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CONVERGENCE QUESTIONS FOR 
LIMIT PERIODIC CONTINUED FRACTIONS 

W. J. THRON AND HAAKON WAADELAND 

1. Introduction. Given two sequences of complex numbers {#„}, {&„}, 
n ^ 1, we define for complex w 

^ - - ^ » S I . 

and 

Sft\w) = stt+1(S^(w)), 0£n£N-l, 

Stf»(w) = w. 

Using one of the standard notations we then have 

w v è„+1 + bn+2 + + bN + w 

Instead of S$(w) we shall usually write SN(w). 

The continued fraction 

V n=l\bnJ h + b2 + + Dn + 

then is the ordered pair «{#„}, {&„}>, {£w(0)}>. Here it is understood 
that {an} and {bn} be such that Sn(0) is defined as an extended complex 
number for all n (or at least from a certain n = n0 on). This is in particular 
the case if an ^ 0 for all « or if an = 0 for all n and simultaneously bn ^ 
0. The sequences {an} and {£„} are called the sequences of elements, and 
(5M(0)} is the sequence of approximants. Convergence of a continued 
fraction means convergence of the sequence of approximants (possibly 
to oo ). In case of convergence the notation K™=1(ajbn) is also used 
for lim^oo S;(0). 

The approximants of a continued fraction can also be represented as 
S,(0) = AJBn9 where 
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An = M » - l + M H - 2 

(1.2) n ^ 1, 

Bn = bnBn_i + anBn_2 

A_x = 1, ^o = 0, £_! = 0, £ 0 = I-

See for instance [5]. 

It is easy to prove that for n ^ 1 

(1.3) Fn{w) - -g- + h + + ^ + w - Bn + BnlW' 

A continued fraction for which lim^^ö^ = a and lim^oo^ = ò exist 
is called a //ra/Y periodic continued fraction. Limit periodic continued 
fractions play an important role in the analytic theory of continued 
fractions, see for instance [6, Introduction]. The simplest example of a 
limit periodic continued fraction is the periodic continued fraction (of 
period length 1) 

-L + 0.4) jj(f)-t + K-tf 
This is meaningful if and only if \a\ + \b\ > 0 (and trivial if exactly one 
of the numbers a, b is 0). It is well known (see for instance [4, p. 87]) 
that (1.4) converges if and only if the fixed points x± and x2 of the linear 
fractional transformation 

(1.5) s(w) = -j-2-— 
v f v ' b + w 

have different absolute values (|JCI| < \x2\) or coincide (xi = x2). In case 
of convergence we have limw^oo5'w(0) = x^ We recall that for |jci| < \x2\, 
Xi is the attractive fixed point and x2 the repulsive fixed point. For |JCI| = 
|x2|, xi ^ x2 the transformation (1.5) is elliptic, and the fixed points 
are neither attractive nor repulsive. We shall illustrate convergence of 
periodic continued fractions by two familiar examples. 

EXAMPLE 1.1. Let z be a complex number, and let in (1.4) a = z, b = 
I — z. The fixed points of s are in this case z and — 1. z is attractive in 
the disk \z\ < 1 and repulsive for |z| > 1, — 1 is repulsive in the disk 
\z\ < 1 and attractive for |z| < 1. The fixed points coincide for z = — 1. 
On the rest of the circle \z\ = 1 they are distinct, but of the same absolute 
value. Hence the continued fraction 

z z z 
T^~z~ + T - T + " " " + 1 - z + 
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converges to z if \z\ < 1, converges to — 1 if |z| > 1 or if z = — 1, and 
diverges on the rest of the circle \z\ = 1. 

EXAMPLE 1.2. Let a ¥" 0 be a complex number, kept fixed throughout 
the example, and let z be a complex number. Let, furthermore, in (1.4) 
a = az, b = 1. The fixed points of s are in this case 

2 ( - 1 ± 0 +4az)i/2). 

They differ in absolute value if and only if z is not on the ray defined by 
z = —t/(4a), t ^ 1, and coincide (with value —1/2) if and only if z = 
— l/(4a). For z off the ray let (1 + 4az)1/2 denote the branch with positive 
real part. Then the continued fraction 

az az az_ 
1 + 1 + " " + 1 + " " 

converges to (1/2) ((1 4- 4az)1/2 — 1) for all z not on the ray defined by 
z = — //(4a), t > 1, and diverges on the ray. 

