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TANGENT BUNDLE CONNECTIONS 
AND THE GEODESIC FLOW 

CARMEN C. CHICONE 

1. Introduction. If M is a Riemannian manifold there are several ways to 
induce a pseudo-Riemannian metric on the total space TM of the tangent 
bundle of M ([10], [12]). The present paper is concerned with the use of 
these natural structures to study the geodesic flow on the unit sphere 
bundle of M. 

Our point of view is to study the dynamical properties of the geodesic 
flow in terms of certain spectral properties of the operator, "Lie differ­
entiation in the direction of the geodesic vector field," defined in an 
appropriate space of sections. This operator decomposes into a sum of 
operators, one of which is the covariant derivative associated with the 
tangent bundle connection defined by an induced pseudo-Riemannian 
metric on TM, and the spectral properties follow from this decomposition. 

In §2 and §3 we collect notation and previous results. §4 contains the 
decomposition of the Lie differentiation operator. The final sections, 5 
and 6, contain the applications. In particular, we prove that the geodesic 
flow in the unit tangent bundle of a compact manifold of constant negative 
curvature is infinitesimally ergodic. 

2. The geodesic flow, spaces of sections and the adjoint representation. 
Let M denote a smooth compact connected Riemannian manifold with 
metric tensor g. The geodesic flow Gt on the unit tangent bundle TXM 
generates the geodesic vector field X which has local form 

X(x, v) = (x, v, v, - r(v, v)) 

where (JC, V) e TXM and T is the vector valued bilinear form defined by the 
Levi-Civita connection. 

If Tit: T2M -> TM dedotes the derivative of %\ TM -> M we have the 
familiar commutative diagram of bundle maps : 

Tit 

T2M 'TM 

KTM\ lie 

TM—1—>M 
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In naturai coordinates, if (x, v, u, w) e J^M, then Tiz(x, v, u, w) = (x, u). 
The kernel of Tic on each fiber defines the vertical subbundle of T^M. 
Using the Levi-Civita connection define also the connection map K: 
T2M -> TM given by K(x, v, u, w) = (x, w + F(u, v)). The kernel of K 
on each fiber defines the horizontal subbundle of T2M. Moreover, the 
bundle map F:T2M -+ TM ® TM given by F(Â) = (TTU(A), K(A)) de­
fines an isomorphism of vector bundles: 

T2M-L^TM 0 TM 

%TM 

TM 

Identifying the image of T% with the horizontal subbundle and the image 
of K with the vertical subbundle decomposes T2M into horizontal and 
vertical components and provides TM with the Sasaki metric ([10]) given 
by 

S(A, B) = g(T7cA, T%B) + g(KA, KB). 

The geodesic vector field X generates a line bundle [X] over TXM. UE 
denotes the orthogonal complement of [X] in T(TXM) with respect to the 
Sasaki metric, then T{TYM) is isomorphic to E 0 [X]. 

PROPOSITION 2.1. If A is a vector field on TM given by A(v) = (v, <z(v), 
b(v)) in horizontal and vertical components, then A is a section ofE-+ TXM 
if and only if g(a, v) = 0andg(b, v) = 0. 

PROOF. See [8]. 

Since TXM is compact, the space C°(E) of all continuous sections of E 
has the structure of a Banach space with norm 

MU = s u p { 5 ^ , ^ ) 1 / 2 | v e r 1 M } . 

Also, Gt preserves a volume which defines a Borei measure n on TXM and 
hence an inner product on C°(E) given by 

(A, By=( S(A, B)du. 
JTiM 

This inner product extends naturally to all complex sections of E and de­
fines a pre-Hilbert space structure whose completion is the Hilbert space 
H°(E) of all square integrable sections. In the standard manner (see [3] 
for details), one defines, for r > 0, Hr(E), the Sobolev space of all sections 
of E with r square integrable derivatives in H°(E). Finally, define H~r(E) 
to be the dual space of Hr(E). 



TANGENT BUNDLE CONNECTIONS 307 

3. The adjoint representation of G> For a vector field A on TXM define 
Ati the adjoint representation of Gt, by AtA = TG„t ° A o Gt where JG> is 
the derivative of Gt. We view At as a group of transformations in the 
various spaces of sections. For the definitions and standard theorems of 
semi-group theory see [2] and [5]. In particular, we state the following 
theorem. 

