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ON COMPACT CONVEX SUBSETS OF Z)[0, 1] 

PETER Z. DAFFER 

ABSTRACT. It is proved that a subset K of Z)[0,1] which is convex 
and conditionally compact with respect to the Skorokhod topology 
is conditionally compact with respect to the uniform topology 
on Z)[0, 1]. Consequences of this result are indicated for limit laws 
for generalized random variables in D[0, 1] which use tightness of 
measures as a hypothesis. A characterization of the convex, con
ditionally compact subsets of Z>[0,1] is given in terms of the modulus 
of continuity and finitely many jump points. 

1. Introduction. In considering sequences of generalized random vari
ables (Xn) the structure of the infinite-dimensional linear space where 
they take their values is crucial in determining which limit laws are valid. 
For example, there are few laws of large numbers which are valid for 
sequences of random variables taking values in an arbitrary (separable) 
Banach space. Tightness of a sequence (Xn) of random variables (that is, 
tightness of the corresponding sequence of induced probability measures) 
is a condition which has recently been used, in conjunction with moment 
conditions, to obtain laws of large numbers for random variables taking 
values in an arbitrary separable Fréchet space ([3], [7]). In this paper 
results are obtained which determine the usefulness of tightness as a 
hypothesis in obtaining laws of large numbers in the space Z)[0, 1] (defined 
in §2). 

Let E denote a topological space, made into a measurable space (£, $) 
by providing it with the cr-field & of Borei sets : the tf-field generated by 
the open sets in E. Let (Q, E, P) be a probability space. A random variable 
X in E is a measurable map from Q into E. 

DEFINITION 1.1. A sequence (Xn) (finite or infinite) of random variables 
taking values in E (or the sequence of corresponding probability measures 
on E) is said to be tight if, to every e > 0, there is a compact subset K of 
E such that P[Xn $ K] g e, uniformly in n. 

The concept of tightness thus makes use of the compact sets in E. Laws 
of large numbers concern sequences of Cesàro sums Xn = fl_1Z]?=i %k °f 
random variables (Xn). If we assume a linear structure on E such that the 
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operations of addition and scalar multiplication are measurable with 
respect to the Borei field 3Ï on E, it makes sense to consider sequences 
of Cesàro averages (Xn) of random variables taking values in E. D[0, 1] 
with the Skorokhod topology is just such a space E. For tightness to be 
useful here, it is in general necessary that the compact sets K involved in 
its definition also be convex, in order that Xn e K whenever X{ e K, 
i = 1, . . . , « . If E is a Fréchet space, this requirement of convexity is no 
restriction and need not be stated explicitly in the definition of tightness 
([5], p 72). In D[0, 1] with the Skorokhod topology ([1], Chapter 3) how
ever, the requirement of convexity presents a serious restriction, since the 
convex hull of a conditionally compact set in D[0, 1] need not be condi
tionally compact [2]. 

This situation motivated the study of those conditionally compact 
subsets of D[0, 1] having the property that their convex hulls are again 
conditionally compact. The collection of such subsets will be denoted by 
J T . In [4], j f was characterized in terms of sets of jump points in [0, 1]. 
In Theorem 3.6 of §3, another characterization of j f is obtained in terms 
of the modulus of continuity wx(d), which looks more like the characteriza
tion given in ([1], p. 116) of the conditionally compact subsets of D[0, 1] 
in terms of the modulus w'x(d). In this paper it is shown that the require
ment that a conditionally compact set in Z)[0, 1] be convex is somewhat 
restrictive and consequently that tightness is of limited usefulness as a 
hypothesis for laws of large numbers. Specifically, Corollary 3.2 states 
that any conditionally compact set in D[0, 1], with the Skorokhod to
pology, which has the property that its convex hull is again conditionally 
compact, is conditionally compact in the uniform topology on Z)[0, 1]— 
the topology generated by the supremum norm which makes Z)[0, 1] a 
Banach space. It follows that any law of large numbers in D[0, 1] which 
uses tightness as a hypothesis can be obtained in the Banach space obtained 
by providing Z)[0, 1] with the supremum norm, bypassing the Skorokhod 
topology and leaving open the question of good sufficient conditions for 
laws of large numbers in D[0, 1] (for existing results see [2], [4]). 