It is to be expected that convergence properties of limit periodic 
continued fractions are similar to those of periodic continued fractions 
and that convergence results for limit periodic continued fractions may 
be obtained by using the "nearness' of the "tails" K^+1(an/bn) to the con
tinued fraction (1.4). This is in fact the case, as may be seen in [4, p. 93]. 
Slightly rephrased the first theorem there (Satz 2.41) states that if a 
continued fraction (1.1) is such that an ^ 0, an -> a, bn -> b, a, be C, 
and the fixed points of (1.5) are of different absolute values, then any 
tail K^+1(aJbn) from a certain N = N0on converges to a complex number 
f(N\ where fm) -> Xi (the attractive fixed point). The convergence of 
the tails implies convergence of the continued fraction itself, possibly to 
oo. 

Continued fractions are similarly defined if {an}, {bn} are sequences 
of complex valued functions rather than of complex numbers. Pointwise 
considerations will contain nothing new, but often one needs more (for 
instance uniform convergence) in order to conclude from properties of 
the functions an, bn properties of the possible lim^ooS^O). In the two 
examples it is easy to prove that the approximants (which of course all 
are rational) are holomorphic in the domains in question (i.e., \z\ < 1 
and \z\ > 1 in Ex. 1.1 and z # — //(4a) in Ex. 1.2), and that the sequences 
of approximants converge to holomorphic functions in the domains in 
question, in accordance with what we already know. A result on uniform 
convergence of limit periodic continued fractions is given in [4, p. 93] 
(Satz 2.42), where it is proved that if an and bn are complex valued fune-
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tions on some set, an -» a and bn-> b uniformly on that set, and xx and 
x2 (now functions) are subject to boundedness conditions c ^ \x2\ ^ C, 
\xijx2\ % 3) < 1 on the same set, then from a certain N = N0 on, any 
tail Kff+1(an/bn) converges uniformly. We shall illustrate this by showing 
two examples with the previous ones as special cases. 

EXAMPLE 1.3. Let z be a complex variable and {Fn}, {Gn} sequences 
of complex numbers such that Fn-+F, Gn -» —F, FeC\{0}. Then 
for any re(0 , 1) there is an N0, such that for all N ^ N0 the continued 
fraction (general T-fraction) 

„K(I +nG„2) 

converges in \z\ < r/\F\ uniformly to a holomorphic function fiN\ where 
f(N)(z) -> z as 7V->oo, and in |z| > l/r |F| to a holomorphic function 
g W ) , wheregW)(z) -* - 1 as TV -> oo. Note that the TV i n / W ) and g(A0 

is merely a superscript and does note signify a derivative. 

EXAMPLE 1.4. Let z be a complex variable and {an} a sequence of 
complex numbers such that an -> aeC\{0} . Let {Dk} be a sequence of 
bounded sub-domains of the plane cut along the ray z — — t/(4a), t^ 1, 
such that for all k ^ 1, c\(Dk) a Dk+1 and \Jf=2 Dk — t n e c u t plane. 
Then for any k there is an Nk, such that for all N ^ Nk the continued 
fraction (regular C-fraction) 

K(~r) 

converges in Z)é uniformly to a holomorphic function f{N\ where 

/ W ) (z ) ->-J - ( ( l + 4 a z ) i / 2 _ l) 

as TV -• oo. See [4, p. 95]. 

We shall now look at two other convergence properties of periodic 
continued fractions, which turn out to have parallels for limit periodic 
continued fractions. Assume for simplicity that a and b in (1.4) are both 
^ 0. If the fixed points are x1 and x2 (not necessarily of distinct ab
solute values, not even necessarily distinct), then the continued fraction 
(1.4) can be written 

— X\X2 — X]X2 — X]X2 

- (x1 + x2) + - (x1 + x2) + " ' + - (Xl + x2) + • " 

It is readily seen that Sn(xi) = xx and Sn(x2) = *2 f° r a ^ n. This suggests 
the following two ideas: 1. For a limit-periodic continued fraction the 
sequence {Sn(x{)}, where xi is the attractive fixed point of (1.5), may 
converge to the value of the continued fraction more rapidly than the 
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sequence {Sn(0)} (To replace {Sn(0)} by {SM(xi)} in this case shall be 
called "right modification".); and 2. For a limit-periodic continued 
fraction the sequence {Sn(x2)}> where x2 is the repulsive fixed 
point, may converge, and if so, to a "wrong value", i.e., a value # 
lim^ooS^O) ("Wrong modification".). The observations on periodic con
tinued fractions even suggest the possibility of convergence of {SM(*i)} 
or {Sn(x2)} in the elliptic case. 