THEOREM 3.1. IfT(t) is a strongly continuous semi-group of bounded linear 
operators in a Banach space B {strongly continuous means lim,_01| T(t)x 
— x\\ = Ofor all x e B), then the infinitesimal generator A defined by 

Ax = l im-J-WO - I)x 
Â-o n 

is a closed linear operator in B with dense domain. 

For the 1-parameter group At we have the following proposition. 

PROPOSITION 3.2. In C°(E) or Hr{E) 

(a) At is a strongly continuous group of bounded operators, and 
(b) The infinitesimal generator Lx of At is the closed extension of the 

operator given by Lie differentiation in the direction of the geodesic vector 
field. 

PROOF: (a) is proved for C°(E) in Ôtsuki [8]. The proof of part (a) for 
Hr(E) is standard and left to the reader. 

Part (b) follows from theorem 3.1 and the definition of Lie differentia­
tion: 

LXA = lim — (TG.t o A ° Gt - A). 
*-o t 

The spectral properties of the adjoint representation reflect important 
dynamical properties of the flow Gt. In particular, recall the definition of 
an Anosov flow. 

DEFINITION 3.3. A flow Gt on a manifold M is called an Anosov flow if 
there is a continuous splitting of the tangent bundle TM = Es ®EU ® [X] 
such that 

(a) [X] is the line bundle generated by the tangent field to the flow Gt, 
(b) Es and Eu are TGt invariant subbundles, and 
(c) for some Riemannian metric || || on M there exist positive constants 

c and w so that for t ^ 0 

|| TGtA || ^ C er« \\ A \\ for all A e E; and 

IITG.^H ^ C e-** \\A\\ for all A e E». 
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Also, if T is an operator in a Banach space B, the spectrum a(T) of 
T is the set of complex numbers À for which the resolvent R(À, T) = 
(ÀI — T)~l does not exist as a bounded operator. With these definitions 
we state the first theorem of the subject. 

THEOREM 3.4. (Mather [7], Ôtsuki [8]). The geodesic flow Gton TXM 
is Anosov if and only ifa(Ai) lies off the unit circle for At considered as an 
operator in C°(E). 

4. Decomposition of Lx. Since formally At = exp(tLx), the spectral 
analysis of At is closely related to that of Lx. While this fact is the motiva­
tion for this section, our purpose is to provide a general setting for studying 
operator theoretic questions related to both of the operators At and Lx. 
Specific application of the results of this section will be made in §5 and §6. 

In order to study the operator Lx we take advantage of the differential 
geometric structure associated with a Riemannian metric. Whenever V 
is a covariant derivative Lx — V z is a vector valued tensor. We exploit 
this fact by making a judicious choice for the covariant derivative on TM. 

DEFINITION 4.1. If (M, g) is a Riemannian manifold with the tangent 
bundle % : TM -> M and connection map K: T2M -> TM, then the Vilms 
metric ([12]) V on TM is the pseudo-Riemannian metric given by 

V(X9 Y) = g(T%X, KY) + g(KX, TTZY). 

THEOREM 4.2. If^is the Levi-Civita connection for the Vilms metric 
V, X(x, v) = (x, v, u, w) and Y(x, v) = (x, v, a, ß) are vector fields on TM 
represented in natural coordinates and V x 7 = XY + P(X, Y), then P is the 
symmetric vector valued tensor defined by 

r<Xl0)«u> w), (a, |8)) = (TXa, u), DJ^a, u)v + Tx(a, w) + Tx(ß, ti)) 

where VMv = T(u, v) is the Levi-Civita connection associated with the metric 
g on M, XY and uv denote the vector directional derivatives and D1 denotes 
the derivative with respect to the manifold variable "x". 

PROOF. See Vilms [12]. 

THEOREM 43. If X is the geodesic vector field and Q = Lx— Vx then 0 is 
the vector valued tensor represented in horizontal and vertical components by 

X,V~\Rx(-,v)v 0 / 

where I is the n x n identity matrix and R is the Riemann curvature tensor 
associated with g. 

PROOF : By the definition of Q 
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Q(Y) = LXY - VXY 

= XY - YX - XY - P(X, Y) 

= - YX - P(X, Y). 

To express Q in horizontal and vertical components apply the change of 
coordinates F: T2M -> TM © TM. For this let Y be expressed in hor­
izontal and vertical components as Y(x, v) = (x, v, a, b) and compute 
FQF-KY). 

FQF-\Y) = FQF-\x, v, a, b) 

= FQXtV{a, b - rx(z,v)). 