2. Definitions and preliminaries. Definitions and known results which 
will be needed to prove the results in §3 on properties of sets in J T are 
collected here. 

Denote by D = Z>[0, 1] the linear space of functions on [0, 1] which are 
right continuous and possess left-hand limits at each point of (0, 1) and 
are right and left continuous at t = 0 and t = 1, respectively. The supre
mum norm Ĥ IU = sup 0 ^^ \x(t)\ turns/) into a Banach space but this 
space is non-separable. Separability is a requirement which guarantees 
that the sum of two random variables in again a random variable (that is, 
measurable). Skorokhod [6] introduced a topology on D which makes it a 
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separable metric space. The metric d generating this topology is needed 
for the proofs in §3. Let A denote the group of all continuous, strictly 
increasing maps 1 of [0, 1] onto itself. We denote by id the identity map 
id(0 = t, and by x o X the composition: x o X(t) = x(X(t)). 

DEFINITION 2.1. For x, yeD, d(x,y) = inf{e: \\xoX - J I U ^ e and 
P-idlloo S e for some X e A}. 

This definition is that of [1]; for a detailed account of the convergence of 
probability measures defined on the Borei field of the Skorokhod topology, 
see Chapter 3 of [1]. 

The conditionally compact subsets of D are characterized in terms of 
a "modulus of continuity" u^(<5)and this characterization will be needed. 

DEFINITION 2.2. For Ta [0,1] and x e Z>, wx(T) = sup5j,eT \x(s) - x(t)\. 
For ö > 0 and s, t e [0, 1], wx(S) = sup|S_,K(5 \x(s) - x(t)\. 

This is the familiar modulus of continuity wx(d)-

DEFINITION 2.3. A finite partition gP = {t{}^L0, 0 = t0 < tx < • • • < 
tN_i < tN — l,of[0, 1] is said to be <5-C0ar.se if min^^^l^- — tt^i} > d. 

DEFINITION 2.4. wx(ö) = inf {max^^H^fly,-..!, /,•))}, where the infimum 
is taken over all 5-coarse partitions gp of [0, 1]. 

The familiar modulus of continuity for functions in C[0, 1] is too strin
gent for D; w'x(ô) allows for a finite number of "large" jumps to occur 
and provides the analogue in D of the Arzelà-Ascoli characterization, in 
terms of equicontinuity, of conditional compactness in C[0, 1]. This char
acterization, proved in ([1], p. 116) will be needed and is formulated now. 

THEOREM 2.5. A set K a D is conditionally compact if and only if 

(i) sup H-xlloo < oo 

and 

(ii) lim sup wx(ö) = 0. 
<5i0 x^K 

In D the convex hull of a conditionally compact set need not be condi
tionally compact. Indeed, the closure of a convex set need not be convex 
[2]. For A c D, let co(A) denote the convex hull of A. Let j f denote the 
collection of conditionally compact subsets K of D which have the prop
erty that co(Ä )̂ is again conditionally compact. (These are precisely the 
conditionally compact subsets which would be used in a definition of 
tightness in D to get laws of large numbers). In order to characterize J T 
we define the following sets : for A cz D and e > 0, let 

S£(A) = {te [0, 1]: sup|jc(f) - x(t - 0)| > e}. 
x^A 
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THEROEM 2.6. A set K a D is in j f if and only ifS£(K) is finite, for each 
e > 0. 

Theorem 2.6 is proved in [4]. Using Theorem 2.6 it is easy to show that 
J T is a ring of subsets of D. 

3. The main results. 

THEOREM 3.1 If K is a convex and conditionally compact subset of D and 
(xn) is a sequence of elements of K, then lim^oo d(xn, x0) = Oif and only 
if"lim^oo ||xn - Joli«, = 0. 

PROOF. The "if" part is trivial. To prove the "only if" part, assume that 
linV-ooll*» — *olloo > 0. Then there is a subsequence {xn>} and e > 0 such 
that \\xn, — XQIIOO > e, for all n'. Then, by compactness of [0, 1], there is 
a further subsequence {xn„} and a corresponding sequence {/„*} of points 
in [0, 1] such that lim tn„ = t0 e [0, 1] and \xn,{tn„) — x0(tn,,)\ > e, for 
all n". For notational convenience we denote these latter subsequences 
again by {xn} and {/„}. We thus have lim tn = t0, \\xn — x0\\ > e, for every 
n, and in particular, 

(3.1) \xn(tn) - x0(tn)\ > e, for every n. 

