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THE MODULAR FUNCTION AND THE MODULUS 
OF A DOUBLY-CONNECTED REGION 

JACOB BURBEA 

ABSTRACT. Let D be a doubly connected region and let K = 
K{z, z)9 z e D, be its Szegö kernel. One then forms the conformai 
invariant J(z) = K~z dzdz log K and also finds ocD = maxzeD/(z). 
For ß = ßD = 4TC2/CCD, one has /3e(0, 1). Let Mod Z)e(l, oo) be 
the modulus of D. Then 

(ModDr* = t *» r i - ( i - / 3 ) i / 4 r + i 
lMOQ U) h 24n+i L i + a - ß)l/i J ' 

where {<5„}~=0 is a sequence of positive integers arising from the 
inversion of the modular function; thus d0 = 1, öx = 2, d2 = 15, 
dz = 150, The series converges rapidly and usually the first 
two terms suffice. A truncation error analysis is provided. 

1. Introduction. Our recent work [3] conceals in it a rather interesting 
relationship between the modular function, the analytic capacity and the 
modulus of a doubly-connected region. This relationship may be exploited 
to yield an efficient method for determining the modulus of a doubly-
connected region. Basically, this relationship can be described in the 
following way. Let D be a doubly-connected region with no degenerate 
boundary component and let C(z) be its analytic capacity at z e D (see 
définition below). One then forms the well-defined conformai invariant 

J(z) = 7U2C~2J log C, C = C(z) 

where A denotes the usual Laplace operator A = 49Z3Z. We shall use the 
fact (see [3]) that J(z) ^ A%2 for all ze D and that, within a proper 
approach, J(z) = 47r2 for z G 3D. We define aD = max2GZ)/(z), ßD = 
4TC2ICCD and thus ß = ßD e (0, 1). Let r~l (0 < r < 1) be the modulus of D. 
Then 

/ i n r - Y ô» \ { - ( l - /3 ) 1 / 4 1 4 " + 1 

U-U r - LL 24W+1 [_ i + (1 - /3)1/4. «=o 

where {<5W}£L0 *
s a sequence of positive integers arising from the well-

known inversion of the modular function (see Weierstrass [10, p. 276]). 
Thus d0 = 1, di = 2, 02 = 15, ö3 = 150, <54 = 1,707, <55 = 20,910, 
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96 = 261,416, . . . . The series converges rapidly and usually the first two 
terms of this series suffice. 

The modulus of Z), therefore, is determined at once via (1.1) provided 
the value of ß or of aD is known. It is required, therefore, to effectively 
compute the invariant J{z). For this purpose we shall assume that the 
boundary dD of D is rectifiable. Then, by a familiar identity due to 
Garabedian (cf. [1, p. 118]), K(z, z) = 2TZC{Z\ where K(z, J) is the Szegö 
kernel for D, z, £ e D. Since K(z, £) may be expressed as a bilinear expan
sion of an orthonormal basis of analytic functions belonging to the 
Hardy-Szegö space H2(dD), we evidently have an effective method for 
computing C(z) and therefore also J(z). 

In numerical computations we must replace the infinite sum defining 
K(z, z) by partial finite sums. The truncation error committed by this 
replacement, however, has already been estimated by Nehari (see, for 
example, Nehari [7, p. 392]). Such an estimate is not available for the 
analogous reduced Bergman kernel function for D. Since we actually are 
using J(z) for computing the modulus of Z>, it is desirable to provide a 
bound for the truncation error in computing /(z). This will be done here 
for the more general case where D may even be allowed to be a p-con-
nected region, 1 ^ p < oo. As a result of the above one obtains an ef
fective and rapid procedure for computing the modulus of a doubly-
connected region D. Numerical examples based on this algorithim, smilar 
to those employed in [2, 4, 5, 9], will be elaborated elsewhere. 

A somewhat similar analysis for determining the modulus of D was also 
conducted by Zarankiewicz [12] by considering the reduced Bergman 
kernel for D. However, in contrast to the results in [12] the results here 
have the following additional features: (i) an estimate for the truncation 
error in computing K(z, z) or J(z) is available and, moreover, (ii) the modu
lus of D is explicitly given by a rapidly convergent series (1.1) arising from 
the inversion of the modular function. 

We should remark here that, since doubly connected regions arise as 
tori cut along the image of a line, the connection with modular functions 
is rather natural, of one takes into account Kelvin's method of images. 

To make this paper self contained as much as possible, some of the 
notions and the results of [3] are repeated here. Consequently, this paper 
can be read, to some extent, independently of [3]. 