Using Theorem 4.2 the definition of directional derivative compute 

-P(X, Y) = (-rjia, v), - rx{b - rx(a, v), v) 

- DJ M v)v + rx(a, rx(v, v))) 

= i-rja, v), - rjb, v) + rx(rx(a, v), V) 
- Drrx{a, v)v + rx(a, rx(v, v))) 

and 

-YX=(-b + rx(a, v), DJJv, v)fl + 2 / \ 0 - ^ (a , v), v)) 

= (-b + / \ (a , v), A ^ v , v)a + 2rx(b, v) - 2/^(/%(a, v), v)). 

Then, 

ö(y) = - rx - f(A-, r) 
= ( - è , / ^ ( v , v)« - DJXa, v)v + rx(b, v) + r/a, / \(v, v)) 

- rx(rx(a, v), v». 
Hence, 

FQ(Y) = (-b,DJJy, v)a - Dxrx(a, v)v + rx{a, / > , v)) - T 1 ^ / 1 ^ , v)v)) 

= ( -e ,* , (a ,v)v) . 

Let X denote either C°(is.) or H°(E) and define an indefinite innerproduct 
onXby(Y,Z) = $TlMV(Y,Z)dM. 

THEOREM 4.4. Q extends uniquely to a bounded operator on •£ such that 
V(QY, Z) = V(Y, QZ)for all Y and Z in X. Also, (ÛY, Z) = (Y, QZ). 

PROOF. If A e C$(E) is given by A(x, v) = (x, v, a, ft) in horizontal and 
vertical components, then by proposition 3.1 g(a, v) and g(b, v) vanish. As 
0(A) = (-b, Rx(a, v)v), Q(A) e CftE) if and only if g(Rx(a, v)v, v) = 0, 
but this follows immediately from the classical symmetries of the Riemann-
Christoffel curvature tensor. This proves that Q(C%(E)) <= C$(£). 
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For Ye C°(E) let Y = A + iB and define QY = QA + /OB. Clearly 
QC°(E) e C°(£). Since £?is tensorial and 7\Af is compactais continuous 
on C°(E). Moreover, the estimate 

<QY9 r> = f S(QY9 QY)dfi 
JTiM 

^ sup S(QY9 OY) • / ^ M ) 
TiM 

implies that Q is bounded on a dense subset of H°(E). Hence, Q extends 
uniquely to a bounded operator on H°(E). 

For the second assertion, let A(x, v) = (x, v, a, b) and B(x, v) = 
(x, v, c, d) be elements of C$(E) expressed in horizontal and vertical com­
ponents. Again, from the classical symmetries of the Riemann-Christoffel 
curvature tensor we have g(R(a9 v)v, c) = g(a, R(c9 v)v). Now compute 

V(QA, B) = g(-b9d) + g(R(a9 v)v, c) 

= g(b9 -</) + g(a9 R(c9 v)v) 

= K(^, 02*). 

Integrating the equality over TXM yields (fl^, 5) = (A9 QB) and the same 
equalities hold for A9 B e X by linearity. 

LEMMA 4.5. If X is the geodesic vector field and f is a function on T\M9 

then \nMXfdfJi = 0. 

PROOF. By definition Xf(p) = limÄ_0 llh(f(Gh(p)) - f(p)). In view of the 
compactness of TXM the Lebesgue dominated convergence theorem gives 

f Um-]-(ßGh(p)-Ap))d/i 

= lim \~ ( f f{Gh(p))dix - f /(/>)</A 

Since fx is G, invariant, $TiMf(Gh(p))dfJi = i^iafd/JL and therefore, 

Although V is the Levi-Civita connection for the Vilms metric, the next 
theorem shows that the operator Vx behaves well with respect to the 
Sasaki metric. 

THEOREM 4.6. Vx extends to a densely defined closed operator on X such 

that<yxY9zy= -<r,vxz>. 
PROOF. By proposition 3.2 and theorem 4.4, Lx — Q extends to a dense­

ly defined closed operator on ï , hence Vx has the same property. 
To obtain the second assertion we first show XS(Y, Z) = S(VXY9 Z) 

file:///nMXfdfJi
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+ S(Y, VXZ) when X is the geodesic vector field. If V denotes the Levi-
Civita connection on TXM for S, Vilms [12] proves 

fi(,.,)(y,Z) = V r Z - %Z 

= -j(R(KY, V)TTÜZ + R(KZ, V)TTCY)" 

