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DISFOCALITY AND NONOSCILLATORY SOLUTIONS OF 
7V-TH-ORDER DIFFERENTIAL EQUATIONS 

W. J. KIM 

In this paper we shall study various disfocality properties and their 
consequences on solutions of the differential equation 

(E) y™ + />>> = 0, 

where/? is continuous and of constant sign on [a, oo). Equation (E) is said 
to be disfocal on an interval / if, for every nontrivial solution y of (E), at 
least one of the functions y,y', . . . , j ( w ~ 1 ) does not vanish on/ . If equation 
(E) is not disfocal on /, then there exists an integer k{\ g k ^ n — 1), a 
pair of points b, ce I, b < c, and a nontrivial solution y of (E) such that k 
of the functions y, y', . . . , j>(»-1} vanish at b and the remaining« - k 
functions at c, i.e., 

y*>(*) = 0,f = 0 , 1 , . . . , * - 1, 
;pW(c) = 0,i = * , . . . , » - i, 

0 S 7o < h < ' • • < Jk-i è n - 1,0 g jk < j M < • - - < jn_x = n - 1. 

Here, n — k is even or odd according as/? < 0 or/? > 0 [10], which is the 
well-known parity condition that every nontrivial solution of the problem 
(E)-(l) must satisfy. Equation (E) is said to be OWi* • • >A-i) ~ Uk, 
jn_i) disfocal on an interval / if for every pair of points b and c in /, b < c, 
the only solution satisfying the conditions in (1) is the trivial solution; 
furthermore, if yV = z, / = 0, 1, . . . , « — 1, it is said to be k — (n — k) 
disfocal, and this special case has been investigated by Nehari [10, 11, 12] 
and Elias [2, 3, 4]. We shall say that equation (E) is eventually (JQ9J\, . . . , 
Jk-i) — (Jk> - - -> Jn-i) disfocal on [a, oo) if there exists a point b = a such 
that (E) is (70,71, • • -Jk-i) - (A, • • ->À-i) disfocal on [b, oo).The concept 
of eventual (j0i j i 9 ..., A-i) — (/*, . . . , jn-i) disfocality is related to the 
existence of nonoscillatory solutions satisfying a set of sign conditions as 
shown in Lemma 2. On the other hand, Lemma 1 states that only certain 
sets of sign conditions are admissible for nonoscillatory solutions of (E). 
Since the admissible sign conditions strongly depend on the parity of n 
and the sign of/?, it is convenient to consider the following four cases : 
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(i) n even, p > 0, 

(ii) n odd, p > 0, 

(iii) n even, /? < 0, 

(iv) n odd, p < 0. 

Equation (E) satisfying condition (i), for example, is denoted by (Ej); 
(EiL), (EiH), and (Eiv) are similarly defined. 

LEMMA 1. [8]. Let y be a nonoscillatory solution of(E) such that y = 0 on 
[b, co) for some b = a, and let p ^ 0 on [bi9 oo) for every bx ^ a. Define 
[C] to be the greatest integer less than or equal to C. If y is a solution of(E{) 
or (Eiv), there exists an integer j , 0 ^ ; ^ [(« - l)/2], such that 

(2) y<» > 0,i = 0, 1, . . . , 2 / , 

on [b2, co) for some b2 = b, and 

(3) (-ly+i^tf) > 0 , i = 2 / + 1, . . . , a - 1, 

ö« [6, oo). 7/ j w « solution of{Ex^ or (EiH), /Aere exists an integer j , 0 ^ j ^ 
[n/2], such that 

(4) y«> > 0 , i = 0 , l , . . . , 2 / - 1, 

o« [b2, oo) for some b2 = b, and 

(5) ( - l » t f ) > 0 , I = 2 / , . . . , / I - 1, 

0« [6, OO). 

Following Kiguradze [6], we say that a nonoscillatory solution y of (E;) 
or (Eiv) belongs to class Aj if j ; or — y satisfies the inequalities (2) and (3), 
0 ^ j ^ [(n — l)/2]. Similarly, a nonoscillatory solution y of (EH) or (EHi) 
is said to belong to class Aj if y or — y satisfies the inequalities (4) and (5), 
0 = 7 = [/i/2]. 

The parity condition [10] mentioned earlier for (E) is equivalent to the 
condition 

(P) ( - l )» -* />(*)<0 . 

