [6, p. 567, Theorem 2], and [3, p. 
229, Proposition 3]). Moreover, the projection lattice of R, being identical 
with that of A, is complete; thus, R is a complete *-regular ring. {In other 
words, R is a regular Baer *-ring, equivalently, a *-regular Baer ring [23, 
p. 599, Lemma 1].} Our next objective is the theorem that R is, in fact, 
self-injective (cf. [8, p. 162, Corollary 13.5, and p. 169, Theorem 13.17]). 

LEMMA 1. With notations as in Theorem I, Ris unit-regular. 

PROOF. The assertion is that every xe R can be written x = xyx with y 
an invertible element of R; it suffices [8, p. 86, Theorem 8.12] to show that 
the regular ring R is directly finite (yx = 1 implies xy = 1) and has gener-
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alized comparability. As noted in the proof of Theorem 1, the relations 
x e R, x*x = 1 imply xx* = 1, that is, R is finite; since the left and right 
projections of each element of R are equivalent (e.g., by the canonical 
factorization described in §2), it follows that R is directly finite [3, p. 210, 
Proposition 1, (5)]. Moreover, R has generalized comparability; for, the 
principal right ideals of R are generated by projections of A, and the asser
tion follows from the fact that A has generalized comparability [3, p. 80, 
Corollary 1]. 

It follows from Lemma 1 that every matrix ring Mn(R) is directly finite 
(even unit-regular) [8, p. 40, Corollary 4.7, and p. 50, Proposition 5.2], 
hence its subring Mn(A) is also directly finite. 

LEMMA 2. If Z is an abelian von Neumann algebra, then the algebra M2(Z) 
of 2 x 2 matrices over Z is a finite von Neumann algebra, and <%(M2(Z)) 
may be identified with M2(W(Z)). 

PROOF. If Z acts on the Hilbert space H, then it is clear that A = M2(Z) 
may be identified with a von Neumann algebra of operators on the Hilbert 
space H © H [4, p. 23, Lemme 2], and A is finite by the remark following 
Lemma 1 (or by a simple trace argument; cf. [4, p. 217, Proposition 3], 
and [2, p. 176]). Let R = M2(^(Z)); since ^(Z) is regular (Theorem 1), so 
is R [8, p. 4, Theorem 1.7]. Equipped with the natural involution (^trans
position), R is a *-algebra containing A as a *-subalgebra. If x = (x0), 
y = (y0), z = (zt-j) are elements of R with x*x + y*y + z*z = 1, inspec
tion of the diagonal entries in this matrix equation shows that x, y, zeA 
[3, p. 250, Proposition 3]. Thus R satisfies the conditions (1), (2) of The
orem 1, hence may be identified with °i/{A). {We remark that if Z is a com
mutative A W/*-algebra, then M2(Z) is an A W^-algebra [13, p. 855, Corol
lary] (finite by the same trace argument as in the case of von Neumann 
algebras). More generally, see Theorem 4 below.} 

THEOREM 2. With notation as in Theorem 1, R is right and left self-
inject ive. 

PROOF. Write A = Z x B with Z abelian and B properly nonabelian 
(no abelian summands) [3, p. 93, Theorem 1, (2)]. Evidently <%(A) = %{Z) 
x °U(B) (e.g., by Theorem 1), thus one is reduced to the case that A is 
abelian or properly nonabelian. {It is pertinent here that every idempotent 
of R is similar to a projection [15, p. 24, Exercise 4], whence the concord
ance of the terms "abelian" as used in [3] and [8].} 

If A is properly nonabelian, then so is R (it has the same projection lat
tice as A); since, moreover, the projection lattice of A is a continuous 
geometry (cf. [3, p. 185, Theorem 1], and [8, p. 160, Proposition 13.1]), 
it follows that the regular ring R is right self-injective [8, p. 169, Corollary 
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13.18], Since R possesses an involution, it is immediate (e.g., by Baer's 
criterion) that R is also left self-injective. 

Suppose now that A is abelian. Then M2(A) is a properly nonabelian, 
finite von Neumann algebra (Lemma 2), so by the preceding paragraph 
<9t(M2(A)) is self-injective (right and left), that is (Lemma 2) M2(W(A)) is 
self-injective, hence so is its "corner" R = %{A) [8, p. 98, Proposition 9.8]. 

4. Identification of ^(A) with the maximal ring of right quotients. With 
notations as in Theorem 1, let g be the maximal ring of right quotients of 
A [16, p. 94] ; we show in this section that Q may be identified with R (con
sequently the involution of A is extendible to an involution of g, so that 
Q is also a maximal ring of left quotients of A). 

