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EXAMPLES OF FIXED POINT FREE MAPS 
FROM CELLS ONTO 

LARGER CELLS AND SPHERES 

SAM B. NADLER, JR. 

ABSTRACT. Let n ^ 2. Let A and B be closed n dimensional balls 
in Euclidean space such that AC B and A # B. Two types of fixed 
point free maps, / and g, from A onto B are obtained—/ is space 
filling on 3/4, i.e.,f(dA) = B, and g preserves the boundaries of A 
and B i.e., g~l(dB) = dA. A fixed point free map from a Hilbert 
cube onto a larger Hilbert cube is obtained which preserves their 
pseudo-boundaries. Two fixed point free maps with special prop
erties from the bottom half of Sn onto the n sphere S", n ^ 2, are 
obtained. Under the first one the preimage of the North Pole is the 
Equator. Under the second one the preimage of the South Pole is 
the Equator and, in addition, the second one is monotone. In 
relation to these last two examples, the following theorem is proved. 
If K is a proper nonseparating subcontinuum of S2 and if / is a 
monotone mapping from K onto S2 such that/[Bd(A^)] <£ K, then 
/ has a fixed point. This theorem is compared with the Knaster-
Kuratowski-Mazurkiewicz fixed point theorem. 

1. Introduction. Any continuous function from an arc onto a larger arc 
has a fixed point. This simple observation leads to the following question. 
Does every continuous function from a ball in a Euclidean space onto a 
larger ball have a fixed point? In various papers, conditions have been 
imposed on mappings / from certain types of subcontinua of balls onto 
balls which imply that / h a s a fixed point (for example, see [1], [2], [4], [6], 
[9], [10]). However, there seem to be no examples in the literature to show 
that the question above has a negative answer. In this paper we give such 
examples. In addition to being continuous and fixed point free, our map
pings have certain special properties which lead to an example involving 
Hilbert cubes and some examples involving spheres. We then prove a 
fixed point theorem concerning the 2-sphere. This theorem is discussed in 
the light of our examples and a theorem in [6]. 
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2. Notation and terminology. We let Rw denote Euclidean «-space with 
its usual norm, ||x||n[2?=i *?]1/2 f ° r e a c h x = (*i> • • •» **) G Rn We let 
B" = {xeR«: ||JC||n g 1}, £»(1/2) = { X G R " : ||jc||n ^ 1/2}, S*-1 = {x e 
R«: ||jc||w = 1}, and S»-i(l/2) = {JCGR«: ||jc||„ = 1/2}. We let S» = 
{(*,)££ e 5«: xw+1 g 0}, 5^ = {(*,)£? e S": xw+1 £ 0), and En = {(x^i1 

e Sn: xn+l = 0}. The symbol Pn denotes the North Pole of S», i.e., Pn = 
(0., . . . , 0, +1), and then, of course, -Pn is the South Pole of Sn. By an 
n-cell we mean a space which is homeomorphic to Bn. If An is an «-cell, then 
dAn denotes the manifold boundary of An (i.e., dAn is the part of An which 
corresponds to Sn~l under a homeomorphism from An onto Bn). The 
symbol 2°° denotes the cartesian product of the closed interval [—1, +1] 
with itself countably many times (Q°° is assumed to have the product 
topology), ß°°(l/2) = { f c f e e ö 0 0 : - 1 / 2 S x{ ^ +1/2 for each i = 1, 
2, •. •}, Qn = {M£i G g00: x, = 0 for each i^n + 1), and ß~(l/2) = 
{(xf-)£ieô°°(l/2): xf- = 0 for each i ^ n + 1}. Any space which is 
homeomorphic to Q°° is called a Hilbert cube. The pseudo-boundary of ö°° 
[resp., of ß°°(l/2)] is denoted by bQ°° [resp., by iß°°(l/2)] and is defined to 
be all those points of Q°° [resp., of ß°°(l/2)] which have some coordinate 
= ±1 [resp., = ±1/2]. The symbol cl denotes closure. The symbol Bd 
denotes topological boundary. 

By a mapping we mean a continuous function. An onto mapping / : 
X -• Y is monotone provided that f~l(y) is connected for each y e Y. If 
/ : X -+ y is a mapping and if Z c X, t hen / |Z denotes the restriction of 
/ t o Z . 