We shall henceforth assume (P) whenever (j0 , . . . , jk_i) — (jk, . . . , jn^{) 
disfocality is discussed. Note that equation (E) is trivially (y0, . . .,yV-i) — 
Uh • • -Jn-i) disfocal unless (P) holds. 

Our main result is Theorem 5, in which we determine the number of 
solutions belonging to the class Aj. More specifically, we shall determine 
the number of solutions in Aj with the property that every nontrivial linear 
combination of them again belongs to Aj. In Theorem 2 we prove that if 
equation (E) is eventually (j0, . . .,A_i) - (J* • • •> Jn-i)disfocal on [a, oo), 
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then jtr = /, i = 0, 1, . . . , n — 1. Preliminary results required for our 
investigation are contained in Theorem 1 and Lemma 2. 

THEOREM 1. Assume that equation (E) is (jo, . . . , jk-i) — (jk9 . . . , jn-i) 
disfocal on an interval [b9 c) for some b ^ a. Let ut = W/(x, s), I = 1,2, 
. . . , «, b < s < c, be a solution of(E) satisfying the n — 1 boundary condi
tions obtained from 

u^\b) = iiW (b) = • • • = uV*-0(b) = 0, 

uVk)(s) = . . . = f|(/«-i>(j) = o, 

wAew fAe condition on u{jl~l) is deleted, and normalized by 

uj'-Hb, s) = - | ^ - «x*, *)U = 1 if / è k, 
(7) 

«/>'-% J) = - g ^ - u,(x, *)U = (-1)'"*"1 if / > *• 

TAe« W/, / = 1, 2, . . . , n, has the following properties: 

uP > OoruP < 0, i = 0,1, . . . , n - 1, 

(8) sgn «/>'<> = sgn u^+l\ i = 0, 1, . . . , k - 1, 

sgn w/'*0 = —sgn w/^+1), / = & , . . . , « — 1 

o/t (6, ^)/or every s,b<s<c. 

PROOF. Since(E)is O*0, . . . , jk-{) - (jk, . . .,y„-i)disfocal on [b, s], ut is 
uniquely determined by the boundary conditions (6) and (7). In fact, 

(9) 
u,(x si = (— 1V-*-i__5j0üii)__ if/ > fr 

where W,(x, s) is the n x n determinant formed from the array 

yt(x) j2(x) . . . y„(x) 

y¥*{b) y^\b) ... yw>(b) 

yih-m y^-m ... yy»-m 
y[h){s) yy<Hp) . . . yU„)(s) 

y¥«-i\s) ytf'-i>(s) ... y(J»-Hs) 

after deleting the row involving they'^-th derivative, i.e., the (/ + l)-th 
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row, and yl9 y2, . . . j „ are a fundamental set of solutions of (E). Since 
W^\b, s) * 0 if / ^ k and W^\s9 s) # 0 if / > k for b < s < c, the 
determinant W/(x, s) cannot vanish identically on the x-interval [b, s], 
s e (b, c). Moreover, it is easily seen from (9) that u\j) (x,s) is a continuous 
function of s9j = 0 ,1, .. .,n — 1, / = 1,2, . . . , « . 

We assert that u\j),j = 0,1, . . . , n — 1, cannot vanish on (b, s). If this 
were not the case, u\m) for some m, 0 ^ m ^ « — 1, would have a zero in 
(è, s). Recalling the boundary conditions satisfied by ul and repeatedly 
applying Rolle's theorem, if necessary, we conclude that u\jl-l) has 
an odd-order zero £ e (b, s), i.e., u\jl~l) (£, s) = 0 and ufr-àfè + e, s) 
W/(y/-l) (6 — e, s) < 0 for some sufficiently small e > 0. Since u\il~l){x, s) 
is a continuous function of s9 its odd-order zero £ is also a continuous func
tion of s. Move s towards b in a continuous manner. The odd-order zero 
£ cannot disappear from the interval (b, s) without crossing the boundary 
point b or s as s approaches b. However, it cannot cross the boundary 
point s[b] if / ^ k[l > k], for otherwise it would imply the existence of a 
solution W/(x, sx) for some sx which violates the parity condition mentioned 
earlier. On the other hand, the zero £ cannot cross b[s] if / ^ k[l > k] 
because Equation (E) is (j0,jl9 . . .,y*_i) - (Jk, .. .,jn-i) disfocal on [b9 c). 
Therefore, the zero £ of u\jl~l) must remain in the interval (b9 s) until s 
coincides with b. This means that we can construct a sequence of solutions 
ut(x, sm\ m = 1, 2, . . . , with sm -> 6 as m -• oo and u\'l-à(Zm9 sm) = 0 
for some £m e (&, «sw). Evidently, this sequence can be normalized in such a 
way as to guarantee a nontrivial limit ut{x) = limw_co w;(x, sm) (e.g., 
4 i + • • • 4- 4 « = 1, "fa, sm) = cmly1 + •. • + cmnyn) with u$) = 
ut(b) = • • • = a\n-l){b) = 0. But this is absurd. Hence, u\j\j = 0, 1, . . . , 
n — \9 cannot vanish on (b9 s). 