The idea 1 is studied in the paper [6] (where also further references to 
other papers on the same idea or related ideas are made) and it turned 
out, that the tails of any limit periodic continued fraction K^L^aJÌ), 
no matter how slowly an -> a # 0, will be subject to substantial improve
ment of the convergence by the "right modification" in the case \xx\ < 
\x2\. In the case xi = x2 the same holds under additional conditions on 
the rate at which an -> a. (To put bn = 1 for all n as in the paper [6] is 
a rather inessential restriction since any K™=l(ajßn) with all ßn ^ 0 is 
equivalent to some continued fraction of the form K^L^aJl).) 

To see that it makes sense to follow idea 2 even if it leads to convergence 
to a "wrong" value let us see what the "wrong modification" does to the 
continued fractions in Ex. 1.1 and Ex. 1.2. In Ex. 1.1. we have for all n, 
Sn(z) = z in the entire plane, also for \z\ > 1, where z is the repulsive fixed 
point and for \z\ = l , z ^ — 1, where the transformation (1.5) is elliptic 
and where the continued fraction (1.4) does not enverge. Furthermore we 
have for all n, Sn(— 1) = — 1 for all z ^ 0 in the plane. In both cases the 
modification leads to an analytic continuation of the function defined by 
the continued fraction and provides a process converging to the extension. 
Quite similarly in Ex. 1.2 the use of the repulsive fixed point leads to 
analytic continuation across the ray z = —//(4a:), t ^ 0, to a function, 
defined and analytic on a two-sheeted Riemann surface with a branch 
point of order one at z = — l/(4a:). It is to be expected that similar things 
hold for the continued fractions in Ex. 1.3 and Ex. 1.4. That this indeed 
is the case, although under rather strong conditions on the rate at which 
an -• a,bn -> b, is proved in the paper [7]. The use of the "wrong modifica
tion" (or rather a combination of "right" and "wrong modifications") 
in order to increase the domain of convergence and hence to obtain an
alytic continuation was introduced for ordinary T-fractions in [8], but the 
full extent of the consequences of this modification was not established 
until somewhat later [2]. In a more general setting the method was later 
suggested by Gill in, for instance, the paper [1]. 

The results in [7] for general Infractions and regular C-fractions are 
established by means of a lemma on boundedness of modified sequences 
in combination with a result of Jones and Thron on correspondence and 
convergence [3]. Although the paper [7] does not contain a direct proof 
of the convergence of the wrong modification more generally, the method 
most certainly can be applied to other types of continued fractions. 
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The purpose of the rest of the present paper is to establish directly the 
convergence of the wrong modification of a limit periodic continued 
fraction K™=i(an/bn), where an -> a and bn-+ b sufficiently fast. 

2. The modified approximants. Following the notations in [7] we shall 
write, in case of a limit periodic continued fraction (1.1) with an -> a, 
bn -> b, 

(2.1) an = a + dn9 bn = b + 7}n 

Here dn -> 0 and 7]n -* 0 as n -> oo (at a rate to be discussed later). Let 
x be one of the fixed points of the transformation (1.5). Then — (x 4- b) 
is the other fixed point, since they are the roots of the quadratic equation 
x2 4- bx — a — 0. (In the applications an, bn, a, b, x are complex functions 
of a complex variable, but we use for simplicity an, bn, . . . instead of 
an(z), bn(z), . . . .) 

A slight rearrangement of the three term recursion formula (1.2) for 
the Ak's gives for n ^ 2 

An + xAn_x = (6 + X)v4w_! + tfv4w_2 + ^ „ - 1 + M»-2-

Keeping in mind that a = x(b + x) we have 

An + x^M_! = (6 + x)[An^ + xAn_z\ + ^ „ - i + M » - 2 

4 n _l + xAn_2 = (6 + X)[^w_2 + X^M_3] + 97„_i^M_2 + 5w_i^w_3 

^2 + XA1 = (b + X)[^i + X^0] + %^1 + <Mo 

^ ! + X/40 = (b + x) [AQ + Xy4_i] •+ TJIAQ + 5ii4_i 
since ^ 0 = 0 and A_x = 1. Multiplication by 1, (b -b x), . . . , (6 + x)n~l 

followed by addition of all equalities gives 

An + xAn^ = (b + *)»* + 2 (* + xr-^7]MAk 

(2-2) 
+ 2 (b + x)«-i-* < W * - i -

The same method for the 2?A's gives, since B0 — 1 and B_i = 0, 

B„ + XA„_J = (è + x ) ^ + xß„_2] + ^ Ä ^ j + ô„Bn_2 

Ä„_i + x^„_2 = (b + x)[5„_2 + x5„_3] + v A - 2 + V A - s 

5 2 + x5 x = (6 + x)[Bi + xB0] + 7]2Bl + ô2B0 

-Si + xB0 = {b + x)[B0 + x5_J + rjiBo + M - i -
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Multiplication by 1, (b + x), . . . , (b + x)n~l followed by addition of 
all equalities gives 