2. General theory. Let D be a plane region $0AB (i.e., D carries a non-
constant bounded analytic function.). The class H^D) designates the 
Banach space of bounded analytic functions/in D nomred by \\f\\oo = 
supZŒD\f(z)\. For £ e Z), the analytic capacity C(£) = CD(£) is defined by 

C(f) = max{ | / ' ( ö | : / e H„(D), Il/IL è 1,/fê) = 0}. 
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The maximum is uniquely (up to a rotation) attained by the Ahlfors func
tion F(z) = F(z: £). Thus, ||F|U = 1, F(Ç) = 0 and F(Ç) = C(£). Evi-
dently, the metric C(z)\dz\ is conformally invariant and one can show that 
C(z) is real analytic in D (see [8]). Consequently, one can introduce the 
curvature of this metric 

K(z) = - C - 2 J l o g C , C = C(z). 

This is, of course, a conformai invariant. It is perhaps more convenient, 
however, to redefine this invariant by introducing J(z) = — A ( z ) . 

In [3, 8] it was shown that /(£) ^ An2 for each £ G D. Moreover, if the 
Ahlfors function F(z:%) has a zero f0

 m D other than £, then /(£) > A%2. 
Especially, if @p, 1 ^ p < oo, denotes the class of all/7-connected regions 
with no degenerate boundary component, then for D G Q)p and any £ G D, 
«/(£) è ATZ2 with equality if and only if p = 1 (see [3]). Other properties of 
the curvature of the analytic capacity were studied in greater detail in [3]. 

For future reference we denote by £^r) the subclass of Q) p, 1 g p < oo, 
consisting of those regions whose boundary components are rectifiable. 
Also, we let @{

p
a) designate the subclass of <3{

p
r) consisting of those regions 

whose boundary components are closed analytic Jordan curves. 
Let D G @{

p
r) and denote by H2(dD) the Hardy-Szegö space of D. This a 

Hilbert space of analaytic functions in D with the scalar product 

(/, g) = f Az)g(z)\dz\, (ll/ll2 = ( / , / ) < oo). 
J 3D 

The integration is carried over the boundary values of the analytic func
tions / and g (this refers to an arbitrary non-tangential approach). The 
space H2(dD) admits a reproducing kernel K(z, £) which is the classical 
Szegö kernel for D. 

According to the previously quoted result of Garabedian [1, p. 118], 
C(£) = 2icK& f) and F(z: © = K(z, Ç)/L(z, Ç). Here, L(z, Q is the 
adjoint kernel of K(z, £) satisfying the boundary relation 

(2.1) iK(z, &\dz\ = L(z, £)rfz, Ç G D, 

for almost all z e dD. Therefore, \F(z)\ = 1 for almost all zedD and, 
obviously, \F(z)\ < 1 throughout D. Moreover, the function 

(2-2) '(z, f) = Uz, £) - ^ ( ^ 4 y ) 

is antisymmetric and analytic for (z, Q e D x D. Also, for a fixed £ G D, 
(z - f)L(z, £) does not vanish in D and F(z) = F(z: £) vanishes at z = £ 
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and z = ô/Ê), 1 ^ j ^ p - L Here, 5 / | ) G A 1 1 / ^ - 1 , are the 
p — 1 (possibly repeated) zeros of K(z, £) and o/f ) are analytic in £ G 7). 

We have, of course, 

(2.3) /(f) = (/, * ( - , ?)) = f f(z)K(z7l)\dzl ç e D, 
JdD 

for e a c h / e H2(dD). Let {cj)n} be any orthonormal basis of H2(dD). Then 

(2.4) tf(z, f) = S MtynGY, z9$eD, 

where the bilinear sum on the right converges absolutely and uniformly on 
compacta of D. 

For practical computation of the kernel function by means of the bil-
linear expansion (2.4) we may assume, to avoid unessential difficulties, 
that D G @{

p
a\ 1 ^ p < oo. These smoothness requirements on dD can be 

relaxed considerably. For example, it is sufficient to require that each 
boundary component of D is of class piecewise-C1. Let rh .. ., rp be the 
boundary components of D, and let ay be a point inside the "hole" of D 
which is surrounded by T7,-. It is then well-known that the functions 
{(z — aj)~n}, 1 ^ j ^ p; n = 0, 1, . . . , span H2(dD). Moreover, when 
oo £ D we may take, say, ap = oo and thus (z — ap)~

n is replaced by zw 

(see, for example, [7, p. 372]). A standard application of the Gram-
Schmidt procedure on the above set of functions yields an orthonormal 
basis {$„}™=i of 7/2(9 7)), where we may also assume that <f>i(z) = d~1/2, d 
being the length of 3D. 