The relation between the signs of u\j\ j = 0, 1, . . . , /*— 1, can be 
determined from the boundary conditions satisfied by w,; for example, 
the condition w(,m)(Ä, 5") = 0 implies that sgn u\m){b -he, s) = 
sgn u\m+l)(b -h e, s) for any sufficiently small e > 0, while the condition 
u\m)(s,s) = 0 requires that sgn ujm)(s — e, s) = —sgn ujm+1)(s — e, s). 
Since u\j)

9 j = 0, 1, . . . , « — 1, does not vanish on (b, s) the above 
relations must hold throughout the interval (b, s), that is, 

sgn u}M (x, s) = sgn u\>*+1) (x9s)9 i = 0 , 1 , . . . , / : - 1, 

sgn u\ji){x, s) = — sgn w/^"+1)(x, s), / = &, . . . ,« — 1, 

x e (6, s), provided / # / — 1. Now it only remains to show that (10) holds 
even for / = / — 1, i.e., 

sgn ujù-àix, s) = sgn u}'*-i+1)(x, s)\î I ^ k 

and 
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sgn ujJt-^ix, s) = - s g n u}"-1+1)(x9 s) if / > k. 

For the case / ^ k, consider the number of sign changes in the sequence of 
the n + 1 functions 

( i i ) n/>'-i+i>, w ^ - i + 2 ) , . . . , u\n\ uh « ; , . . . , up-**. 
Since u\n) = — /?!/;, there are n — k sign changes if p < 0 and « - A: -h 1 
sign changes if p > 0. Recalling the parity condition that n — fc is even or 
odd according as/? < 0 or/7 > 0, we deduce that the total number of sign 
changes in (11) is even regardless of the sign of coefficient p. Thus, 
sgn u^'-^ = sgn u\jl~l+1) if / ^ k. On the other hand, if / > k, the num
ber of sign changes in sequence (11) i s « — k — Ì if p < 0 and n — k if 
p > 0. Again from the parity condition, we conclude that the total number 
of sign changes in sequence (11) is odd, i.e., sgn u\jl-l) = —sgn u}J'l~1+1) 

if I > k. This establishes (8) and completes the proof. 

Suppose that equation(E) is (j0, . . . , ; M ) - (jk, • • •> Jn-i) desfocal on 
[b, oo) for some b ^ a. Let {sm} be a sequence of real numbers such that 
sm -» oo as m -• oo, and put 

M 

W/C*, «O = L /̂miJ'i> I = 1» 2> - - -, 1, W = 1, 2, . . ., 

where j l 5 . . . , j>w are a fundamental set of solutions of (E). Define 

te/-) ~ (12) V** ' * " ' - / A .2 Y 

There exists a subsequence {v/(x, Ŵjfe)} which converges to a nontrivial 
limit Vi(x). If we denote the subsequence {v/(x, sWyfe)} again by {vi(x, sm)} 
for brevity, 

Vt(x) = lim v/(x, J J 

(13) 
= 2ü ( !7» S ^ . = 1,/= 1,2,...,«. 

Since «/(j/)(*> «O cannot vanish in (b, sm) by Theorem 1, we have v[J)(x) ^ 
0 or v/y)(x) g 0, x e [ò, oo),7 = 0, 1, . . . , n — 1, which implies that v\j) 

is monotone on [b, oo), y = 0, 1, . . . , « — 1. Also note that v\j) cannot 
vanish identically in any subinterval of [a, oo) because v, is a nontrivial 
solution of (E). Hence, v\j) cannot vanish at all in (b, oo), i.e., v/^ > 0 or 
vlJ) < 0 in (b, oo),y = 0, 1, . . . , « — 1, / = 1,2, . . . , « . Moreover, since 
V/(x, 5m), m = 1, 2, . . . , satisfies the sign conditions in (8) in (b, sm), the 
limit function V/(x) also satisfies the same sign conditions in(Z>, oo). We 
summarize this result in the following lemma. 
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LEMMA 2. / / equation (E) is eventually (jQ, . . . , j^) - (Jk9 . . . , y„_i) 
disfocal on [a, oo), the solution vh I = 1, 2, . . . , « , defined in (13) /*os f/ze 
following properties : 