Bn + xBn_x = (b + xY + £ (b + x)»-i-* 7 m £, 
Jfe=0 

(2.3) 

Under the condition (b + x) ^ 0 we get from (2.2), (2.3) and (1.3), for 
n ^ 1 

M—1 j n—1 ^ 

(2.4) Sn(x) = *=o (* + *) ^o V + xj 
1 + S ~(* + * ) m ^+l +*5 ^Vx) f f l _^+ i 

Obviously the formula remains valid if x is replaced by — (b + x) and 
simultaneously b + x by — x, provided that x ^ 0; hence 

»—1 ^ n—1 j 

- ( * + è) + E (ZW+ï %+i + 2 r ~7^M*+i 
(2.4') <?„(-(*,+ x)) = ,_t ^ X) s = r - * g ^ 

Observe that in the periodic case, where dk = 7]k = 0 for all & the formulas 
(2.4) and (2.4') reduce to the earlier made observation Sn(x) = x, 
Sn( — (b + x)) = — (b + x). It is also worth noting that if the continued 
fraction is of the form K(ajl) or K(l/bn), then the formulas are simplified, 
since in these cases they only involve two sums instead of four. 

3. Convergence of {5M(x)}. In the case |x| < |x 4- b\, {Sn(x)} is the 
sequence of modified approximants with the right modification. From 
[6] we know that this, under very mild conditions, converges to the value 
lim^ooS^O) substantially faster than the sequence (Sw(0)}. One might 
therefore think that |x| < |x + b\ is the only interesting case, but this is 
not true. For the purpose of analytic continuation we need a result on 
convergence of {^„(x)} covering simultaneously the cases where x is 
attractive, repulsive or neither. In the applications to the case of complex 
valued functions of a complex variable the result can be used to conclude 
uniform convergence on sets in C where all three possibilities |x(z)| < 
|x(z) + b(z)\, |x(z)| = |x(z) + *(z)|, and |x(z)| > |x(z) + b(z)\ occur. In 
the following we shall therefore assume that the fixed points satisfy a 
condition of the form 

(3.1) r < X 

x +T 
< Mr 
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for some r, 0 < r < 1, kept fixed in the argument. 
We want control over the sums involved, and in order to gain such 

control we shall have to impose strong conditions upon the <?Ä's and the 
7]kS. Convergence of the four series in (2.4) is sufficient for convergence of 
{Sw(x)} if the two sums in the denominator do not add up to — 1. It is 
not a priori necessary, but it seems to be hard to obtain results without 
assuming that the four series converge, even absolutely. 

Before stating the lemma we shall look at the periodic case again in 
order to see why we need very strong conditions on the d/Js and the T^'S 
to be sure of convergence of the series. In the periodic case all < '̂s and 
T^'S are zero. If the fixed points of (1.5) are xi and x2, then 

Bn = {-\y(xï + *r 1*2 + •• 

An = i-iyx^ur1 + *r2*2 + • 
If (3.1) holds, i.e., if r < |x2/*i)l < l/r,then 

1 

x^r1 + *s) 
+ xxxr2 + xr1). 

A, 

* • • ! + 
rn ^ 

rn 

< x3-i 1 + T + + rn-l) 

l-v3-,k 
1 — r ! ~ 

< , / = 1, 2. 

This shows us, that conditions on |5*| and |^Ä|, no matter how strong they 
are, if they also include the case dk = 7]k = 0 for all Je, then the best we 
can hope for in (2.4) is that for some C > 0 

(3.2) 
{b + x)n 

C B„ 
(b + x)n rn< 

This indicates that conditions of the type 

(3.3) \dn\ < Kr\ \rjk\ < knr\ Tikn < oo 

are the weakest worth trying if we want the series to converge and if we 
stick to conditions on the absolute values of dn and rjn. The considerations 
made here or the subsequent more precise treatment do not exclude the 
possibility of convergence of the series under other types of conditions on 
the 5w's and rj„\ conditions where also the arguments of dn and 7]„ are 
included. Nor do they exclude the possibility of convergence of the 
sequence {Sn(xt)} in cases where the series do not converge. Discussions on 
such questions are outside of the scope of the present paper. 