+ -j(R(v, T%Y)T%Z + i?(v, T%Z)T%YY 

where / / and K denote the horizontal and vertical lifts. When X(x, v) = 
(x, v, v, — r(v, v)) and Y(x, v) = (x, v, w, w) compute 

B(X, Y) =±(R(w9 v)v + Ä(A«, v), v)v, Ä(v, i/)v) 

expressed in horizontal and vertical components. Since V is the Levi-
Civita connection for 5, we have XS(Y, Z) = S(VX, Z) + S(Y9 VXZ). 
Hence, XS(Y,Z) = S(VXY, Z) + S(Y, VXZ) will follow at once provided 
E = S(B(X, Y), Z) + S(Y, B(X9 Z)) = 0. Using the definition of S we 
obtain for Z(x, v) = (x, v, a, ß) 

E = (g(R(w, v)v, a) + g(w, R(v, a)v)) 

+ (g(R(r(u, v), v)v, a) + ^ ( w , v), R(v, a)v)) 

+ (g(Ä(v, i*)v, jS) + g(«, tf(/3, v)v)) 

+ (g(R(v, u)v, r(oc, v)) + *(w, Ä(A«, v), v)v)). 

Using the symmetries of the Riemann-Christoffel curvature tensor, the 
terms cancel in pairs as indicated by the parentheses. 

By the lemma [TlM XS(Y, Z)d/x = 0 and therefore <V x r , Z> + 
<7,VXZ> = 0. 

5. Curvature and the H° spectrum of Lx. In this section we make a 
preliminary application of the decomposition of Lx. As we have seen, the 
Anosov hyperbolicity condition is equivalent to the C° spectrum of At 

being disjoint from the unit circle. It follows easily that the C° spectrum 
of Lx is disjoint from the imaginary axis. We will show that when the 
sectional curvature is negative, the H° spectrum of Lx is disjoint from the 
imaginary axis. 

In view of theorem 4.3, V x is skew symmetric in H°(E) and, in fact, 
generates a one parameter group of unitary transformations given by 
parallel transport along geodesies. By Stone's theorem <J(VX) is pure 
imaginary. Hence, we have the following theorem. 

THEOREM 5.1. cr(Vx)/br V x considered as an unbounded operator in 
H°(E) is pure imaginary. 
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To compute the spectrum of Q we first prove the following lemma. 

LEMMA 5.2. If M is a manifold of negative curvature, then V(QY, Y) ^ 0 
for all Y e C°(E) with equality if and only ifY=0. 

PROOF: AS usual let A e C$(E) with A(x, v) = (c, v, a, b) in horizontal 
and vertical components. We have 

V(pA9 A) =g(-b,b)+ g(R(a, v)v, a) ^ 0 

with equality if and only if A = 0. For Y = A + iB compute 

V(QY, Y) = V(QA, A) + V(QB, B) + i(V(QB, A) - V(B, QÄ)) 

= V(QA, A) + V(QB, B). 

Hence, the result follows for Ye C°(E). 

THEOREM 5.3. If M is a manifold of negative curvature, then a{0) consists 
of nonzero real numbers. 

PROOF. The theorem follows immediately from Theorem 4.4 and Lem­
ma 5.2. 

With the structure of Vx and Q provided by the theorems of this section 
consider an analogous situation given by the following example. 

EXAMPLE 5.4. Let C(Sl, C) be the collection of continuous functions on 
the unit circle and let a denote an element of C(Sl, C) with real range. 
Define f o r / e C(Sl, C) an operator L given by Lf = V / + Of where V / = 

/ ' and Of = af If Lf = If for f * 0, then 

i C2* 1 C2* 1 C2* 
* = V - 1 f'lfdd + -4-\ add = iN + V - fl</0 

2TC Jo 2% Jo 2^ Jo 

for some integer TV. Hence, tf-(L) = <j(V) + Average <?(ö). 

This example motivates the next definition. 
DEFINITION 5.5. If M is a Riemannian manifold, the H° curvature of 

M, K0(M) is defined by K0(M) = sup r e ß(ßF, F) where B is the unit 
ball in H\E). 

PROPOSITION 5.6. If M is a Riemannian manifold of negative curvature, 
then K0(M) < 0. 