We assume that lim^oo d(xn, x0) = 0 and obtain a contradiction. 
Given 7] > 0, choose ô > 0 such that 

( 3 2 ) WJI/Q, k + 2d)) < 7] 

Wx&h - 2d, t0)) < 7] 

By limw^oo d(xm x0) = 0, find n0 such that n ^ «0 implies that d(x„, x0) < 
7]. Thus, given n ^ «0, there is Xn e A such that 

(3.3) sup \xn{Xnt) - x0(t)\ ^ 7] 

and 

(3.4) sup \Xn(t) - t\ ^ Ö. 

Let sn = Xn(t0). Then, by (3.4), n ^ n0 implies that t0 - ô < sn < 
t0 4- 5. There are now two cases to consider: either sn = t0 for almost all 
n (i.e., for all n ^ nh a fixed integer), or not. The second case is further 
broken up into two cases according to whether x0 is continuous at t = tQ, 
or not. 

Case I. If sn = t0 for almost all n, let nx be such that sn = f0 for n ^ «j. 
Suppose that t0 £ s, t < t0 + 3. In(3.2) and (3.3) take TJ = e/S, choose 
/?o and 5 > 0 accordingly, and put n2 = max{«0, nx}. Then for « ^ «2, 
*o ^ W 0 , ^»(0 < >o + 25, so that, using (3.2) and (3.3), we have 
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\xn(s) - xn(t)\ 

^ \xn(s) - x0(Xns)\ + \x0(Xns) - x0Qnt)\ + \x0(Xnt) - x0(t)\ 

< e/S + e/8 + e/8 = 3e/8, 

for « ^ w2. 
Similarly, for t0 - ö < s, t < t0, we get \xn(s) - xw(0l < 3e/8, for 

n ^ n2. We thus have 

w*(['o, h + 8)) < ^e 
(3.5) * 

3 
w*M(('o - S, t0)) < Y6' 

Next, using (3.5), (3.3) and (3.2) for t0 ^ s, t < t0 + ö and « ^ «2> 
we have 

l*»(0 - x0(s)\ 

^ \xn(t)-xn(s)\ + W ^ - J C ^ O ) ! + I*,(*Q)-*O('O)I + l*o('o)--*oCOI 

< 3e/8 + 3e/S + e/S + e/8 = 5, 

and so 

(3.6) sup |xn(0 - x0(s)l < e. 

In a similar manner, we get 

(3.7) sup \xn(t) - x0(s)\ < e. 
t0-ö<S,t<t0 

In particular, it follows from (3.6) and (3.7) that 

(3.8) sup \xn(t) - x0(t)\ < e. 
to~ö<t<t0+ö 

But for all sufficiently large n, t0 — d < tn < t0 + d, and (3.8) contradicts 
the initial assumption (3.1). 

Hence sn = t0 for almost all n is impossible. 
Case II. If x0(tQ) = x0(t0 - 0), find ô > 0 such that 

(3.9) wxo((t0 - 23, t0 + 28)) < e/2. 

In (3.3) take TJ = e/2, and choose n0 and 8 > 0 accordingly. Let ^ be 
such that n ^ nx implies that 

(3.10) to - 8 < tn < to + 8. 

Put n2 = max{/70, A^}. 
Now for any À e A satisfying sup, \X(t) — t\ < 8, 
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sup \x(Xt) - x0(OI ^ MM-K) - x0(X~ltn)\ 
t 

^ \xn(tn) - x0(tn)\ - \x0(tn) - x0(X-kn)\ 

> e - \x0(tn) - x0Q-\)l by (3.1) 

> e - e/2 = e/2, 

for all n ^ n2, by (3.9) and (3.10). 
Thus sup, \xn(Àt) — x0(t)\ > e/2 and this implies that d(xn, x0) ^ e/2, 

for n ^ n2. Since this holds for all n ^ n2, we have lim inf^oo d(xn, x0) ^ 
e/2, which contradicts the hypothesis that l im^^ d(xn, x0) = 0. Thus x0 

continuous at t = t0 is impossible. 
Case III. If sn 7̂  t0 infinitely often and |x0(/0) — x0(t0 — 0)| = c > 0, 

then by choosing a further subsequence, assume that sn ^ t0 f° r a ^ n- ^n 

(3.3) we put 77 = c/4 and choose n0 and ö accordingly. We now show 
that 

(3.11) \xn(sn) - xn(sn - 0)| > c/2, forali« ^ n0. 