v/A>(6) = 0, i = 0, 1, . . . , jfc - 1, 

where v\il~^{b) = 0 is deleted when I ^ k, 

v/0 > 0 or v/f) < 0, i = 0, 1, . . . , n - 1, 

sgn v/^ = sgn v/''+1), i = 0, 1, . . . , / ; - 1, 

and sgn v/'»'* = —sgn v/^'+1), / = fc, . . . , A — 1, 

//i the interval (b, oo). 

From Lemma 1 and Lemma 2, we easily obtain the following result. 

THEOREM 2. If equation (E) is eventually (j0, . . . , jk_x) - (y*, . . . , jn_t) 
disfocal on [a, oo), thenjt- = /, i = 0, 1, . . . , n — 1. 

In view of the above theorem we only need to consider the case where 
equation (E) is eventually k — (n — k) disfocal on [a, oo). For this case, 
we obtain the following statements from Lemma 2. 

THEOREM 3. If equation (E) is eventually k — (n — k) disfocal on [a, oo), 
the solution vhl= 1 ,2 , . . . ,« , defined in (13) has the following properties: 

v/»(i) = 0, / = 0 , 1 , . . . , * - 1, 

where v$l~l)(b) = 0 is deleted when I ^ k, 

v/<") > 0, i = 0, 1, ...,k - 1, 

(-iy-*v/ '} > 0,i = Jfc, .. . ,#i - 1, 

0« the interval (b, oo). 

We turn to the problem of determining the number of solutions belong
ing to class Aj. This problem has been studied by the author [8] under the 
assumption that (E) is nonoscillatory on [a, oo) (i.e., every nontrivial 
solution has a finite number of zeros on [a, oo)). We shall determine the 
maximum number, q(Aj), of solutions yi9 . . . , ym belonging to Aj such that 
every nontrivial linear combination of yi9 . . . , ym again belongs to Aj. 
In Theorem 5 we prove, among other results, that q(Aj) = 0 or 2, j = 0, 
1, . . . , ( « — 2)/2, for (Ei). For the proof of this result, it suffices to estab
lish that q(Aj) = 2 if Aj is nonempty. But the nonemptiness of Aj is tied 
to disfocality : (Ei) is k — (n — k) disfocal on [b, oo) if and only if Alk/2i 

is nonempty, provided (P) holds on [6, oo) (Cf. Theorem 3 and [4, Theorem 
2]). Hence, all we need to prove is that q(Aikni) = 2 if (E;) is k — (n — k) 
disfocal. This will be done by using the solutions vk and vk+1 defined in (13). 
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Evidently, for constants A and B, 

Avk(x) + BvM(x) = \im(Avk(x,sm) + Bvk+l(x, sj). 
m—oo 

If (E) is k — (« — &) disfocal on [b, oo), in view of (12) and recalling the 
definition of ufa, sm) in (6) withy, = /, / = 0, 1, . . . , « — 1, we see that 
y = ^v,(x, sm) + 2*vm(*, jm) satisfies y(b) = /(Ô) = • • • = j<*-2>(Z>) = 0 
= yik+l)(sm) = • • • = yin~l)(sm) for all m, A, and B. For the solution y 
we have the following theorem. 

THEOREM 4. //*(E) w k — (n — k) disfocal on [b, c), b ^ a, every nontrivial 
solution y satisfying the n — 2 boundary conditions with b < s < c, 

(14) X 6 ) = / W = * * * = y(k'2)(b) = ° ' 
J;<*+I>(J) = - - - = y(»-»(s) = 0, 

A&y the following properties: 
(a) T / y * - 1 ^ ) = j>a)(/3) = Ofor some a,ße [b, s], then a > ß. 
(b) The functions y, y\ . . . , y^-i\ ^u+i)? ? j(») c a w have ai most one 

zero andyik) at most two zeros on (b, s), counting multiplicities. Furthermore, 
If y > 0 on (b9 s\ then 

on (6, s). 