3. Examples and a fixed point theorem. In (3.1) through (3.6) we give 
examples of fixed point free mappings. The first three examples involve 
«-cells. Then we give an example for Hilbert cubes and two examples 
concerning «-spheres. Our fixed point theorem is discussed after (3.6) and 
is stated and proved in (3.7). 

We begin with the following example of a general nature. 

EXAMPLE 3.1. Fix n ^ 2 and let K be any compact uncountable proper 
subset of Bn. We show that there is an onto fixed point free mapping/: 
K -> Bn such that/[Bd(#)] = Bn, where Bd(K) denotes the boundary of 
K in Bn [i.e., Bd{K) = K f| c\(Bn - K)]. To show this, first note that 
Bd(K) is uncountable (use [5, Cor. 2, p. 48] if K has nonempty interior). 
Hence, since Bd(K) is compact, Bd(K) contains a Cantor set C [7, Cor. 1, 
p. 445]. Let cÌ9 c2 G C such that cx ^ c2 and let p e (Bn — K) such that p, 
c1? and c2 are not collinear (this choice of p is possible since Bn — K is a 
nonempty open subset of Bn and n ^ 2). Then, there is an (n — l)-dimen-
sional hyperplane H in Rn such that p e H and such that, for each / = 1 
and 2, c{ G U{ where U\ and U2 are the two components of Rn — H. Clearly 
there are Cantor subsets C\ and C2 of C such that Q c Ui and C2 a U2. 
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Let Al = (U2 U H) fi B» and let A2 = (U± U H) f] B\ Since every 
compact metric space is a continuous image of a Cantor set [8, Cor. 3a, 
p. 23], there is a mapping fa from Ct onto At- for each / = 1 and 2. For 
each / = 1 and 2, extend fa to 0? : Ct {] (H Ç) K)-* A; by letting <j>f(x) = 
/? for each x e H f] K (note that, since H fi Q = 0 , 0f is an onto func
tion and is continuous). Note that 

Q u (H n *) <= A2 n *, c 2 u ( / / n ^ ) c A n ^ 
and that ^ and ^ 2 are each homeomorphic to Bn. Hence, by [7, Cor. 6c, 
p. 151], we can extend cjjf and fa% to mappings / : A2 Ç) K -> Ax and/-" 
A1 H K -* A2 respectively. Define/: K -+ Bnby 

Clearly, / is continuous. Since fa maps C, c Bd(#) onto y4f- for each 
/ = 1 and 2, we have that f[Bd(K)] = Bn. Finally, we see that / is fixed 
point free since f[H f| K] a {/?}, /? £ K, and, for each / = 1 and 2, 
/[£/,• PI K] = ft{Ui Ç]K] = A{ and £/, 0 ^ = 0 -

Let us note the following special case of Example 3.1. 

EXAMPLE 3.2. For each n ^ 2, there is an onto fixed point free mapping 
fn: Bn(l/2) -> Bn such that fn[Sn~l( 1/2)] = J5W. Hence, not only are there 
fixed point free mappings of balls onto larger balls, but also such mappings 
can be chosen to be space filling on the boundary of the smaller ball. 

In contrast to the space filling behavior of fn on SM_1(l/2) in Example 
3.2, we have the following example which shows that mappings can be 
fixed point free and yet preserve boundaries. 

EXAMPLE 3.3. We show that for each n ^ 2, there is a fixed point free 
mapping gn from B»(l/2) onto Bn such that g~l{Sn~l) = Sn-l(\ß). We 
first show that g2 exists. Let p e Sl(\j2) and q e S1 be the points given by 
p = ( -1 /2 , 0) and q = ( - 1 , 0). For each x e S^l/l), let Lx denote the 
convex arc (or point if x = p) in B2(l/2) from p to x. For each y G S1, let 
My denote the convex arc (or point if y = q) in B2 from q to y. Define an 
onto mapping/: S^l/I) -> S1 by the following formula. If x = (\j2)eid e 
S\\j2) where 0 ^ 0 ^ 2%, then 

fc^-hr), if 0 ^ 0 £ %\2 

(f(x) = L^-2Ö+3-), if ff/2 g 0 rg 3TT/2 

[ei<2o-3K)9 if 3^/2 ^ 0 ^ 2TZ;. 

Let F: B2(\/2) -+ i?2 be the mapping which, for each x e S^ l^ ) , sends Lx 

linearly onto Mf(x) with/? going to q, i.e., for each x G Sl(\/2) and 0 ^ I ^ 
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AX'X + [1 - X\.p) = X-f(x) + [1 - X].q. 