We have 

c = l*o('o) - *o(>o - 0)1 

^ IJCQĈ O) - xH(sH)\ + \xn(sn) - xn(sn - 0)1 + \xn(sn - 0) - x0(/0 - 0)| 

< ^ + W O - Xn(sn - 0)1 + -|-, 

for n — nQ, by (3.3). Thus \xn(sn) — xn(sn — 0)| > c/2, for every n ^ «0. 
But since sn # ?0

 a n d nm«-oo »̂ = ô, and by hypothesis xn e 7£, for each 
n, we have by (3.11) that 

Sc/2(l) = {te [0, 1]: sup WO - x(t - 0)| > c/2} 
x K 

2 {* e [0, 1]: sup |xw(0 - xn{t - 0)| > c/2} 

2 {5*!, ^ . . . } , which is infinite, 

contradicting, by Theorem 2.6, the hypothesis that K is convex and condi
tionally compact. 

Thus lim sup^oo \\xn - XQIU = 0. 

COROLLARY 3.2. Let K c D. IfK e jf, then K is conditionally compact in 
the uniform topology on D. 

PROOF. If {xn} a K, then {xn} a co(K), and there is a subsequence 
{x'n} such that lim xn = x0 e D. But then, by Theorem 3.1. lim \\x'n - XolL 
= 0. 
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The following lemmas are needed in the proof of Theorem 3.6. Lemma 
3.4 has a useful corollary. 

The "Arzelà—Ascoli" characterization of the conditionally compact 
sets in Z>[0, 1] in terms of the modulus w'x(d) can be sharpened considerably 
if attention is restricted to J T . Indeed, j f can be characterized using the 
modulus of continuity wx(d) since, given K e j f and e > 0, wx(ö) > e can 
be achieved uniformly on Kby means of a single partition gP. To establish 
this result, Theorem 3.6, we first prove two lemmas on convergent 
sequences in D[0, 1]. 

LEMMA 3.3. Let (xn) be a sequence in D converging to x0e D. Suppose 
(sn) and (tn) are sequences in [0, 1] such that lim^oo sn = lim^oo tn = tQe 
[0, 1] and that \xn(sn) — xn(tn)\ > e > 0 for each n. Then 

l*o('o) - *o('o - 0)| ^ e. 

PROOF. Suppose W o ) _ *o('o - 0)| = 97 < e. 
Let a = (e — yj)/4. Find 0 < ö < a such that 

(3.12) wXQ((t0 - 25, /<,)) < a 

and 

»*„(['<>, '0 + 25)) < a. 

Find n such that \tn — t0\ < <?, \sn — tQ\ < 5, and s(xm x0) < d. Then there 
is Xn e A such that 

(3.13) l l * o % - *Joo < à 

and 

(3.14) Un- id||co < Ô. 

Then 

Msn) - x«(Q\ 

^ \xn(sn) - x0(Xnsn)\ + \(x0(Xnsn) - x0(/(ntn)\ + \xQQntn) - xn(tn)\ 

<o + 7] + 2a + ô 

^a + 7] + 2a + a = 7j + 4a = 7] + (e-7]) = e, 

using (3.19), and then (3.12) together with (3.14), yielding \xn(sn) - xn(tn)\ 
< e, a contradiction. Thus rj ^ e proving the lemma. 

LEMMA 3.4. Let K e JT, and let (xn) be a sequence of elements of K 
converging to an element x0 of D. Then \x0(t) — xQ(t — 0)| > e implies 
t e S£(K). 
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PROOF. Suppose W o ) - *o0o — 0)\ = a > e and that t0 $ Se(K). Let 
a = min {\t - t0\: t e Se(K)}. By hypothesis a > 0 (recall that S(#) is 
finite by Theorem 2.6). Let 37 = (a — e)/2. Choose /i0 large enough that 
d(x„, x0) < min {a, 77}. Then to b ^ w0, there is /ì„ e ^ such that 

(3.15) 11*, ,% - ôlloo < V 

and 

(3.16) 1 1 4 - id||co < a. 

