INEQUALITIES FOR THE GENERALIZED TRANSFINITE DIAMETER

BURNETT MEYER

Abstract

Let E be a compact subset of a metric space X and f a Lipschitzian function on X. It is shown that $d(f(E)) \leqq M d(E)$, where d is the generalized transfinite diameter of Hille [2,3] and M is the Lipschitz constant. Also, upper and lower bounds are obtained for the transfinite diameter of the union E of two "widely separated" compact sets, E_{1} and E_{2}, in terms of the diameters of E, E_{1}, and E_{2}, the transfinite diameters of E_{1} and E_{2}, and the distance between E_{1} and E_{2}.

1. Preliminaries. The transfinite diameter in the complex plane was first introduced by Fekete in 1923. Pólya and Szegö extended the concept to three - dimensional space and showed that the transfinite diameter coincides with the capacity. Further generalizations of this concept were made by them and by Leja. Finally Hille, in two papers [2, 3], summarize d and unified the previous generalizations. His papers contain bibliographies of previous work.

The present paper extends, in Theorem 1, a result of the author [6] from the complex plane to a metric space. Also inequalities are obtained for the transfinite diameter of the union of two "widely separated" sets.
2. Averaging processes. Let A be a function whose domain is all finite sequences of positive numbers. A is called an averaging process if it satisfies the following four axioms of Kolmogoroff [4]:
(i) $A\left[x_{1}, x_{2}, \ldots, x_{n}\right]>0$ for all finite sequence $\left\{x_{k}\right\}$ of positive numbers;
(ii) A is a continuous, symmetric function of its arguments and is a strictly increasing function of each of them;
(iii) $A[x, x, \ldots, x]=x$; and
(iv) $A\left[x_{1}, x_{2}, \ldots, x_{k}, x_{k+1}, \ldots, x_{n}\right]=A\left[y, y, \ldots, y, x_{k+1}, \ldots, x_{n}\right]$ if $y=A\left[x_{1}, x_{2}, \ldots, x_{k}\right]$.
In addition, we will assume a fifth axiom:
(v) $A\left[k x_{1}, \ldots, k x_{n}\right]=k A\left[x_{1}, \ldots, x_{n}\right]$ for any $k>0$.

We shall sometimes use the notation $A_{1 \leqq i \leqq n} x_{i}$ for $A\left[x_{1}, \ldots, x_{n}\right]$.
It can be proved [7] that an averaging process which satisfies (v) is of

[^0]the form $\left(n^{-1} \sum_{i=1}^{n} x_{i}^{r}\right)^{1 / r}, r$ a real number $\neq 0$, or is the geometric mean. These are the mean values \mathfrak{M}_{r} of Hardy, Littlewood, and Pólya [1, pp. 12-32]. With one exception we shall not use these formulas but will reason directly from the axioms.
3. Transfinite diameters. Let X be a metric space with distance function ρ, and let E be a compact subset of X. Let $n \geqq 2$, and let A be an averaging process satisfying axioms (i)-(v). Let $x_{1}, \ldots, x_{n} \in X$. We define
$$
d_{n}(E)=\max _{x_{i}, x_{j} \in E}\left[\underset{1 \leq i<j \leq n}{A} \rho\left(x_{i}, x_{j}\right)\right] .
$$

It is shown in [2] that the sequence $d_{n}(E)$ is non-increasing. The transfinite diameter of E (with respect to the averaging process A) is defined as $d(E)=\lim _{n \rightarrow \infty} d_{n}(E)$.

The most familiar examples of the transfinite diameter are the Newtonian capacity ($X=\mathbf{R}^{3}, A$ is the harmonic mean) and the logarithmic capacity ($X=\mathbf{C}$ or \mathbf{R}^{2}, A is the geometric mean). Further examples are the elliptic capacity and the hyperbolic capacity. [8, pp. 89-96]
4. Theorem 1. Let E be a compact subset of a metric space X, and let A be an averaging process satisfying (i)-(v). Let f be a function from X to X satisfying the Lipschitz condition: there exists a constant M such that for every $x, y \in X$, we have $\rho(f(x), f(y)) \leqq M \rho(x, y)$. Let $E^{*}=f(E)$. Then $d\left(E^{*}\right) \leqq M d(E)$.