We conclude this section by observing the following simple proposition. 

PROPOSITION 1. Let z, £ G D. Then 

(2.5) f / f c ö Ä Ö | Ä | = - y - f -^f(T)\dtlfeH2(dD), 
JdD J-7Ü JdD t — Ç 

fl«<7 

(2.6) /(z, f) = - 1 f -j-l-e-Kiz, t)\dt\. 
J-7Ü JdD t — Ç 

Moreover, 

(2.7) tf(z, | ) = /-(Z, f) - (/(z, •), ' (? , 0) 

w/zere r(z, f) /s J/ze "geometric" kernel 

(2.8) ^{^^^L^. 

PROOF. For/G H2(dD) we have, in view of (2.1), 
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f L(t, ë)ffî\dt\ = i f f(t)K(t, l)dt = 0, 

and using (2.2), (2.5) follows. Putting/(f) = K(t9 z) in (2.5) and using (2.3) 
we deduce that 

and, since K(t9 z) is Hermitian, (2.6) follows. Next, putting f(t) = /(?, z) 
in (2.5) and noting that /(t9 z) is antisymmetric we obtain 

(/(z, .'),/& •))= f /(z, o^êroiAi 
J9£> 

= - f <U zYÏ£j)\dt\ 
JdD 

f -r-zr'Wt)\dt\ 
JdD * - z 2TT 

\dt\ 

2?r/ J 9D f — z 

= Az, ë - ^(z, f), 
where (2.1) and (2.2) have been used. This concludes the proof. 

COROLLARY 1. Let {<f>n}%Li be an orthonormal basis of H2(dD). Then, 
for z, f e D, 

'(z.ö-ZWöW*) 
»=1 

with 

and 

'^—TiLBi^ 

r(z, & - K(Z9 ?) = 2 **(*)*„«). 
»=1 

PROOF. This follows from (2.6) and (2.7). 

3. Error estimates. Let 
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and, write 

Rm(z, £) = K(z, f) - tfm(z, £) = 2 6,(2)6,(0 
M=m+1 

for the truncation error committed by the replacement of K(z, £) by its 
partial sum Km(z9 £); z, £ e Z>. Further, since 

/(Z) = ^-K-2Jlog K = Ä ^ Ä l o g AT; A: = A:(Z, Z), 

we let 

/w(z) = K-%dz\og Km;Km = KJz9 z). 

The main purpose of this section is to provide a bound for the error 
Sm(z) = J(z) — Jm(z) in computing J(z)9 z e D. A bound for the error 
Rm(z9 J) is by now classical and is due to Nehari (see, for example, [7, 
p. 392]). However, since, eventually, the computation of Sm(z) involves 
that of Rm(z9 z), we find it convenient to also provide here a somewhat 
different proof for Nehari's result. 

Evidently, the kernel 

(3.1) Q(z,Ç) = r(z9Ç)-K(z9Ç) 

is positive definite in D and so is the error kernel Rm(z, £). This leads to 
Nehari's estimate, namely, the following proposition. 

PROPOSITION 2. Let {(f>„}^Li be an orthonormal basis of H2(dD) and let 
z9ÇeD. Then \Rm(z9 f)l

2 ^ Rm(z9 z)Rm(Ç, f) and 

m 

(3 .2) RJz, z) S r{z, z) - £ [|«„(z)P + \Uz)H 
n=l 

Equality in (3.2) holds if and only if m = oo. 

PROOF. We have 

RJz9 z) = K(z9 z) - KJz9 z) 

= r(z9 z) - Q(z9 z) - Km(z9 z) 
oo 

= f(z, z)-Z Mz)\2 - Km(z, z) 

è riz, z) - 2 MW - Km{z, z) 

and the result follows. 
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We proceed now to obtain an estimate for Jm(z). For a positive C2 

function/(z), defined in an open subset of the plane, we define 

J(f)=f-2dMogfJ = f(z). 

clearly, for K = K(z, z) and Km = Km{z, z), z e A we have J(z) = J(K) 
and Jm{z) = J(Km). Let g(z) be another positive C2 function defined in 
the same open set as that of f(z). We first observe the following identity 
(see, for example, [6, p. 7]) : 

(3.3) fg(f + g)[(f + gfj{f + g)- pj(f) - gzj(g)] = \fdzg - gdjp. 

Pu t t i ng /= Aranci g = Rm, Rm = Rm{z, z) in (3.3) we deduce that 

J(K) - J(Km) 

= - [ 1 - (KJKW(KJ 

+ (RJK)V(Rm) + K-iR-iK-*\Kmd,Rm -RJJKJ*. 