So far we only know that the inequalities (3.2) hold in the periodic case. 
The question whether they still hold if dn and rjn are not too large is 
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answered in the following lemma. 

LEMMA 1. Let K™=l(ajbn) be a limit periodic continued fraction with 
limw_00ö!w = A, limw_+00èw = b, where a and b are such that the fixed points 
x and —(b-\~x) of the linear fractional transformation s(w) = a/(b 4- w) 
satisfy a condition 

(3.1) r < b 4- x 
< 1/r 

for some positive r < 1. Let An and Bn be the normalized numerator and 
denominator of the n-th approximant, and let an = a 4- dn, bn = b 4- 7)n. 
Then there is a 7*0 > 0, depending only on \x/(b 4- x)\, \a\ and r, such that 
the following holds for all 7% 0 f^ y = To'-tf 

(3.4) \dn\ ^ yr\ | % | g rr» 

/or a// «, then there is a C > 0, depending only on \a\, r and 7% such that for 
alln>0 

(3.5) 
(x + by 

c Bn 

(x + by 
c 

PROOF. We shall restrict ourselves to the i?w-case. The proof of the 
^„-inequalities is similar. In the recursion formulas (1.2) for Bn 

Bn = *„£„__! 4- anBn_2, n è 1 

B_i = 0 B0 = 1 

we introduce 

(3.6) 

Then 

By 
Bk 

(b + xY ' 
k > - 1 . 

h b + Vi 
fl_1„0.A.-i.i>i-5-+T-TTir 

and, since x(è + x) = a, we have 

7» 
Ö» :D«-i + b + x D»-2 + rß„-i + 

ô„ 
(b + X} b + x 

for n è 1 • With 

(3.7) Ak = Dk-Dk_h k^O 

we have J 0 = 1, J i = — */(6 + *) + 571/(6 + x) and 

X lì.. t~l rf- M = 2 

2 Ai-2 

(3.8) 4.-1 + % «-1 

(» +V SJ" 
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for n 7> 2 (it also holds for n — 1). 
Assume now that the inequalities (3.4) hold for some fixed ?. Then we 

have in particular 

141 ^ b + x + IL 
M 

X 

b + x 
= 

X 

T>~Vx ( ' • & > 
Since \(b + x)/x\< 1/r and |1/(JC(6 + x))\ = l/\a\ we have l/|jc| < 
\/(r\a\)1/2 (and similarly l/\b + x\< l/(r|a|)1/2), and hence 

Mil < b + x o*KMn<f 
with 

(3.9) 
/ r \ i /2 *=1 + Kw) 

Since # > 1, we also have |z/0| < Ä/r°. 
Let n ^ 2 be such that \Ak\ < K/rk for k = 0, 1, . . . , « - 1. 

From (3.8) then follows 

141 < 
x \ K ( i i \/ A: 

+ 
K 

vn—\ 

= rn 
X 

TT+~x 
rn+\ 

+ r -, -
i_ _ l 

r \ r\a\ + (. r|fl|F2-)J-

Since r|x/(Z> + x)\ < 1, there is a 7-, such that the factor in brackets is < 1. 
(Any positive 7- with 

(3.10) r < ( \ 
X r r3 / 1 

|_ 1 — r \r\a + 
1 

(r\a\) 1/2 
l-i 

works.) By induction we thus have for all n ^ 0, \An\ < K/rn, provided that 
y is sufficiently small (i.e., satisfies (3.10)). 

From this follows, that for all n 

\Dn\ S 141 + Uil + • • • + I4J < tf(l + ~ + - • • + rV) 

A: 

where 

= — ( 1 + r + 

Ci 

C i 

# i + rir\a\)l/2 

1 - r 1 

(Observe that 7- = 0 gives back the bound we found in the periodic case.) 
This concludes the proof of the i?„-part of the lemma. The proof of the 
,4 „-part is almost identical, except for a few slight differences of merely 
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technical character. The ^-condition (3.10) is the same in the A „-case, but 
Ci (with similar meaning) is replaced by 

(|a|r)i" (1 + rlr\a\) C2 = j - — . 

With C = Max (C1? C2) the lemma is thus completely established. 