Proof. Choose $y_{1}, \ldots, y_{n} \in E^{*}$ such that

$$
d_{n}\left(E^{*}\right)=\underset{1 \leqq i<j \leqq n}{A} \rho\left(y_{i}, y_{j}\right)
$$

Then there exist $x_{1}, \ldots, x_{n} \in E$ such that

$$
d_{n}\left(E^{*}\right)=A\left[\rho\left(f\left(x_{i}\right), f\left(x_{j}\right)\right] \leqq A\left[M \rho\left(x_{i}, x_{j}\right)\right]=M A\left[\rho\left(x_{i}, x_{j}\right)\right] \leqq M d_{n}(E)\right.
$$

Now, let $n \rightarrow \infty$ in the above inequality.
Theorem 2. Let X be a Banach space, and let E be a compact, convex subset of X. Let $f: E \rightarrow X$ be a C^{1} mapping. Let $E^{*}=f(E)$. Then $d\left(E^{*}\right) \leqq$ $M d(E)$, where $M=\sup _{v \in E}\left\|f^{\prime}(v)\right\|$.

Proof. Since E is convex, the line segment joining two points of E lies in E. Hence, by Corollary 1 on p. 314 of [5], f satisfies the Lipschitz condition with $M=\sup _{v \in E}\left\|f^{\prime}(v)\right\|$. Now, apply Theorem 1.

5. Widely separated sets.

Definition. Let E_{1} and E_{2} be compact subsets of a metric space X. Let D_{1} and D_{2} be the diameters of E_{1} and E_{2}, respectively, and let D_{0} be the
(minimum) distance from E_{1} to E_{2}. The sets E_{1} and E_{2} are said to be widely separated if $D_{0}>\max \left(D_{1}, D_{2}\right)$.

Theorem 3. Let E_{1} and E_{2} be widely separated infinite compact subsets of a metric space X, and let $E=E_{1} \cup E_{2}$. Let A be an averaging process satisfying (i)-(v). Let D, D_{1}, and D_{2} be the diameters of E, E_{1}, and E_{2}, respectively, and let $D_{0}=\rho\left(E_{1}, E_{2}\right)$. Then

$$
A\left[D_{0}, D^{\prime}\right] \leqq d(E) \leqq A\left[D, D^{*}\right]
$$

where $D^{\prime}=A\left[d\left(E_{1}\right), d\left(E_{2}\right)\right]$ and $D^{*}=\max \left(D_{1}, D_{2}\right)$.
Proof. We adopt the notation $A[(x ; m),(y ; n)]$ for $A[x, \ldots, x, y, \ldots, y]$, where x is repeated m times and y is repeated n times.

Choose $x_{1}, \ldots, x_{2 n} \in E$ such that $d_{2 n}(E)=A_{1 \leq i<j \leq 2 n} \rho\left(x_{i}, x_{j}\right)$. Suppose, without loss of generality, that x_{1}, \ldots, x_{n+k} are in E_{1} and x_{n+k+1}, \ldots, $x_{2 n}$ are in E_{2}, where $0 \leqq k<n$. Then, using Axiom (iv) repeatedly and noting that $D^{*} \leqq D$,

$$
\begin{align*}
d_{2 n}(E) \leqq & A\left[\left(D_{1} ;(n+k)(n+k-1) / 2\right)\right. \tag{1}\\
& \left.\left(D_{2} ;(n-k)(n-k-1) / 2\right),\left(D ; n^{2}-k^{2}\right)\right] \\
\leqq & A\left[\left(D^{*} ; n^{2}-n+k^{2}\right),\left(D ; n^{2}-k^{2}\right)\right] \\
\leqq & A\left[\left(D^{*} ; n^{2}-n\right),\left(D ; n^{2}\right)\right]=A\left[\left(B ; 2 n^{2}-2 n\right),(D ; n)\right],
\end{align*}
$$

where $B=A\left[D, D^{*}\right]$. Letting $n \rightarrow \infty$, we obtain $d(E) \leqq B$. The limit of the right hand side of (1) is seen to be B if the specific formulas for A, \mathfrak{M}_{r} and the geometric mean, are used.