LEMMA 3. The right (and the left) singular ideal of A is zero. 

PROOF. Let a e A, a ^ 0, and let / = {x e A : ax = 0} ; the assertion is 
that there exists a nonzero right ideal K of A such that J f] K = 0 [16, p. 
106]. Writing J = e A, e a projection, one has e ^ I, and hence K = 
(1 — e)A meets the requirements. 

It follows from Lemma 3 that g is a regular, right self-injective ring 
containing A as a subring [16, p. 106, Proposition 2 and its corollary]. 

LEMMA 4. With notation as in Theorem 1, R is a ring of right quotients 
of A. 

PROOF. Given x, y e R, x =£ 0, one seeks aeA such that xa ^ 0 and 
yae A [16, p. 99]. It is clear from the identification of R with °U(A) that 
there exists a sequence of projections en e A with sup en = 1 and yen e A 
for all n (let y*y = \Xdfx be the spectral decomposition and define en = 
Jo dfx) l since x ^ 0, there must exist n with xen ^ 0. {For another style 
of proof, see the proof of Theorem 10.} 

It follows from Lemma 4 that the identity mapping of A may be ex
tended to a monomorphism of rings R -> Q [16, p. 99, Proposition 8]. 
In other words, we can suppose that R is a subring of Q. 

THEOREM 3. R = Q. 

PROOF. At any rate, A c R c Q and g is a ring of right quotients of A, 
therefore Q is also a ring of right quotients of R; in particular RR is an es
sential submodule of QR. Since RR is injective (Theorem 2), it follows that 
R = Q. 

The foregoing arguments are valid with "von Neumann algebra" 
replaced by A Jf^-algebra (and the reference to the Hilbert space H sup
pressed). This yields a new proof of the following theorem (cf. [3, p. 262, 
Corollary 1]). 

file:///Xdfx
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THEOREM A, If A is an A W*-algebra, then every matrix algebra M „(A) 
is also an A W*-algebra. 

PROOF. AS in [3, p. 262] one quickly reduces to the case that A is finite. 
Let R be the regular ring paired with A via Theorem 1 (more precisely, the 
analogue of Theorem 1 for a finite ^4^*-algebra). One verifies easily that 
Mn(R), with its natural involution, is a *-algebra containing Mn(A) as a 
*-subalgebra and satisfying the conditions (1), (2) of Theorem 1. In par
ticular, from (2) we see that Mn(R) is a *-regular ring all of whose pro
jections belong to Mn(A). Since R is right self-injective (by the A W* version 
of Theorem 2), so is Mn(R) [8, p. 96, Corollary 9.3]. It follows from a 
theorem of Utumi that Mn(R) is a Baer ring (cf. [23, p. 599, Lemma 1], 
and [8, p. 95, Proposition 9.1, (c)]). Thus Mn(R) is a regular Baer *-ring; 
since all projections of Mn(R) belong to Mn(A), it is immediate that Mn(A) 
is also a Baer *-ring, hence an A PF*-algebra (finite, by the remarks fol
lowing Lemma 1). 

It is noteworthy that, modulo some general ring theory, the proof of 
Theorem 4 is effectively reduced (via the A W* version of Theorem 2) to the 
case that n = 2 and A is abelian, a very special case of Kaplansky's con
struction of type I algebras [13]. 

5. Extendibility of the involution. Viewing Theorem 4 as an application 
of regular ring theory, the crux of the matter is the possibility of extending 
the involution of a *-algebra to its maximal ring of right quotients. This 
is not always possible; when it is, there are strong consequences. The ap
plications of regular ring theory, to which the rest of the paper is devoted, 
are in large part formulated for Baer *-rings whose involution is extendible 
to the maximal ring of quotients; these results suggest that extendibility 
of the involution may profitably be taken as an axiomatic point of de
parture. 

Let A be a Baer *-ring, Q its maximal ring of right quotients [16, p. 94]. 
Suppose that the involution of A is extendible to Q (the extension is then 
unique [18, p. 204, Theorem 3.2]). Then Q is a regular Baer *-ring whose 
projection lattice is identical with that of A [18, p. 205, Corollary 3.5]. 
Since Q is self-injective (both right and left) [16, p. 107, Corollary of Pro
position 2], its projection lattice is continuous [8, p. 162, Corollary 13.5], 
therefore Q is unit-regular [8, p. 170, Corollary 13.23] hence directly finite 
[8, p. 50, Proposition 5.2]. {Alternatively, since g is a complete *-regular 
ring, one could cite Kaplansky's results [14].} In particular, A is directly 
finite. For the following remarks, let e , /be a pair of projections of A. 