PROOF. The sectional curvature p of each tangent two plane is bounded 
above by zero. Since M is compact, there is a real number ô such that 
p < ö < 0 for each tangent two plane. For A G C%{E) we have 
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V(QA, A) = -g(b, b) + g(R(a, v)v, a) 

= -g(b, b) + p(a, v)(g(a, a)g(v, v) - g(a, v)2) 

= -g(b, b) + p(a, v)g(a, a) 

< -g(b, b) + dg(a, a) 

i -min( l , \Ö\)S(A,A). 

Hence, (QA, A) < -min( l , \5\) • <^, ^>. 
Now, if YeC°(E) and F = A + /£, then as before V(QY, Y) = 

K(fl,4, ^) + K(fl£, £) and therefore 

(fly, r ) < - c 2 « ^ , Ay + <*, 5 » 

= -C\Y, r>. 

Since H°(E) is the completion of C°(£) in the metric given by < >, the 
same inequality holds for YeH°(E) and then K0(M) < — c2 < 0 as 
required. 

We now present the main theorem in abstract form. Our theorem shows 
that the decomposition Lx = V x 4- fl is analogous to the decomposition 
of a complex number into its real and imaginary parts. 

THEOREM 5.7. Let (H, < » be a Hilbert space, A a bounded self-adjoint 
operator H with a bounded inverse and define (x, y) = <x, Ay) for x, y, e H. 
IfL = iD + B where 

(a) D is a closed densely defined operator on H such that (Dx, y) = 
(x, Dy)for all x, y in the domain ofD, 

(b) B is a bounded operator on H such that (Bx, y) = (x, By) for all x, 
y e H, and 

(c) supll;C|l=1(j3x, x) < 0, 
theno(L) Ç] {ifljSeR} = 0 . 

PROOF. The identity (x, y) = <x, Ay} = (Ax, y} = (y, Ax} = (y, x) 
proves (x, x) is real and (Bx, x) = (x, Bx) = (Bx, x). In particular, the 
supremum in (c) is taken over a set of real numbers. Set T = ißl — Land 
assume there is a sequence xn in //such that | | x j = 1 and lim^oo Txn = 0. 
The Schwarz inequality yields 

\(Txn, xn)\ = |<rxw, Axny\ fk \\Txn\\ -MU 

and therefore limM_oo(rxw, xn) = 0. Since (Txn, xn) is a sequence of com­
plex numbers, the sequence of real parts must also converge to zero. As 

(Txn, xn) = iß(xn, xn) - i(Dxn, xn) - (Bxn, xn) 
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and (xn, xn), (Dxn, xn) and (Bxn, xn) are real, the real part of (7xw, xn) is 
-(Bxn,xn). Since \\xn\\ = 1 

lim (Bxn, xn) ^ sup (Bx, x) < 0 
n-+oo 11*11=1 

and this contradicts limM^00(Jöx„, xn) = 0. Hence iß does not belong to the 
continuous spectrum of L. By choosing the sequence xn = x the same 
argument implies Tx = 0 for \\x\\ = 1 is impossible, and therefore iß 
does not belong to the point spectrum of L. 

For the residual spectrum notice that the pairing (,) identifies H and H* 
with a conjugate linear isomorphism which represents the adjoint of L 
as — iD + B = L*. The standard fact that a point in the residual spectrum 
of an operator is a point in the point spectrum of its adjoint translates 
into X in the residual spectrum of L implies I in the point spectrum of L*. 
But, if iß belongs to the point spectrum of L* there is an x in H such that 
||JC|| = 1 and 

iß(x9 x) + i(Dx, x) — (Bx, x) = 0. 

Since (Bx, x) < 0, we again have a contradiction. 

In view of the theorem we have the following interesting results. 

THEOREM 5.8. IfKQ(M) < 0, then a(Lx)for Lx considered as an operator 
in H°(E) lies off the imaginary axis. 

COROLLARY 5.9. IfK0(M) < 0, then the geodesic flow is Anosov. 

PROOF: See [1]. 

6. Infinitesimal ergodicity. In this section we study the operator At on 
the Sobolev space Hl(E). 

DEFINITION 6.1. The flow Gt is infinitesimally ergodic if the operator 
At — /, for fixed t > 0, has dense range as an operator on Hl{E). 

DEFINITION 6.2. The flow Gt is ergodic if the only L2-functions / for 
which/o Gt = / a r e constants. 

The concept of infinitesimal ergodicity was introduced by J. Robbin 
[9] for discrete dynamical systems. We next prove the analogue of his 
theorem in the flow case. 

THEOREM 6.3. If Gt is infinitesimally ergodic, then Gt is ergodic. 