LEMMA 2. Under the conditions of Lemma 1, except that (3.4) w replaced 
by 

(3.4) laj^T"-'". W ^ r ' " 1 , 

ivAere r' K a positive number < r, the four series 
00 A °° ff 

§ , (6 + *)*+r 7H-1, E (5^iy+r%+i' 
oo >< oo D 

h (* + *y+l k+h h (b + *y+l m 

all converge absolutely to sums, bounded in absolute value by a function 
B(r, r\ \a\, y) of only r, r\ \a\ and y and such that B(r, r\ \a\, y) -> 0 as y -• 0. 

PROOF. From lemma 1 we have the following inequalities for the terms 
of the series : 

i j F T a J ^ ' H - \b + "JcT7*" rr'M 

and the same inequality for k ^ 0 if Ak is replace by Bk, 

(b 4-~x)kW °k+l 
1 C 

- \b + Jc|2 rk'rrr 

r' \k-\ 
r <Lrlc(' 

r / r' \k-l 

<rc-&-[-•) , ^ 2 , ß V 

and the same inequality for k ^ 1 if Ak is replaced by Bk. 
From this follows that all four series converge absolutely, and 

^ Ak | n( r \ i / 2 « / r ' \ * 

io"(̂ *)*+1 H < r vi«TJ M '•" 
= ^C ( |a | ) 7~-7' 

< r c 
r y/2 



652 W.J. THRON AND H. WAADELAND 

A=0 
' * - l 

ÈÔ (* + ^)*+ r °M 
rr 

(Mr)1'2 

1/2 

+ rc m" 
<rKw\) 

(r v 
+ rc 

'I *=2 

r r 

1/2 
+ r c 

|fl| r — r 

r r 

oo D 

5 (FT^F^1 

Ö| r — r 7 

1/2 

2 ^ - 1 __* 
fA 4- vï*+l Ö^+l (6 + x)k 

reform-^-«) 
rC i\ S(L'T'-rC w'~^ 

r — r 

< rc T-i 

Since C r/(r — r') > 1, the following expression is a common upper 
bound for all four sums : 

Since limr_0C = Max(l, (|û|r)i/2/(l - r), we have J5(r, r', |a|, 7-) -> 0 as 
7- -• 0. Lemma 2 is thus proved. 

From formula (2.4) and lemma 2 follows the next proposition. 

PROPOSITION 1. Let K™=1(an/bn) be a limit periodic continued fraction with 
lim^oofl^ = a, \imn^00bn = b, where a and b are such that the fixed points 
x and —(b + x) of the linear fractional transformation s(w) = a/(b 4- w) 
satisfy a condition 

(3.1) r < b + x 
< \/r 

for some positive r < 1. Then there is a 70 > 0> depending only on \a\, 
\x/(b + x)\ and r, such that the following holds for all positive 7- < y0 and 
all positive r' < r: If 

(3.4') \a - a„\ ^ rr'«, \b - b„\ g Tr'» 

for alln, then the sequence {S„(x)} converges, possibly to oo. For fixed values 
of a, b, r, r' there is a positive H(j-), with H(j) -* 0 as y -+ 0, such that 

lim S„(x) — x < H(j). 

REMARK 1. In proposition 1, as well as in Lemma 2, the an, ^„-conditions 
may, without any essential change in the proof, be weakened by replacing 
them by conditions of the type \a - an\ S Tnrn> \b - bn\ ^ ynr

n, where 
H™=iTn converges and Max yn is sufficiently small. 

REMARK 2. The condition that y be sufficiently small is inessential as 
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far as the tail of the continued fraction is concerned. If (3.1) holds for some 
positive r < 1 and (3.4') holds for all n for some positive 7*, then yr'm is 
"sufficiently small" from a certain m = TV on, even if y is not, and hence 
lim^ooS^A;) converges. Since 

lim (lim S<*> (x)) = jc, 
m-*oo w—00 

it follows that for all sufficiently large m the sequence {S£m)} SJLw+i con
verges to a finite number. 

4. Some words on analytic continuation. If an and bn are complex valued 
functions of certain variables such that the continued fraction is limit 
periodic when the variables are in certain given sets the question of 
uniform convergence of { £„(*)} arises. Since the argument above is based 
upon absolute convergence of series by comparison with geometric series, 
the question of uniform convergence will essentially be settled by estab
lishing uniform bounds for the quantities occurring in the terms of the 
series. Rather than going into details in a general setting we shall indicate 
the flavor of the argument by using two examples. 