Clearly, 

J(KJ = Km*[KmdzdzKm -\dzKJ-\ ^ 0 

and, similarly, 

J(Rm) = R-*[RMRm -\dzRm\*] ^ 0. 

Therefore, 

\J(K) - J(KJ\ 

^ [1 - {KJKf]J{Km) + (RJK?J(RJ 

+ 2K^Rm*K-*[Kl \dzRm\2 + Rl\dzKm\2] 

or 

\J(z) - JJz)\ g [1 - (KJKBK-3dzdzKm + K-*dzdzRm 

+ R-^K-\2KJK - D I M J 2 

+ K-i[2RJK< - K-\\ - (KJK?mtKJ2 

£ [1 - (KJKy]K-%dzKm 

+ K-*dzdzRm + KmRjK-HdzRm\z 

=S K-3K-*[K* - KUdzdzKm + 2K-%dzRm 

è 3K~3K-iRmdzdzKm + 2K-%dzRm. 

We are now in a position to state the following theorem. 

THEOREM 1. Let {&„}™=1 be an orthonormal basis of H2(dD) with ç^(z) = 
d~vz, where d is the length ofdD. Let z e D. Then 
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(3.4) |Sw(z)| = \J(z) - JJz)\ S d*QdRmd$JCm + 2dzdzRm\ 

where, 
m 

Rm = RJz, z) g r(z, z) - S [KW2 + I&COI2], 
n=l 

and 

dÂKm = 2 \<t>'n{zW 
n=l 

PROOF. We clearly have K ^ Km = S ? = i l ^ ) l 2 ^ ^_1- Therefore, 
using the above previous inequality, (3.4) follows. Next, since 

oo 

Rm = r(z, z) - S |a„(z)|2 - tfM(z, z), 
n=l 

we obtain 
_ _ oo m 

3Ä*„ = SÄA*. *) - s tówi2 - E iwi2 
w=l »=1 

and the theorem follows. 

Of course, once the orthonormal basis {<f>n} of H2(dD) is constructed, 
the invariant J(z) may be formed by elementary operations, where the 
truncation error is estimated via Theorem 1. For the actual computation 
of J(z) we may also use (3.1) and (3.3). In fact, let Q = Q(z, z) and T = 
r(z, z). By (3.1) r = Ô + ^ a n d therefore, by (3.3), we have 

J(z) = (r/Kyj(n - (Q\KfJ(Q) - -QPKÌ \QdzK - KdzQ\\ 

Here Q = g(z, z) = E%=i\an(z)\2 and T = r(z, z) is a geometric kernel as 
given in (2.8). 

4. Analytic capacity on annulus. Of particular interest, as far as problems 
of applications are concerned, is when D is a doubly connected region, 
i.e., when D e ££2- We shall assume that the modulus of D is r_1 so that 
D can be conformally represented as the annulus A = {z: r < \z\ < 1}, 
0 < r < 1. In this case we have at our disposal the theory of elliptic 
functions. Using this theory, we take o>i = %i and œ2 = l°g r a s hah°-
periods of the Weierstrass ^-function, 0>(u) = ^(w; o^, o)2)-

As usual, we set 0)3 = 0)! + œ2 and ey = ^(o);), j = 1, 2, 3. Now, on 
the boundary of the rectangle 0, %i, log r + ni, log r, ^(w) attains values 
increasing monotonically from - 00 to +00 and thus ex < e3 < e2. 
Further, for &> = 0>(u), we have 
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(4.1) (&'? = 40? - ex)(0> - e2)(0> - e3) = 4&* - g2& - g3 

and thus ex + e2 + e3 = 0, 

£2 = - 4 ( ^ 2 + ^ 3 + ^ 3 ) = 2(4 + e% + el), 

and g3 = 4é>
1e2e3. Consequently, <?! < 0, e2 > 0, g2 > 0 and 

(4.2) g2 - 12e| = -4(e 3 - etfes ~ e2) > 0 

Since the sequence {zn/[2n(l + f2w+1)]1/2}£L-oo forms an orthonormal 
basis for H2(dA), the Szegö kernel for A is given by 

K (z n- 1 v ( z ^ 

With the aid of this expression one can, of course, compute the adjoint 
kernel L(z, f) and, therefore, the Ahlfors function F{z: £) of A, by just 
appealing to (2.6). Now, using some known identities from the theory of 
elliptic functions, one can show (see [3]) that 

1 
(4.3) K\{z, | ) -H^ logzÊJû) ! , o)2) - e3}. 