PROOF. Using (14) and Rolle's theorem repeatedly, we can easily show 
that (a) cannot hold if (b) does not hold. Hence, it suffices to prove (a). 
When s is sufficiently close to b, y^-u and y(k) cannot both vanish in (b, s). 
If this were not the case, we could easily construct a nontrivial solution Y 
with Y(b) = Y\b) = • • - = y <»-i>(è) = 0, which is absurd. Thus, (a) is 
trivially satisfied if s is sufficiently close to b. 

Define H = {t\ every nontrivial solution of (E) satisfying (14) with s ^ t 
has property (a)} and let d = sup H. The proof of the first part will be 
complete if we can show that d ^ c. Assume the contrary : d < c. Let 
{rrt}, d < T„, n = 1, 2, . . . , be a sequence of real numbers such that r„ -» d 
as n -> oo. Since zn $ H, there exists a nontrivial solution wn of (E) such 
that 

wn(b) = w'n(b) = . . . = ntf-*>(Ä) = 0 = w^\an) = • • • = ^ « ( a j 

for some on, d < an < TW, and 

for some an and /3W, b ^ an ^ ßn S an. Evidently, the sequence of solu
tions {wn} may be so normalized as to guarantee a subsequence converging 
to a nontrivial limit w. The limit w is a solution of (E) satisfying 
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;<»-!> V), w(b) = w'{b) = • . . = w^2\b) = 0 = w(*+1)(>/) = . . . 

w<*-i>(a) = w<*>(0) = 0 

for some a, /3, b ^ a ^ /3 g rf. If è < a < rf [è < ß < d]9 then /3 ^ rf 
[& 7e a] by Theorem 1 since (E) is k — (n — k) disfocal on [b, d]. Therefore, 
if è < a < dor b < ß < d, then either (A) b < a < ß < d or (B)b < a 
= ß < d. In case (A) we shall prove that ß[a] cannot be an odd-order zero 
of w<*>[w<*-i>]. Define 

(15) oix;a, d) = 

yi(x) 

Mb) 

yr2)(b) 
yrHa) 
yik+lKd) 

yJTHd) 

yz(x) 

y2(b) 

y?-2\b) . 
yf-Ha) • 
y?+1)(d) . 

yJTHd) . 

• yn(x) 

• yn{b) 

• yr2Kb) 
• yï-Ha) 
. yj*™(d) 

• yt-Hd) 

where yu . . . , yn are a fundamental system of solutions of (E). The 
determinant a)(x; a, d) does not vanish identically because dk/dxkco(x; 
<x> d) \x=d 7̂  0 by Theorem 1 and w(x) = Kco(x; a, d)for some constant K. 
If ß were an odd-order zero of wik\ due to continuous dependence of 
o)(x; a, d) and its derivatives on d, there would exist e > 0 and ßu a < ßi 
< d — s, such that the solution wx{x) = o)(x; a,d — e) would satisfy 

Wl(b) = . . . = w[k~2\b) = 0 = w[k+l\d - £ ) = . . . = w^(d - e), 

wp-»((x) = W*}(A) = 0. 
(16) 

But this contradicts the choice of d, and therefore, ß cannot be an odd-
order zero of w{k). Similarly, we may prove that a cannot be an odd-order 
zero of w(*-1). Hence, if w{k~l){a) = w{k)(ß) = 0, b < a < ß < d, then a 
cannot be an odd-order zero of w(k~l) and ß cannot be an odd-order zero 
of w{k). On the other hand, both a and ß cannot be even-order zeros of 
w(Ä-D and w{k\ respectively. If w(k-l)(a) = w(Ä)(a) = 0 and w(k)(ß) = 
w(*+1)(/3) = 0, then w(Ä+1)(r) = 0 for some 7% a < y < ß, that is, H>(*+1) 

has three distinct zeros on (b, d]. Again by a repeated application of Rolle's 
theorem, we conclude that w(w) = — pw has two distinct zeros on (b9 d) 
and eventually that w{k) has an odd-order zero between two distinct zeros 
of w(k~l\ But we showed earlier that this is impossible. Consequently, 
case (A) b < a < ß < d cannot hold. 

In case (B) b < a = ß < d, we may assume that w has at most one zero 
on (è, d\. Furthermore, a as a zero of w{k~l) is a zero of order at most 
3 and u>(*_1) has no other zeros on [b, d]—for, otherwise, we would again 
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be led to the conclusion that there exists an odd-order zero of w(k) between 
two distinct zeros of w(k~l). Hence, there are two possibilities: 

(I) w<*-i>(a) = w<»(a) = 0, w<*+»(a) * 0 
(II) w<k-»(a) = w <*>(«) = w<*+l)(a) = 0, u>(*+2)(a) ± 0. 