EXAMPLE 4.1. As in Ex. 1.3 we shall study the limit periodic general 
T-fraction 

? FnZ 

where Fn -> 1, Gn -> — 1 as n -> 00. (The choice F = 1 is merely a matter 
of normalization, as long as F ^ 0, 00.) Let, furthermore, for some fixed 
R > 1 and e > 0, \Fn - 1| ^ e/R», \Gn + 1| S e/Rn. In this case we 
know from Ex. 1.3 that for any p > 1 there is an N0 such that any tail 

00 F ? 

n=N+l 1 + GnZ 

with N ^ N0 converges uniformly on \z\ < \jp to a holomorphic function 
f{N\ and from [9] that this function has a meromorphic extension to 
\z\ < R. Furthermore the same tail converges uniformly on \z\ > p to a 
homomorphic function gm with a meromorphic extension to \z\ > \/R. 
We even know that the continued fraction itself (not only the tail) con
verges uniformly on compact sets of \z\ < 1 minus poles to a meromorphic 
function and uniformly on compact sets of \z\ > 1 minus poles to a mero
morphic function, neither identically 00. 

Here we have a(z) = z, b(z) = 1 — z, x(z) = z, — (x(z) 4- b(z)) = — 1. 
For p > 1 let Dp denote the annulus Dp = {z\\jp < \z\ < p}. Fix an Ri 
such that 1 < Ri < R and choose an R2 such that Ri < R2 < R. In the 
following we assume that z e DRv Then 
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1/7*2 < 1/Ä! < x(z) + b(z) < Ri < R2 

In the use of the lemmas and the proposition \/R2 — r and Ì/R = r'. 
Hence (3.1) is satisfied in the whole annulus DRv even in a stronger version, 
since r < \\RX and Rx < \\r. Furthermore (3.4') holds for any n with 
Y — sR\. If e is sufficiently small (simple computation from (3.10) shows 
that any e with 

V'n) £ < R^2 + (RiR2)
l/2 

works), then the conclusion of Lemma 1 holds, and, as is easily seen, 
with a C depending only upon Rx and R2. The series in Lemma 2 are 
easily seen to converge uniformly in the annulus DRv and since the partial 
sums are all polynomials the sums are holomorphic in the annulus. It is 
also easily seen that the absolute value of the sums have a common 
bound B, depending only upon Rl9 R2 and e, and such that B -> 0 as e -> 0. 
This implies that for sufficiently small e (an explicit value that works is 
also here easy to give), the denominator in (2.4) is bounded away from 
zero, and hence {Sn (x(z))} converges uniformly on DRl to a holomorphic 
function. In the part of the annulus lying in the open unit disk this coin
cides with lim Sn(0), and hence we have an analytic continuation. If e is 
not small enough to permit a direct use of Lemma 1, we can study a tail 
of the continued fraction, in which case the condition (3.11) is replaced by 

m i , x e ^ (R2 - R1)(R2 - 1) 
V'n) RN K R^2 + (RxR2)

1/2 ' 

which, regardless of e, is true from a certain TV on (depending on e). 
Switching the roles of x(z) and — (b(z) + x(z)) leads under similar 

conditions to uniform convergence of Sn( — b(z) — x(z)) = Sn(— 1) in the 
annulus and to analytic continuation of the function to which the con
tinued fraction converges in \z\ > 1 to the domain \z\ > \IR\. 

EXAMPLE 4.2. As in Ex. 1.4 we shall study the limit periodic regular 
C-fraction K^O^z/l) , where an -> a ^ 0, oo as n -• oo. Without loss of 
generality we shall assume a — 1 in the following. We know from Ex. 1.4 
the following convergence property: Given a sequence {Dk} of bounded 
sub-domains of the plane cut along the ray z = —1/4, t ^ 1, such that 
for all k ^ 1, cl(ZV) <= AH-I and ( J ^ A = t h e c u t plane. Then to any 
k ^ 1 there is an A^ such that for any N ^ Nk the tail K ^ + ^ z / l ) 
converges uniformly on Dk to a holomorphic function. 