(i) Suppose e , /a re algebraically equivalent in g, that is, there exist ele
ments x e eQf, y tfQe with xy = e and yx = f (equivalently, eQ and fQ 
are isomorphic as right g-modules [15, p. 21, Theorem 14]). Since Q is 
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unit-regular, eQ and fQ are perspective in the lattice of principal right 
ideals of Q [8, p. 39, Corollary 4.4], hence e, f are perspective in the pro
jection lattice of A (that is, there exists a projection g e A, called a "com
mon complement of e and / " , such that e\Jg=f{Jg=l and e f] g 

=/n* = o). 
(ii) In particular, if x e Q and if e = LP(JC), / = RP(x) are the left and 

right projections of x (that is, the projections such that xQ = eQ and 
Qx = g / ) , then e, f are algebraically equivalent in Q, hence perspective 
in A. 

(iii) It follows from (ii) that if e , / a r e arbitrary projections of A, then 
e U / — / a n d e — e f] / a r e perspective in A [3, p. 14, Proposition 7]. 

(iv) Every idempotent of Q is similar to a projection [3, p. 18, Exercise 
1] ; hence the central idempotents of Q are the central projections of A. 

(v) If e, f are arbitrary projections of A, then there exists a central 
projection h of A such that he is perspective to a projection / ' ^ hf and 
(1 — /*)/is perspective to a projection e' ^ (1 — h)e. This is immediate 
from [8, p. 102, Corollary 9.15] and Remarks (i), (iv). 

THEOREM 5. If A is a Baer *-ring whose involution is extendible to the 
maximal ring of right quotients, then the following conditions on A are equi
valent: (a) A satisfies (P); (b) A has GC; (c) A satisfies LP ~ RP; and (d) 
if e,f are perspective projections in A, then e ~ f in A. In such a ring, alge
braically equivalent projections are equivalent. 

PROOF. Let us review the definitions. Projections e, / are said to be 
equivalent, written e ~ / , if there exists x e A with xx* = e, x*x = / If 
LP(tf) ~ RP(a) for every a e A, one says that A satisfies LP ~ RP. If 
e l) f — f ~ e — e {] fîor every pair of projections e, fi one says that A 
satisfies the parallelogram law (P). One writes e <> f if e ~ e' for some 
projection é g / One says that A has generalized comparability (GC) if, 
for each pair of projections e,fi there exists a central projection h such that 
he & hf and (1 - h)f g (1 - h)e. 

(a) => (d). Let g be a common complement of e a n d / Then e — e — 
eClg~eUg — g=l—g and similarly/ ~ 1 — g, whence e ~ / 

(d) => (c). Immediate from Remark (ii) above. 
(c) => (a). For projections e, f one has e [j f — f = KP(a) and e — 

e n / = LP(tf) with a = e(l - / ) [3, p. 14, Proposition7], {Incidentally, 
(c) implies (a) and (b) in any Baer *-ring [3, p. 80, Corollary 2].} 

(d) => (b). Immediate from Remark (v) above. 
(b) => (d). If e , /are perspective in A, hence in the maximal ring of quo

tients Ô, then eQ, fQ are isomorphic as right g-modules [8, p. 46, Corol
lary 4.23], thus e, f are algebraically equivalent in Q. By (b), there is a 
central projection h such that in A one has he ~ e' ^ hf and (1 — h)f ~ 
/ ' ^ (1 — h)e for suitable projections e', / ' . Since e, f are algebraically 
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equivalent in Q, so are he, hf; thus hf is algebraically equivalent to its 
subprojection e', hence e' = hf by direct finiteness of Q. Similarly / ' = 
(1 — h)e. Thus he ~ /z/and (1 — h)f ~ (1 — h)e in A, whence e ~ fin A. 

Finally, assuming these conditions hold, suppose the projections e, f 
are algebraically equivalent in A, say xy = e, yx = /with x e eAf y efAe; 
it is easy to see that e = LP(x) a n d / = RP(x), hence e ~ fin A by condi
tion (c). 

We remark that under the conditions of Theorem 5, for every x e Q one 
has LP(x) ~ RP(x) in A by Theorem 5 and Remark (ii) above. 

COROLLARY. In a regular Baer *-ring, the conditions (a) — (d) are equi
valent. 