If (I) holds, the double zero a of w(*_1) must separate into two simple zeros 
of w(k~l) as din œ(x; a, d) defined by (15)moves toward b. But this requires 
the existence of a solution satisfying (16), again contradicting the choice 
of d. Assume that (II) holds. We shall prove that w(j) = 0 for some 
y e (6, d). If k = n - 1 (and p > 0), then 0 = w<*+i>(a) = - p(a)w(a) 
yields w(a) = 0. If k ^ n — 1, w > 0 on (b9d)9 and n — k is odd [even]; 

w<"-»(d) = w(«-i>(Q - r p(t)w(t)dt9 C e [ô, rf), 

w(»-i)(rf) = 0, and p > 0[p < 0] require that w(w-D > 0 [w(l,-1} < 0] on 
[Ä, d). Similarly, 

(17) w<"-»(rf) = w<»-»(Q + r w(*->+1)(f>ft, Ce [è, </), 

and w{n~J\d) = 0,y = 2, 3, . . . , « - A: - 1, require that ( - l^w0»-^ < 0 
[ ( - l y v * - ^ > 0] in [b9 d), j = 2, 3, . . . , n - Â: - 1. (This result proves 
the second part of the theorem when w and d are replaced by y and s9 

respectively.) In particular, for j = n — k — 1, w(k+l) < 0 on [b, d). 
Therefore, (II) and the assumption that w > 0 on (b, d) are incompatible. 

The only remaining possibility is that w has exactly one zero 7- G (b9 d) 
such that w > 0 on (b9 7-) and w < 0 on (7-, J) (take — w if necessary). We 
shall show that this too is impossible. If n — k is odd [even], then p > 0 
[p < 0], w<»> = -/>w < 0 [> 0] on (b, r) and w(w) > 0 [< 0] on(7-, d). If 
k = « - 1, then /? > 0 and w(n~2)(a) = w^^ia) = w{n)(a) = 0 by (II); 
thus, w(a) = 0, i.e., a = 7- and u>(w-1) > 0 on (6, 7-) U (7-, d). Since H>(W-2)(T-) 

= 0, b < ? < d, we must have w(w~2) < 0 on [b9 7*), which in view of w(b) 
= w'{b) = • • • = w(w_3)(è) = 0 implies that w < 0 on (b9b + e) for some 
e > 0. But this contradicts our assumption that w > 0 on (&, 7-). If & # 
« - 1, then w{n~l)(d) = 0 and either w<»-i> < 0 [> 0]on (6, J) or else there 
exists cn_! e (£, d) such that w^n~l) > 0 [ < 0] on (ò, c„_x)and w(n~l) < 0 
[> 0] on (<:„_!, d). The first alternative is impossible for it would again lead 
to the conclusion that vv(AH_1) does not vanish on [b, d), contradicting (II), 
when (17) is used successively. If the second alternative holds, we may 
repeat a similar argument using w(k+1)(d) = • • • = w{n~2)(d) = 0 and 
prove successively that there exists cM_y e (b, d) such that (—\yw{n~^ < 0 
[> 0] on (b9 cH-j) and ( - iyw<*-/> > 0 [< 0] on (c„_y, d)9 j = 2, 3, . . . , 
« — k — 1. In particular, for j = n — k — 1, we have w(k+v < 0 on 
(b9a) and w<*+1) > 0 on (a, rf). Hence, w(Ä) ^ 0 on [b9 d]9 w(k)(a) = 
iva+1)(a:) = 0, v^a_,"2)(ö:) ^ 0, and w{k) has no other zeros on [b9 d], and this 
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in turn implies that w{k~l) < 0 on [b, a), w{k~l){a) = 0, and w{k~l) > 0 
on (a, d]. Since w(b) = w' (b) = • • • = w^~2){b) = 0, the inequality 
w(k-v < o on [b, a) requires that w < 0 on (b.b + e) for somee > 0, 
contrary to our assumption that w > 0 on (b, 7*). Consequently, (II) cannot 
hold and therefore (B) cannot hold. Hence, a $ (b, d) and ß £ (b, d). But 
b ^ a ^ ß ^ d, and we must have a = b or a = d, and ß = b or ß = d. 
Obviously, b = a = ß and a = ß = d are impossible because they violate 
the parity condition [10]. Since a ^ ß, we see that 6 = a and /3 = d. But 
this means that (E) is not k — (n — k) disfocal on [b, d], contrary to the 
assumption d < c. This completes the proof. 