Here we have a(z) = z, b{z) = 1, and x(z) and —(x(z) + 1) are the two 
roots ( l /2) ( - 1 ± (1 + 4z)1/2) of the quadratic equation x2 + x - z = 0. 
We shall later choose which one we shall call x(z) and which one we shall 
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call -(x(z) + 1). 
Let, furthermore, for some fixed positive 0 < 1 and e > 0, \an — 1| ^ 

edn for n ^ 1. In the following we shall assume that z is in the angular 
domain Dß, % — ß < arg(z + 1/4) < % + ß, for some fixed positive 
ß < 7C to be decided later. Writer z = —1/4 + (p2/4)ert, % — ß < (jx 
% + ß, and choose the notation such that 

x(z) = 1 + ort12 

-(x(z) + 1) = -
1 + pert'2 

In Dß we have 

tan 
ff - ß x(z) 

x(z) -f 1 < tan 
% + ß 

If /3 is such that 00 = tan(^ — ß/4) > 0, i.e., 0 < ß < % — 4 arctan 0, then 
we have in Dß that 

< 
x(z) 

W)^T\ < 1/Ö° < 1/ö-
Let, for arbitrary fixed M > 0, Z)^M) denote the intersection of Z)̂  and 

the disk \z\ < M. Using the two lemmas and Proposition 1 it is easily 
proved that at least a tail of the continued fraction is such that the sequence 
of x(z) — modified approximants converges uniformly on D(

/3
M) to a 

holomorphic function. In the lower part of the angular opening, % < 
arg(z + 1/4) < % + jS, the x(z) — modification represents the "wrong" 
modification, and in the upper part, TZ < arg(z + 1/4) < %, it repre
sents the "right" modification and the limit coincides there with the value 
of the continued fraction (or the tail). Hence this method leads to analytic 
continuation "from above" across the slit on the negative real axis. By 
using the same angular domain, but describing it as 

-TU - ß < arg(z + 1/4) < -% + ß, 

we can quite similarly obtain an analytic continuation "from below". In 
this case the x(z)-modification is the "right" modification in the lower part 
of the angular opening —% < arg(z + 1/4) < — % + /3and the "wrong" 
modification in the upper part — iz — ß < arg(z 4- 1/4) < —%. 

In the two examples above details are left out, since the results are 
contained in [7] and the purpose of the examples in the present paper is 
merely to indicate how those results can be obtained in a different way. 

5. Final remarks. As mentioned in the introduction Gill suggested in [1] 
the use of the repulsive fixed point in order to obtain analytic continua
tion. The main result in the paper [1] is a theorem related to our Proposi
tion 1, but of a much more general nature. First, it has to do with com-
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positions Tn of more general nonparabolic linear fractional transfor
mations 

'"W - 1 ^ > ' a-d" - Kc- * ° 
with an -+ a, bn -> b, cn -+ c, dn -> d as n -+ co, with finite fixed points 
ctn -> a (attractive) and ßn -> ß (repulsive) rather than the more special 
ones sn(w) (with cn = 0, dn = 1 in tn(w)) used for generating continued 
fractions. Second, he studies sequences {Tn(fin)}, where jun — ßn -> 0 (at a 
rate described in the theorem) rather than the sequence {Tn(ß)}. 

Since Gill's method differs from our methods in [7] as well as in the 
present paper, the two latter represent at least new presentations of results 
on the wrong modification. Whether or not they are more than that 
depends essentially upon whether or not our Proposition 1 follows from 
Gill's Theorem 2. 

A complete comparison of Gill's result (in the case cn = 0, dn = 1, 
ixn = ß) with our result is beyond the scope of the present paper. We shall 
restrict ourselves to a few remarks without going into details. Gill's result 
is expressed in terms of the fixed points, and in the case \a/ß\ < 1 pro
ducts Tlk=i\ccklßk\ a r e contained in his conditions in a manner very related 
to the way the ratio \a/ß\n is part of our conditions. However, since in his 
result the strong condition on convergence (geometric convergence) only 
is required for the sequence {ßn}, whereas an may tend to a more slowly, 
there exist, by virtue of the equalities an + ßn = — bn, anßn = — an, 
continued fractions, where Gill's Theorem 2 can be used, but not our 
Proposition 1. Gill presents such an example in his paper, Example 2. On 
the other hand, in the case \a/ß\ = 1 Gill's theorem does not permit too 
fast convergence of an to a and bn to b simultaneously. For instance, 
neither the case of a periodic continued fraction nor the cases of geometric 
convergence of an to a and bn to b are covered by Gill's theorem when 
\a/ß\ = 1. Hence the results on analytic continuation of functions defined 
by C- or T-fractions as treated in [7] or in the Examples 4.1 and 4.2 of the 
present paper can not be proved by using merely Gill's theorem, since in 
these cases it can not "help us across" the border line where the attractive 
and repulsive fixed points switch roles. 

In conclusion we, therefore, may say that there are cases covered by 
Gill's result and not by our results and vice versa. 
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