Choose $y_{1}, \ldots, y_{n} \in E_{1}$ and $y_{n+1}, \ldots, y_{2 n} \in E_{2}$ such that $d_{n}\left(E_{1}\right)=$ $A_{1 \leq i<j \leq n} \rho\left(y_{i}, y_{j}\right)$ and $d_{n}\left(E_{2}\right)=A_{n+1 \leqq i<j \leq 2 n} \rho\left(y_{i}, y_{j}\right)$. Then

$$
\begin{aligned}
d_{2 n}(E) & \geqq A_{1 \leqq i<j \leqq 2 n} \rho\left(y_{i}, y_{j}\right) \\
& =A\left[\left(d_{n}\left(E_{1}\right) ; n(n-1) / 2\right),\left(d_{n}\left(E_{2}\right) ; n(n-1) / 2\right),\left(D_{0} ; n^{2}\right)\right] \\
& \left.\geqq A\left[d\left(E_{1}\right) ; n(n-1) / 2\right),\left(d\left(E_{2}\right) ; n(n-1) / 2\right),\left(D_{0} ; n^{2}\right)\right] \\
& =A\left[\left(D^{\prime} ; n^{2}-n\right),\left(D_{0} ; n^{2}\right)\right]=A\left[\left(D_{0} ; n\right),\left(B_{1} ; 2 n^{2}-2 n\right)\right],
\end{aligned}
$$

where $B_{1}=A\left[D_{0}, D^{\prime}\right]$. Taking the limit as $n \rightarrow \infty$, we get $d(E) \geqq B_{1}$.
5. Examples. 1. We will estimate the logarithmic capacity of the union of two unit circles with centers 98 units apart. Then $D=100, D_{1}=D_{2}=$ $2, D_{0}=96, d\left(E_{1}\right)=d\left(E_{2}\right)=1, A$ is the geometric mean.

$$
9.80 \approx \sqrt{96.1} \leqq d(E) \leqq \sqrt{100 \cdot 2} \approx 14.14
$$

2. We will estimate the Newtonian capacity of the union of two unit spheres with centers 98 units apart. In this problem all quantities appear-
ing in Theorem 3 are exactly the same as in Example 1, except that A is the harmonic mean. We obtain $1.98 \leqq d(E) \leqq 3.92$.

References

1. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, Cambridge, 1952.
2. E. Hille, Remarks on the transfinite diameter, General Topology and its Relations to Modern Analysis and Algebra. Proceedings of the Symposium held in Prague in September, 1961, Czechoslovak Academy of Sciences, Prague, 1962, 211-220.
3. -_, A note on transfinite diameters, J. Analyse Math. 14 (1965), 209-224.
4. A. Kolmogoroff, Sur la notion de la moyenne, Atti della Reale Accademia Nazionale dei Lincei (6) 12 (1930), 388-391.
5. S. Lang, Analysis I, Addison-Wesley, Reading, Mass., 1968.
6. B. Meyer, Inequalities for the logarithmic capacity, J. Math. Anal. Appl. 68 (1979), 265-266.
7. M. Nagumo, Über eine Klasse der Mittelwerte, Japan. J. Math. 7 (1930), 71-79.
8. M. Tsuji, Potential theory in modern function theory, Chelsea, New York, 1975.

Department of Mathematics, University of Colorado, Boulder, CO 80309.

[^0]: AMS (MOS) subject classification (1970), Primary 31C15.
 Received by the editors on October 6, 1979.