Thus, by (3.15), putting /„ = Xn(tol 

oc = koOo) - *o('o - 0)| 

< l*o('o) - xH(tn)\ + \xn(tn) - xn(tn - 0)| + \xn{tn - 0) - x0(t0 - °)l 

< 57 + l*„W - xn(tn - 0)1 + 77, 

yielding 

W J - *„('* - 0)1 > ÖL - 2T; 

= a — 2(<x — e)/2 = e. 

But this is a contradiction since, by (3.16), \tn — t0\ < a and so /„ £ 
Se(#). Hence, W o ) - *o('o - 0)| ^ £ and t0 $ Se(K), or else t0 e S£(K). 

For A c Z) let Cl(^l) denote the closure of A in the Skorokhod topology. 

COROLLARY 3.5. For K Œ D, Kejf if and only ifC\(K) e jr. 

PROOF. By Lemma 3.4, S£(K) = S6C\(K) and the corollary follows by 
Theorem 2.6. 

THEOREM 3.6. Let K c D. Then K^jf if and only if to every e > 0, 
there is a finite partition &>: 0 = t0 < tx < • • • < tN = 1 of [0, 1] such 
that max^-^y wx([tt-^l9 tt)) ^ e for every x e K. 

PROOF. We first show necessity. If the conclusion is false, then there is 
e > 0 such that, to any partition &> = {fĴ Lo °f [0> 1], there is some x e K, 
and two points s and /, such that s, t e [tt-_Ì9 tt) for some / and \x(s) — 
x(t)\ > e. 

Consider a sequence &>l9 0>2> • • • of partitions of [0, 1] with norm 
( = length of longest subinterval) tending to zero, such that 0>n+i is a 
refinement of &>n, for each n, and such that ^ contains the points of 
S£(K). Since Kejf, S£(K) is finite by Theorem 2.6. Corresponding to 
&>„, let s„ and tn be points in [ff-Ä_i, tin) such that for the function xn e K 
we have \xn(sn) — xn(tn)\ > e. Without loss of generality, assume that 
sn < t for each n. 
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Since K is conditionally compact, the sequence (xn) contains a sub
sequence which converges to some element x0 in D. By compactness of 
[0, 1], the sequence (tn) contains a subsequence converging to some t' in 
[0, 1]. We take the intersection of these two subsequences and for nota-
tional convenience denote it again by (xn), (tn), (sn). We thus have lim xn = 
XQ, \imsn = t\ and, because \sn — tn\ -> 0, lim tn = t'. Also, \xn(sn) — 
xn(tn)\ > e, and sn < tn are in the interval [tin-l9 tin) of 0>n. 

We now note that by Lemma 3.3 and 3.4, t' e S£(K) and since t' e 0>x, 
t' e 0>n for every n. 

We next note that since lim d(xn, x0) = 0, and K e jf, that 
lim \\xn — XQIIOO = 0, by Theorem 3.1. Thus, we can find n0 such that 
II*» - *olloo < eßforn ^ n0. 

Next, observe that since lim sn — t' = lim tn, and sn < tn, we have 
that either (i) t' ^ sn, infinitely often, or (ii) tn< t\ infinitely often, or both 
occur, (sn < t' ^ tn is impossible, since / ' G &>n). Both (i) and (ii) lead to 
a contradiction. 

Suppose (i) holds. Find 5 > 0 such that wXQ([t', t' + 5)) < aß. Find n 
so large that tn — t' < ö and \\xn — XQIU < eß and (i) holds. Then 

\xn(tn) - xn(sn)\ 

^ \Xn(tn) - *o('»)l + \Xo(tn) - X0(^w)| + |x0(5M) - X„(jn)| 

< e/3 + e/3 + e/3 = e. 

But |xw(/w) — xn(sn)\ > e, a contradiction. 
If (ii) holds, find ö > 0 such that wxo((f ' - 5, /')) < e/3, and « such 

that f' — $„ < 5 and (ii) holds. The same inequalities result. 
Finally, sufficiency is immediate from Theorem 2.6, since the condition 

of the theorem implies that, given e > 0, S£(K) c {/', tn , . . . , /#}. 
The author wishes to thank the referee for suggestion leading to a better 

proof of Theorem 3.1. 
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