PROOF. If the regular Baer *-ring R is abelian, then perspective (or al
gebraically equivalent) projections are equal, thus all four conditions hold 
trivially. On the other hand, suppose R has no abelian summand; since 
the projection lattice of R is continuous [14, p. 535, Theorem 3], it follows 
that R is (right and left) self-injective [8, p. 169, Corollary 13.18], conse
quently the equivalence of (a) — (d) is immediate from Theorem 5. The 
general case then follows from structure theory [3, p. 93, Theorem 1, (2)]. 

We have noted above some necessary conditions for the extendibility of 
the involution of a Baer *-ring A to its maximal ring of right quotients Q 
(notably, direct finiteness and continuity of the projection lattice). The 
known necessary and sufficient conditions for extendibility seem to be too 
shallow to be applicable without further hypotheses. Various effective 
sufficient sets of conditions have been developed by E. S. Pyle [18, p. 205, 
Theorem 3.6, p. 206, Corollary 3.7], I. Hafner [9, p. 158, Theorem 2] and 
D. Handelman [12, p. 8, Theorem 2.3]. In Theorem 6 below, we prove a 
variation on these results that is easily applied in the operatorial case 
(therefore providing an alternative approach to the results of §§2-4). 

LEMMA. Let A be a Baer *-ring whose projection lattice is continuous, and 
suppose that (1°) for every x e A, LP(x) is the supremum of an orthogonal 
family of projections in xA, and (2°) for every right ideal I of A, the set of 
projections (LP(x): x el} is increasingly directed. Then, for a right ideal I 
of A, the following conditions are equivalent: 

(a) the left annihilator of I is 0; 
(b) / is an essential right ideal of A; 
(c) / contains an orthogonal family of projections with supremum 1 ; 
(d) the supremum of the set of all projections in I is I; and 
(e) sup{LP(x): xel} = 1. 

PROOF. Let g = sup{LP(x): x e / } ; a s in any Baer *-ring, the left an
nihilator of lis A{\ — g) [3, p. 21, Proposition 2], whence (a) <=> (e). Let h 



THE MAXIMAL RING OF QUOTIENTS 157 

be the supremum of all projections in /. Obviously h ^ g, hence (d) => (e). 
Also (c) => (d) is trivial. Thus, in any Baer *-ring, one has (c) => (d) => (e) 
o (a). {It is also easy to see that (b) => (a) in any Rickart ring (a ring in 
which the right annihilator of any element is generated by an idempotent), 
but this is not needed for the present proof.} Note that the hypothesis (1°) 
implies that A has "sufficiently many projections" (that is, every nonzero 
one-sided ideal contains a nonzero projection). 

(b) => (c). Let (ea) be a maximal orthogonal family of norizero projec
tions in /(Zorn's lemma) and let e = sup ea; it suffices to show that e — 1. 
If, on the contrary, e =£ 1, then (1 — e)A ^ 0; since / is essential, / f| 
(1 — e)A 7* 0. L e t / e / f| (1 — e)A be a nonzero projection; then / is 
orthogonal to e, hence to every ea, contradicting maximality. {We remark 
that, by a result of Hafner [9, p. 158, Lemma 5], (b) o (c) in any Baer *-
ring with continuous projection lattice and sufficiently many projections.} 

(a) => (b). (cf. [18, p. 205, Theorem 3.6]) In view of (a) o (e) and (2°), 
one has LP(x) î 1 as x e I. Let / be a nonzero right ideal of A ; we are to 
show that I f) J ^ 0. L e t / e / be a nonzero projection. By continuity, 
/ fi LP(x) î y V 0, hence there exists x e I with / fl LP(x) ^ 0. Citing 
(1°) and passing to finite sums, one obtains an increasingly directed family 
(go) of projections in xA such that ga î LP(x); then / f| ga î / f| LP(x) 
7* 0, hence there exists an index a with / f] ga ^ 0. Since / f] ga G / f| 
xA a J f) I, the implication is proved. This completes the proof of the 
lemma. 

In order that the involution of a Baer *-ring be extendible to the maxi
mal ring of right quotients, it is necessary and sufficient that the implica
tion "(a) => (b)" of the lemma be valid [18, p. 204, Theorem 3.2]. (A ring 
in which this implication is valid is said to satisfy Utumi's condition.) 

THEOREM 6. Let A be a finite Baer *-ring satisfying the parallelogram law 
(P), with generalized comparability (GC), and satisfying the conditions (1°), 
(2°) of the lemma. Then the involution of A is uniquely extendible to the 
maximal ring of right quotients, and A satisfies LP ~ RP. 