4jr2z£ 

From (4.3) we obtain 

where ^ = 0>(u; a>i, co2) and u = log z£. Hence 

(4.4) 2dzdz log ^ ( z , f) = ^ r (&-e& 

Using (4.1), from which also follows that 20>" = 12^2 - g2, and (4.4) 
we deduce that 

1 
1 + JA(Z> £) = K2,z ex 323e l o 8 *^(z> £) = 4^2 | 

Finally, in view of (4.2), 

(g3 - ex)(e2 - g3) 

1 g2 - 12^1 
4 (0> - e3)2 J 

JA(Z, ê) = 4TT2 1 + 
[ ^ ( l ogz f ; û)!, û>2) - ^3]2J 

for z, £ e A and we note that JA(z) = /^(z, z) is the previously considered 
invariant of A. 

Let (0 = |z|, and hence p e (r, 1) for z e ^ . Evidently, JA(z) = /^(p) = 
JA(rjp), z e A, where 

• W = 4TT2| 

0>(2 log p) = ^ (2 log p; û)h o)2). 

1 4- (g3 - gj)(g2 - es) 
+ (^>(21ogp)-e3)2~ 
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From all these we easily obtain the following crucial theorem. 

THEOREM 2. The function JA(p) satisfies JA(p) > ATZ2 forpe(r, 1) and 
JA(r) = JA(\) = 47T2. Jt has only one extremal point in (r, 1). This extremal 
point is at \/r and it is a maximal point. The value of this maximum is 
given by 

ÄKV ' e2- e3 

Now, we observe that, as a function of r e (0, 1), 

L l o g r ) -« J _ l « „ ^ = e3 - e2 

,%i I e\ — e2 

where X(j) ; Im z > 0, is the familiar modular function. Further, using 
Jacobi theta functions notation (as found in [11, pp. 462-490]) we can 
write 

Q(r) = Wr) = 62(0, 4 ? = ^ log,) 
, r) J Km J .03(0: 

and, therefore, JA(\/r) = 4^2/g(r), r e (0, 1). 

5. Determination of the modulus. We proceed now to determine the 
modulus r~l of D e Q)2- The doubly connected region D is conformally 
equivalent to the annulus A = {co: r < \co\ < 1}, 0 < r < 1. We consider 
the invariant J(z) of D. Thus, in view of the conformai invariance and 
Theorem 2, we have 

(5.1) aD = max /(z) = JA{ <Jr\ 

Because of (4.5) and the monotonicity of Q(r) in r G (0, 1), the modulus 
of D is determined at once from equation (5.1). We can, however, say 
much more; namely, we will determine the modulus explicitly. 

We write ß = ßD = 4%2lccD and note that ß e (0, 1). Therefore, using 
(4.5) and (5.1), the determination of the modulus is reduced to solving for 
r G (0, 1) the classical equation 

(5.2) Q(r) = ß; ß = ßD G (0, 1). 

Following a familiar device due to Weierstrass [10, p. 276] (see also 
[11, p. 486]), this equation admits the unique solution 

oo 

(5.3) r = /•(£) = E Sn£in+1, 

where 
1 J _ (1 _ 5)1/4 
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The series in (5.3) converges for |e| g 1/2 and clearly, 

CO 

(5.4) 1 = 2 dH2-**-h 

T h e {<?M}^=0
 a r e weM determined positive integers (see [10, p. 276]) with 

d0 = 1, ox = 2, 02 = 15, ö3 = 150, <54 = 1707, 55 = 20,910, <?6 = 261, 
416, . . . . One also notes that the series (5.3) converges rapidly and that 
usually the first two terms of this expansion suffice (see [11, p. 486]). 

An estimate for the truncation error of the series (5.3) can be given as 
follows : 

co tn—\ co 

PJe) = 2 d„s^ - Z ône^ = S dne*»+i 
» = 0 w=0 n—m 

and using (5.4) we deduce that 

co tn—l 

PJe) S (2e)«»« 2 d„2-4»-i = (2e)*»+i[l - 2 W " * - 1 ] . 

All these lead to the following corollary to Theorem 2. 

COROLLARY 2. Le/ r_1 = Mod D, r e (0, 1), be the modulus of D e Q)2 

and let aD = maxzeZ)/(z), ß = ßD = 47zr2/a£>. TÄew ß e (0, 1) öwd 

( M o d ^ - i ^ S - j è r 
1 - (1 - /3)1/4l 4w+l 

1 + (1 - ß) 1/4 

where the ö„s are as before. The truncation error Pm(ß) of the above series 
satisfies 

1 - (1 - ,3)1'* 
0 < Pm(ß) i 1 Z J 94»+l 

«=0 A 1 + (1 - ß)Vi 
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