We are now ready to determine the number of solutions belonging to 
class AW2i\ in fact, we shall prove that q(Aik/2ì) = 2 if (E) is k — (n — k) 
disfocal on [b, 00) for some b ^ a. Take the two solutions vk and vM 

defined in (13). These solutions belong to Alkm by Theorem 3. However, 
vk and vM may or may not be linearly independent. First assuming that vk 

and vk+i are linearly independent, we shall establish that every nontrivial 
linear combination belongs to A[km. Every nontrivial linear combination 
of vk and vk+1 is nonoscillatory on [b, 00). This is because for constants 
A and B, 

Avk(x) + BvM(x) = lim [Avk(x, sm) + BvM(x, sm)]9 

and wm = Avk(x, sm) + Bvk+1(x, sm) is subject to (b) of Theorem 4 in the 
interval (b, sm), m = 1, 2, . . . Furthermore, no linear combination can 
belong to Aj, j > [kjl] (Cf. Remark following Theorem 5). In view of 
Lemma 1, it suffices to prove that w = Avk + BvM cannot belong to Aj, 
j < [kjl], for any constants A ^ 0 and B =£ 0. Suppose that w G AJ for 
some j < [k/2] and that w > 0 on [bh 00) for some bx ^ b. Then w(*_2) > 0, 
wa-i) < 0, wik) > 0, on [bx, 00) by Lemma 1. Since w{i) = lim^oo w£\ 
i = 0, 1, . . . , « - 1, we have for sufficiently large /, w/*~2) > 0, w/*~1) < 0, 
vv/*} > 0 in some subinterval (£, 77) of (ò, ^) f] [̂ i> °°). We also note that 
wlk~l){b) = Avik~l\b, Si) ^ 0. If w}k~l\b) > 0, it is incompatible with the 
inequalities w\k~l) < 0 and w}k) > 0 in (Ç, 57); it is easily seen in this case 
that wp-ü{a) = Mk)(ß) = 0 f o r s o m e a, /3G (è, $,), a < ß, contrary to 
Theorem 4. On the other hand, if w/*_1)(£) < 0, we again obtain a con
tradiction. Since wlk~2)(b) = 0 and w\k~2) > 0 and w\k~l) < 0 on (£, rj), 
w(k-i) m u s t h a v e a t j e a s t t w o zeros on (6, s,). But this contradicts Theorem 
4 and completes the proof that w e Alkm if'v* and v m are linearly in
dependent. 

If vk and vk+i and linearly dependent, vk = C v m for some constant C. 
Since vÄ > 0 and v m > 0 on (6, 00) by Theorem 3, the constant C must be 
positive; hence it follows from (12) and (13) that C = 1. Consequently, 
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(18) 
Bki = Bh+i,i> / = 1, 2, . . . , n9 

BH = lim Blmh I = k,k + 1. 

Define a sequence {gm} of solutions by 

(19) 
v _ Vk(x,sJ-vk+i(x,sm) 

. 1 = 1 
Bk+\, mi)2 1/2 

, m = 1,2, . . . , 

and let w be the nontrivial limit of a converging subsequence {gm.} which 
we again denote by {gm} for brevity, i.e., g = limw_oo gw. We assert 
that g and vk+1 = limw_00 vÄ+1(x, 5,

m) are linearly independent. In view 
of(12),(13)and(19), 

gm(x) = 2 cmiyi9 
i = i 

«̂« 
Bkmi — Bl k+h mi 

H (ßkmi —ßk+l,mi)2 
1/2 

m = l , 2 , . . . , 
i = l ,2 , . . . , « , 

and it suffices to show that 

2 ( l i m cm)(limBk+hmt)ï ±1 

Indeed, 

£ (lim cmf-)(lim £ m , w / ) = Hm 2 cwl-^ 
1=1 Xm-oo / \m—oo / m - o o / ^ 

= lim 
m-oo 

ZJ Bkmi Bk+1, mi 
i = l 

2 — 2 2 *̂m* ^£+1, 
1/2 

= —lim 

ÂH-1, mi 

1 — ZI ^*m* Bk+1, t 
i=l 

1/2 

= 0 

due to (18), i.e., g and v m are "orthogonal." In any case, g and vk+1 are 
linearly independent. 