PROOF, (cf. [18, p. 206, Corollary 3.7]) The projection lattice of A is 
continuous [3, p. 185, Theorem 1], thus the hypotheses of the lemma are 
fulfilled. In particular (a) => (b), thus the involution is extendible by the 
remark following the lemma; uniqueness is noted in [18, p. 204, Theorem 
3.2], and A satisfies LP ~ RP by Theorem 5. 

Condition (1°) of the Lemma holds in any A W^-algebra, by spectral 
theory [3, p. 130, proof of Theorem 3]; condition (2°) also holds in any 
A ^*-algebra (indeed, in any Rickart *-ring in which xx* 4- j j * = 0 
implies x = y = 0 [3, p. 225, Lemma]). In a »-regular ring A, both condi-
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tions hold trivially; xA = UP(x)A for all x e A, and (e (J f)A = e A + fA 
for all projections e,f. 

6. Projection ortho-isomorphisms. If A is a *-ring, let us write Ä for the 
partially ordered set of projections of A, where e ^ /means e = ef For 
*-rings A and i?, a mapping 0: Ä -> 2? is called an ortho-isomorphism if 
(i) 0 is an isomorphism for the order structures, and (ii) 0(1 — e) = 1 — 
6(e) for all ee Ä.W is easy to see that a bijective mapping 0: ^ -> 2? is an 
ortho-isomorphism if and only if, for e, fe Â, the relations ef = 0 and 
0(e)6(f) = 0 are equivalent [5, p. 75, Lemma 1], 

If A, B are *-rings and $\ A -* 5 is the direct sum of a *-isomorphism 
and a *-anti-isomorphism, then ç5 induces an ortho-isomorphism Ä -+ B. 
H. A. Dye has shown, conversely, that every projection ortho-isomor
phism between von Neumann algebras arises in this way, provided that 
direct summands of type I2 are excluded [5, p. 83, Corollary]. Dye's argu
ments are valid for A W*-algebras, and, as also shown by J. Feldman [6], 
the case of finite algebras can be treated by von Neumann's theory of 
regular rings ; our aim in this section is to give an exposition of the finite 
case, patterned after Feldman's discussion of the type IIj case. 

For the following series of remarks, A and B are assumed to be Baer 
*-rings with generalized comparability (GC) and satisfying the paral
lelogram law (P), and 0 : Ä -> B is an ortho-isomorphism. The remarks 
culminate in the observation that A and B have the same type-structure. 

1. For each e e Â , 6 induces an ortho-isomorphism {eAe)~ -> 
(6(e)Bd(e)r. 

2. For e, fe Ä one has 6{e U / ) = 6(e) U 0(f) and 0(e fl / ) = 0(e) Ç] 
6(f); hence e, / a r e perspective (that is, have a common complement) if 
and only if 6(e), 0(f) are perspective. If ef = 0, then 6(e + / ) = 6(e) + 
0(f). 

3. For e,feÄ9 one has ef = fe if and only if 0(e)0(f) = d(f)6(e)9 and in 
this case 6(ef) = 0(e)0(f) [cf. 10, p. 58]. 

4. h G Ä is a central projection in A if and only if it has a unique com
plement [3, p. 39, Exercise 11]; hence h is a central projection of A if and 
only if 6(h) is a central projection of B. 

5. If e, fe Ä are perspective, then they are unitarily equivalent, hence 
e ~ / [ 3 , p. 109, Exercise 12, (iv)]. 

6. If e, fe Â, ef = 0 and e ~ / , then e, / a r e perspective [3, p. 109, Ex
ercise 12, (vi)]. 

7. In order that A be infinite (i.e., not finite) it is necessary and sufficient 
that there exist in A an infinite sequence of pairwise orthogonal, pairwise 
perspective nonzero projections (cf. 5, 6 and [3, p. 101, Proposition 1]). 

8. A is finite if and only if B is finite. (Immediate from 7.) {If A and B 
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satisfy LP ~ RP (cf. [3, p. 80, Corollary 2]), then A is directly finite if 
and only if B is directly finite [3, p. 210, Proposition 1].} 

9. e e Ä is a finite projection if and only if 6(e) is a finite projection. 
(Immediate from 1 and 8.) 

10. For finite projections e,fe Â,e ~ / i f and only if e , /are perspective 
[3, p. 109, Exercise 12, (viii)]. 

11. For finite projections e,fe Ä, one has e ~ / i f and only if 0(e) ~ ö(/). 
(Immediate from 2, 9 and 10.) 

12. e e Ä is faithful (that is, the only central projection of A orthogonal 
to e is 0) if and only if 0(e) is faithful in B. (Immediate from 3 and 4.) 