PROOF. Assume / e L?(TXM) and Gff = / H~l(E), the dual space of 
HX(E), may be represented as the space of H~l 1-forms which are 
complementary to the flow field X, i.e., 1-forms a such that a{X) = 0. 
With this representation the adjoint of At is Gf the pull back operator 
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on forms. As Gff = / , we have df = Gf df with dfe H~\E). Since At—I 
has dense range, Gf — I has no kernel and df = 0. Hence, / is constant 
almost everywhere. 

For the remainder of this section assume that M is an «-dimensional 
Riemannian manifold with constant negative curvature k. In this case, 
the curvature tensor R has the form 

R(a, v)v = k(g(v9 v)a - g(v, a)v). 

Hence, the operator Û expressed in horizontal and vertical components 
is given by 

\kl 0) 

The operator Vx generates a 1-parameter group Pt which operates on 
vector fields by parallel transport. In particular, the value of Pt on a 
vector field A dit the point (x, v) e TXM is the parallel transport of the 
vector A at Gt(x, v) along the curve Gs(x, v) to the point (x, v). 

The key observation for the analysis to follow is the obvious fact that 
the operators V x and Q commute when the curvature is constant. Ex­
ponentiation of the generator Lx yields 

At = Pt exp(f 0) = Qxp(tQ)Pt. 

Each fiber of E splits as the direct sum of the two eigenspaces of û 
corresponding to the eigenvalues ±a where a = (— k)l/2. In fact, this 
is the Anosov splitting E = E+ © E~. Clearly, each summand is preserved 
by the operators Lx, ^x a n d Q> The space Hl(E) splits into a direct sum 
of subspaces Hl(E+) © Hl(E~) and each operator is represented on the 
splitting as a direct sum of operators. We have the equalities QA = —aA 
for A 6 E+ and QA = aA for A e E~. 

THEOREM 6.4. The geodesic flow Gt is infinitesimally ergodic. 

PROOF. The H1 norm for A e Hl(E) is given by 

Mil? = \\A\\l + \\DA\\l 

where D denotes the derivative and the norms on the right are taken, 
respectively, in H°(E) and H°(TE). Assume for the moment the estimates 

(6.5) e-*«* \\DAU ^ \\DPtAU ^ <*« \DA\%. 

Now, choose A e Hl(E+) and compute 

\\AtA\\\ = ||P,exp(/flM||g + \\exp(tQ)DPtA\\l 

file:////DAU


316 C. C. CHICONE 

By theorem 4.6, Pt is unitary on H°(E) and therefore 

\\P,exp(tQ)A\\l£e-*«\\A\\l 

For the second term we have 

||exp(tó)Z)/V4||2o g er*« \\DPtA\\l ^ \\DA\\l 

Combining these estimates we obtain the strict inequality M^| | f < \\A\\\ 
for A e H1(E+). In a similar manner one shows ||/^4||? > \\A\\\ for 
A G H\E-\ 

If At — I fails to have dense range on Hl{E+), there is an element 
A e Hl(E+) orthogonal to the range. In particular, {(At — I)A, A\ = 0. 
This leads to a contradiction 

Mil? = (AtA, A \ tk iM^lliMlli < Mil?-
A similar argument shows At — I has dense range on Hl(E~). Hence, 
the proof will be complete when 6.5 is established. 

Each point p e TXM is contained in a chart U which admits In — 1 
vector fields Hï which are linearly independent at each point of U and 
parallel along the Gt orbits in U. By the compactness of TXM there is a 
t > 0 such that each point p admits a chart with the additional property 
that(7s(/?)e C/forO ^ s è t. 

Let A be a vector field and observe that on U A = TifiHi for some 
choice of functions F = (fl9 . . . , / 2«-i)- Clearly, the parallel transport 
is represented by 

PtA=X(ftoGÌHi = FoGt 

for points sufficiently close to p. At these points the derivative DPtA is 
computed as DPtA = DF o TGt. Also, 

TG_t oAoGt = Qxp(tQ)Fo Gt 

and it follows that near /?, TG_t is represented as exp(7£?). Hence, we 
obtain the estimates 

e-«*\DF\ ̂  \DFo TGt\ ^ eat\DF\ 

at p. Integration gives (6.5). 

Does 6.4 hold when the curvature is negative but not constant? This 
is probably false without some regularity assumption on the curvature. 
The strongest negative evidence is provided in [11]. 
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