It is easy to verify that F is a fixed point free mapping from B2(l/2) onto 
B2; however, F^S1) * Sl(l/2) since F(t, 0) = q for each (t, 0) e 52(1/2). 
To correct this deficiency and obtain our desired mapping g2, let 

V = mf{\\F(z)-z\\:zeB2(\/2)}. 

Note that rj > 0 since F is fixed point free and B2(l/2) is compact. Let 
u: B2 -> [1 - ç/2, 1] be a mapping such that irl(l) = Sl(l/2). Now, let 
g2(z) = u(z)-F(z) for each z e 52(1/2). Clearly, g2 is a continuous function 
from 52(l/2) into 5 2 . By using the geometry of Fand its linearity on each 
Lx, it follows that g2 maps 52(l/2) onto B2. Since vr\\) = ^ ( l ^ ) , it 
follows that g2\S

l) = 51(l/2). To see that g2 is fixed point free, suppose 
that g2{z) = z for some z e 52(l/2). Then 

||F(z) - z|| = \\F(z) - g2(z)\\ = \\F(z) - u(z).F(z)\\ 

= [1 - t/(z)] ||F(z)|| ^ 1 - t/(z) ^ 9 /2. 

Hence, since 97 > 0, ||F(z) — z|| < 97 which contradicts the definition of TJ. 
Thus, g2 is fixed point free. This completes the proof that g2 has the desired 
properties. We now show that gn exists for each n > 2. Let A be a homeo-
morphism from Q? onto B2 such that A[ßg°(l/2)] = 52(l/2). Let 

G2 = A-iog2o(A|ß?(l/2)) 

and note that G2 is a fixed point free mapping from ß2°(l/2) onto Q^ such 
that G2\dQf) = 3ß?(l/2). For each x = (x,-)£i e ß°°(l/2), let 

Gooix) = G2(xl9 x2, 0, 0, . . . ) + (0, 0, 2x3, 2x4, . . .). 

The formula above defines an onto continuous function G^: Q°°(l/2) -• 
ß°°. Since G2 is fixed point free, it follows using the formula for G^ that 
G°° is fixed point free. Choose and fix n > 2. Let Gn = Goo|ß~(l/2). Recall 
that G2 maps Q?(l/2) onto ß ^ and that G2\dQ%) = 3ß2

X3(l/2). Hence, 
using the formula for G^, it follows easily that Gn maps ß£°(l/2) onto Q™ 
and that G~\dQ^) = 9ß^(l/2). Let & be a homeomorphism from 5« onto 
ß ~ such that k[B»(l/2)] = ß~(l/2). Let 

gw = ^-ioGwo(/:|5«(l/2)). 

Then, it follows from the properties of Gn that gn is a fixed point free 
mapping from 5"(l/2) onto Bn such that g-\Sn~l) = S»-i(l/2). This 
completes Example 3.3. 

In the example above we showed that there are fixed point free mappings 
from «-balls, « ^ 2 , onto larger «-balls which preserve their boundaries. 
Let us note the corresponding fact about Hilbert cubes and pseudo-
boundaries. 
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EXAMPLE 3.4. There is a fixed point free mapping G^ from g°°(l/2) 
onto Q°° such that G^{bQ°°) = bQ°°(l/2). As is easy to see, the mapping 
G°° defined in the proof in Example 3.3 has these properties. 

Now we give our two examples involving spheres. In the first one we 
obtain a fixed point free mapping from the bottom half of Sn, n ^ 2, onto 
Sn such that the preimage of the North Pole is the Equator (comp., Exam
ple 3.6 and Theorem 3.7). 

EXAMPLE 3.5. For each n ^ 2, there is a fixed point free mapping kn 

from Si onto Sn such that k^P^ = En. This easy to see by using the 
mappings gn in Example 3.3 (and by using the fact that Sn is the quotient 
space obtained from Bn by shrinking the boundary of Bn to a point). 

We mention the following generalization of Example 3.5. Many spaces 
of interest, including some manifolds, are quotient spaces of Bn(n ^ 2) 
obtained by identifying certain points of Sn~l. Let Z be such a space and 
let v\ Bn -> Z denote the quotient map. Then, as in Example 3.5, we can 
find fixed point free mappings / from certain «-cells An c Z onto Z such 
that/~1(v[5B"1]) = dAn. The reader may wish to examine this in the special 
case when Z is real projective 2-space (the space obtained from B2 by 
identifying x with — x for each x e S1). In connection with this, recall 
that real projective 2-space has the fixed point property [3, p. 31]. 