13. e e Ä is an abelian projection in A (that is, all projections of eAe are 
central in eAe) if and only if d(e) is an abelian projection in B. (Immediate 
from 1 and 4.) 

14. A is type I (that is, has a faithful abelian projection) if and only if B 
is type I. (Immediate from 12 and 13.) 

15. A is semifinite (that is, has a faithful finite projection) if and only if 
B is semifinite. (Immediate from 9 and 12.) 

16. A is continuous (that is, contains no nonzero abelian projections) 
if and only if JB is continuous. (Immediate from 13.) 

17. A is purely infinite (that is, contains no nonzero finite projections) 
if and only if B is purely infinite. (Immediate from 9.) 

18. A is properly infinite (that is, has no nonzero finite central projec
tions) if and only if B is properly infinite. (Immediate from 4 and 9.) 

19. Projections el9 . . . , en in A are pairwise orthogonal and equivalent if 
and only if 0(ei), . . . , 6(e„) are pairwise orthogonal and equivalent. (Im
mediate from 2, 5 and 6.) 

20. For an integer n, A is of type Iw (that is, 1 e A is the sum of n ortho
gonal, equivalent abelian projections [3, p. 112, Remark 1]) if and only if 
B is of type ln. (Immediate from 13 and 19.) 

21. For any cardinal N, A is of type IK [3, p. 116, Definition 3] if and only 
if B is of type I«. (The proof is similar to 20.) 

22. Summarizing, A and B have the same type-structure. {For example, 
if A = hxA © h2A © h3A is the decomposition of A into types I, II, III 
[3, p. 94, Theorem 2], then B = 0(h)B © d(h2)B © d(hz)B is the analogous 
decomposition of B. If A is finite and h, hl9 h2i . . . are orthogonal central 
projections with supremum 1, such that h A is of type IIj and hnA is of 
type \n [3, p. 115, Theorem 3], then 6(h), 0(hi), d(h2),... have the analogous 
properties relative to B.) 

LEMMA. Let R and S be regular Baer *-rings satisfying one (hence all) 
of the conditions (a) — (d) of Theorem 5, and suppose that R and S have no 
abelian or type I2 summands. If 6: R -> S is an ortho-isomorphism of the 
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projection lattices, then there exists a ^-isomorphism (j>: R -» S that extends 
6. 

PROOF, (cf. [6, p. 567, Theorem 3]) As observed in the proof of the corol
lary of Theorem 5, R and S are self-injective. {We remark that in Theorem 
7 below, the appeal to Kaplansky's theorem in the cited corollary is 
avoided. As to the need for excluding abelian summands, note that all 
involutive division rings (in particular, all fields equipped with the identity 
involution) have the same projection lattice ; the pathology of type I2 is 
sketched in [24, p. 103] and [5, p. 83].} By Remark 22 above, R and S have 
the same type-structure; moreover, if (hn) is a central partition of 1 in R 
(hence d(hn) is a central partition of 1 in S), one has R = UhnR and S = 
Tlô(hn)S [8, p. 99, Proposition 9.10]. Thus, dropping down to a direct 
summand, we can suppose that for some n ^ 3, R (hence S) contains n 
pairwise orthogonal, equivalent projections el9 . . . , en with sum 1 (Re
mark 22 above). 

Writing L(R) and L(S) for the lattices of principal right ideals, one 
obtains a lattice isomorphism 6: L(R) -» L(S) by composing the mappings 
eR •-> e I-* 6(e) i-> 0(e)S (e e R). The right ideals exR, . . . , enR are inde
pendent submodules of RR; moreover, the e{ are pairwise perspective in 
R (Remark 6 above), hence the e{R are pairwise perspective in L(R); thus 
L(R) (and similarly L(S)) is of "order w" in von Neumann's sense [24, p. 
93, Definition 3.2]. Since n ^ 3, it follows from a theorem of von Neu
mann [24, p. 108, Theorem 4.2] that there exists a ring isomorphism <f>: 
R-+ S such that (j>(eR) = 0(eR), that is, (i) <j>(e)S = d(e)Sfor all e e R. 
Then also 0(1 - e)S = 0(1 - e)S, that is, (ii)(l - $(e))S = (1 - 0(e))S 
for all eeR. For all e e Ä one has <j>{e) = 6(e); for, 0(V)0(e) = 6(e) by (i), 
whereas by (ii) one has <j){e)[\ - 6(e)] = 0, that is, (j){e)d{e) = <j)(e). 

Finally, we assert that ^ is a *-isomorphism. For any x e R, we are to 
show that 0(x*) = <f>(x)*9 that is, x = ^ -^ (x* )* ) . Define 0: 7? -> R by 
the formula ^(x) = ç5-1(^(x*)*). Clearly ^ is a ring automorphism of i?, 
and for all eeR one has <p(e) = e (because (j>(e) — 6(e) is self-adjoint), 
therefore <fi(eR) = (]){e)(]j{R) = ei?. Thus, >̂ induces the identity mapping 
on L(i?); since R has order « ^ 2, it follows from a theorem of von Neu
mann that (J) is the identity mapping of R [24, p. 104, Theorem 4.1]. 

THEOREM 7. Let A and B be finite Baer *-rings satisfying the hypotheses 
of Theorem 6, and let Q(A) and Q(B) be their maximal rings of quotients. 
Assume, moreover, that A and B have no abelian or type I2 summands. Then 
every projection ortho-isomorphism Ä -• B extends to an isomorphism of 
wrings Q(A) -* Q(B). 

PROOF. Since A and Q(A) have the same projection lattice (see §5), they 
have the same type-structure; similarly for B and Q(B). The theorem is 
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then immediate from the lemma. {Moreover, since Q(A) and Q(B) are 
self-injective, in the proof of the lemma one need not cite the corollary of 
Theorem 5.} 

LEMMA. Let A and B be finite A W*-algebras, Q(A) and Q(B) their maxi
mal rings of right quotients. If <j> : Q(A) -> Q(B) is a ^-isomorphism, then 
iHA) = B. 

PROOF. Let a e A. Choose a positive integer n such that a*a ^ n\, that 
is, n\ — a*a = c*c for some ce A. Then 0 S <f>(c)* <j>{c) — <f>(c*c) = n\ — 
0(a)*#(a), thus #(a)*$(a) S ni, whence $(a) e B [3, p. 245, Theorem 1]. 

THEOREM 8. ([5], [6]) Let A and B be finite AW*-algebras with no Sum
mand of type I2. Then every projection ortho-isomorphism Ä -* B extends to 
an isomorphism of *-rings A -> B. 

PROOF. In view of Theorem 7 and the lemma, one is reduced to the case 
that A and B are abelian. Then by M. H. Stone's representation theory of 
Boolean algebras, the ortho-isomorphism of the projection lattices induces 
an ortho-isomorphism of the lattices of closed-open subsets of the spectra 
of the algebras, which in turn induces a homeomorphism of the spectra 
[11, p. 85, Theorem 8], hence a *-isomorphism of A and B. 

The same proofs show that if A and B are finite Baer *-rings satisfying 
the conditions l°-6° of [3, pp. 248-249] and having no abelian or type I2 

summands, then every projection ortho-isomorphism Ä -• B extends to an 
isomorphism of *-rings A -> B. 

7. Reduction theory. Let A be a Baer *-ring whose involution is extendi
ble to the maximal ring of right quotients Q (cf. Theorem 6). As observed 
in §5, the self-injectivity of Q implies that its projection lattice is continu
ous and that Q is unit-regular, hence directly finite; in particular, A is 
directly finite. 

Let / be a maximal ideal of Q. Then Q/J is a self-injective regular ring 
[8, p. 107, Theorem 9.32], hence is a regular Baer ring [8, p. 95, Proposition 
9.1, (c)]; ß / / i s also unit-regular, hence directly finite. Moreover, if x e Q 
and e = LP(JC), then xQ = eQ; thus x e / if and only if LP(x) G / . It fol
lows that / is a *-ideal of Q, and since LP(xx*) = LP(x), one sees that the 
natural involution of Q/J is proper (ww* = 0 implies u = 0), thus Q/J is 
•-regular. Thus, Q/J is a *-regular Baer ring, equivalently, a regular Baer 
•-ring. Moreover, Q/J is simple, hence factorial (i.e., indecomposable). 
Briefly, Q/J is a regular Baer *-factor. Let I = A Ç] J, which is a *-ideal 
of A. 

LEMMA. A/1 is a directly finite Baer ^-factor. 