By replacing the North Pole in Example 3.5 with the South Pole, we can 
find fixed point free mappings which are monotone (comp., Theorem 3.7): 

EXAMPLE 3.6. For each n ^ 2, there is a fixed point free monotone 
mapping (Jjn from Si onto Sn such that ^ \ — Pn) = En. To show this, 
fix n à 2. Define an: Si -> S$ by letting an{x) = — x for each x e Si. 
Let Àn : S+ -» Sn denote the mapping which stretches S$ onto Sn by doubl
ing the angle each vector v e S^ makes with the vector Pn. Let ^M = Xn o an. 
It follows easily that <J)n has the desired properties. We remark that for the 
case when n — 1, the procedure above gives a fixed point free mapping 
(J)i from SL onto Sl such that $ï\ — P{) = £i . Note that 0! is not mono
tone. In fact, there is no monotone mapping from SL onto 5 1 since the 
monotone image of an arc is an arc [11,1.1, p. 165]. 

In Theorem 3.7 we give a fixed point theorem for monotone mappings 
of nonseparating proper subcontinua of S2 onto *S2. First, a brief discus
sion is appropriate. 

The following theorem was proved in [6, p. 136] : Iff: Bn -• Rn is a map
ping such tha t /maps the boundary Sn~l of Bn back into Bn, then / h a s a 
fixed point. We see from Example 3.6 that this theorem's analogue for 
mappings of «-cells onto Sn is not valid even when the mappings are 
monotone. In fact, the "opposite" hypothesis concerning the boundary is 
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needed; namely, Theorem 3.7 will show that fixed points exist for mono
tone mappings of 2-cells onto S2 when the mapping sends a boundary 
point to a point outside the 2-cell. With respect to the condition of mono-
toneness, the reader should compare Theorem 3.7 with Example 3.5. 

We will prove Theorem 3.7 by using the following special case of a 
result in [9]. If M is a compact subset of B2 such that M does not separate 
R2 and if g is a monotone mapping from M onto B2, then g has a fixed 
point. More general results than those in [9] are in [10, 3.2 and 3.4]. 

THEOREM 3.7. Let Kbe a compact connected proper subset ofS2 such that 
K does not separate S2. Iff is a monotone mapping from K onto S2 such 
thatf(x0) $ Kfor some point x0 e Bd(AT), then f has a fixed point. 

PROOF. Let y0 = f(x0). Since y0 <£ K, it follows from the assumptions 
about K that there is a 2-cell A2 in S2 such that K a A2 and y0 £ A2. Let 
M = f~\A2) and let g = f\M. Since / is a monotone mapping from K 
onto S2, it follows easily that g is a monotone mapping from M onto A2. 
Hence, once we show that M does not separate S2, we can apply the result 
in [9] stated above to see that g (thus/) has a fixed point. Suppose that M 
separates S2. Then, there exists a component U of S2 — M such that 
y0 £ U. Since S2 — K is a connected subset of S2 — M and since yQ e 
(S2 - K) and yQ $ U9 it follows easily that U c K. In particular, U f] K ^ 
0 . Thus, there exists a point z 0 e S 2 such that /_1(zo) fi U ^ 0 . Let 
W = S2 - A2. Since 

U a S2 - M = S2 - f-\A2) 

and s ince/" 1^) fi U^ 0,zQe W and we have that (i) f-\ W) {] U * 0 . 
Since xQ G Bd(K) and since U is an open subset of S2 such that U a Ky 

it is clear that x0 $ U. Also, since y0e Wand x0ef-l(y0), x0ef-l(W). 
Thus, ( i i ) / - i (00 f] (S2 - U) ^ 0. Since 

f-i(W) =/-1(^2) -f-\â2) = K-M, 

we have that (iii) f~\W) <=. (S2 — M). Note that W is connected (use 
[8, Thm. 9, p. 475]). Hence, by the monotoneness of/and [11, 2.2. p. 138], 
(iv)/ -1(W0 is connected. By (i) through (iv) we have a contradiction to 
the fact that U is a component of S2 — M. Therefore, we have proved that 
M does not separate S2. This completes the proof of Theorem 3.7. 
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