PROOF. One has a natural *-monomorphism <j>: A/I -• Q/J. Every pro-
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jection of Q/J has the form e + / with e a projection of Q (that is, of A) 
[3, p. 142, Proposition 1], hence every projection of ^4/7 has the form e -f 
7, e a projection of A. Thus, the range of ^ is a *-subring of Q/J containing 
all projections, hence it is a Baer *-ring; so, therefore, is its *-isomorph 
A/1. Moreover, A/lis directly finite (because ß / / i s directly finite). Finally, 
if u is a central projection of A/1, then cj){ü) is a central projection of Q/J. 
{To prove this note that the projection e = <f>(u) commutes with all pro
jections of <j)(A/I), that is, of R = Q/J. To see that e is central in R, it suf
fices to show that eR(\ — e) = 0; to this end, it suffices to show that e 
commutes with every idempotent / in R [15, p. 17, Exercise 5]. Write fR 
= gR, g a projection. Then efR = egR = geR a gR = fR, thus ef = fef; 
applying this t o / * instead of/, one sees that je = fefi thus/e = ef. I am 
indebted to the referee for this brief argument, and for the observation 
that it applies in any Rickart *-ring.} Since g / / i s factorial, (j){u) = 0 or 1 ; 
hence u = Oor 1. 

The intersection of all maximal ideals J of Q is 0 [8, p. 105, Corollary 
9.27], hence so is the intersection of the corresponding ideals I = A Ç\ J 
of A. This "reduction theory" for A can be summarized as follows. 

THEOREM 9. If A is a Baer *-ring whose involution is extendible to the 
maximal ring of quotients, then A is the subdirect product of directly finite 
Baer *-factors. 

If, in particular, A is a finite A W*-algebra, then the closures M = I 
of the ideals I described above are precisely the maximal ideals of A, the 
intersection of the ideals M is also 0, and the A/M are simple, finite A W*-
factors [3, §45]. If A is a finite von Neumann algebra, then by a theorem 
of Feldman [7] the A/M can also be represented as von Neumann algebras 
(cf. [3, p. 280, note for Exercise 2 of §45]); thus, a finite von Neumann 
algebra is the subdirect product of factorial finite von Neumann algebras. 

Finally, we observe that for a finite A W*-algebra A, the reduction of A 
is "compatible" with that of its ring of quotients Q, in the following sense. 

THEOREM 10. If A is a finite AW*-algebra, Q is its maximal ring of right 
quotients (cf. §4), / is a maximal ideal of Q, and I = A f] / , then Q/J is 
the maximal ring of right quotients of A/I. 

PROOF. Observe first that Q is also a classical ring of (right and left) 
quotients of A [16, p. 108]; the crux of the matter is that each x eQ 
can be written in the form x = ab~x with «, b in A—for example a — 
x(l + JC*JC)-! and b = (1 + JC**)"1 [3, p. 246, Corollary 2]. 

Let (j) : A/I -> Q/J be the natural *-monomorphism, and write S = 
<fi(A/I), R = Q/J; the problem is to show that R is the maximal ring of 
right quotients of S. We first note that R is a ring of right quotients of S 
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[16, p, 99]. {For, suppose w, v e R,u =£ 0; we seek w e S with uw ^ 0 and 
vw e S. Say u = x + J, v = y + J. Write y = ab~l with a, b in A ; then 
xb <£J (because x 4 / ) , whereas >>è = a e A, thus w = è + / meets the 
requirements.} It follows that if Q(S) is the maximal ring of right quo
tients of 5, then the identity mapping of S extends to a ring monomorphism 
R -> Q(S) [16, p. 99, Proposition 8]; thus, one can suppose that S c 
R cz Q(S). Since R = Q/J is right self-injective, one concludes, as in the 
proof of Theorem 3, that R = Q(S). 

If, in the notation of Theorem 10, M = /, then the maximal ring of 
right quotients of AjM is in general not ^-isomorphic to Q/J [1, p. 508, 
(5)] ; this means, in view of the lemma to Theorem 7, that the projection 
lattice of A/M is in general not ortho-isomorphic to the projection lattice 
of Q/J (i.e., of A/1). 

ADDENDUM. The corollary of Theorem 5 was proved by J. L. Burke for 
the case of a regular Baer *-factor of order k ;> 4 [Canad. Math. Bull. 19 
(1976), 21-38, Theorem 1.3]. The general case has been treated by D. 
Handelman (unpublished). I am grateful to the referee for correcting an 
error in my original proof of the Lemma to Theorem 6, and for suggesting 
a number of improvements in the exposition. 

A Baer *-ring satisfying the parallelogram law (P) automatically satisfies 
generalized comparability (GC) [S. Maeda and S. S. Holland, Equivalence 
of projections in Baer *-rings, J. Algebra 39 (1976), 150-159]. The state
ment of Theorem 6 can thus be simplified; the hypothesis of GC is re
dundant. The same is therefore true in the remarks of §6 and the statement 
of Theorem 7. 
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