Evidently, g is nonoscillatory on [ft, oo) because g = limw_oo gm and 
gm is subject to the conditions in (b) of Theorem 4 on the interval (b, sm). 
Furthermore, we shall show that g e Alk/2y Suppose that g e Ai for some 
1, X*l> [k/2]9 where X = [(/i - l)/2] for (E;) and (Eiv) and A = [n/2] 
for(Eii) and (Eiü). Then it follows from Lemma 1 that g > 0, g' > 0, . . . , 
g(£+2) > o, or g < 0, g' < 0, . . . , g{k+2) < 0, on fr, 00) for some 7* > 6. If 
/ is a finite subinterval of [7-, 00), there exists TV such that m > N implies 

(20) 

or 

(21) 

^ > o , g ; > o , . . . , g r 2 ) >o, 

gm<o, gm<o, . . . , * r 2 ) <o , 
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in / fi (b, sm), since g{i) = l i n v ^ g ^ , / = 0, 1, . . . , TI - 1, uniformly in 
any finite subinterval of [b, oo). In view of (6), (7), (12), and (19), we have 

(22) gm{b) = g'm(b) = . . - = g^\b) = 0, g<*-»(b) > 0, 

(23) g%\sm) < 0, gJPHsm) = • • • = * < r 1 } ( 0 = 0; 

hence by Theorem 4, gw can have at most one zero in (b9 sm). Due to 
(22) there exists £ > 0 such that gm > 0 in (b, b + e)9 and if gm does not 
vanish in (b, sm)9 then g^, i = k + 1, . . . , n — 1, cannot have a zero 
in (è, JOT) (for otherwise a repeated application of Rolle's theorem leads 
to the contradiction that gm vanishes at some point of (6, sm)). In addition 
we deduce from (E) and (23) that 

(24) g<*+» < 0, g(f+2) > 0, . . . , (sgn/>)rö> < 0 

in (è, 5"w). However, the first two inequalities are incompatible with (20) 
and with (21). If gm has a zero in (b, sm), gm < 0 in(sm - eÌ9 sm) for some 
ei > 0 because gm > 0 in (ô, b + s) by (22) and gw can have at most one 
zero (counting multiplicities) in (b, sm). Thus, in (sm — e2, sm) for some 
e2 > 0, 

(25) gW < 0, g ^ \ > 0, gj*+» < 0, . . - , (sgn/?)^> > 0, 

where the first inequality follows from g^(sm) < 0 in (23). If (20) holds, 
gtf > 0, g<*+1) > 0 in / n (b, s J, while g<*> < 0, *£+» > 0 in (jm - fi2, 
^m) by (25). These four inequalities together imply that g%+1) has at least 
two zeros in (b, sm), contradicting Theorem 4. On the other hand, if (21) 
holds we take g<*+» < 0, g%+*> < 0 from (21) and g%+1) > 0, g<J+2> < 0 
from (25), and similarly conclude that g{£+2) has at least two zeros in 
(6, sm), again contradicting Theorem 4. Consequently, g$AhX^l > [k/2]. 

Next we prove that g $ Ah 0 ^ / < [k/2]. Assume that g e At for some /, 
0 ^ / < [k/2]. Then Lemma 1 requires that gik~2) > 0, g«-» < 0, 
g(k) > 0, or g{k'2) < 0, gu-» > 0, g{k) < 0, on [97, 00) for some 7] > b9 

according as g > 0 or g < 0 on [7], 00). Hence, as before, for any finite 
subinterval / of [77, 00) there exists Nx such that m > Nx implies 

(26) g!t2)>o,g!r»<o,gp>o, 
or 

(27) *£-*> < 0 , g j r » > ( U £ > < 0 f 

in / fi (*» sm). Choose m > A^. Due to (22), (23), and Theorem 4, g£~n 
can have at most one zero in (b, sm). If g%~l) does not vanish in (b, sm), 
theng$9 i = 0, 1, . . . ,& — 1, cannot vanish in (6, ,sm) and 

(28) g « > 0 , ^ > 0 , ..„g}*-» > 0 
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in (b, sJ by (22). But (26) as well as (27) is incompatible with (28). If 
g^~l) has a zero at £ e (b, sm), gj*~1} cannot vanish in (b, Q and 

(29) gm>0,g'm>0, . . . , ^ - 1 } >0 

in(6,Q. If(26)holds,gj*-l) < <U<» > O i n / fi (é,jJ;whileg<*-«(6) > 
Oby (22). These inequalities, however, require that g{^~l){a) = gffiß) = 0 
for some a, ße (b, sm) with a < ß, contradicting Theorem 4. If, on the 
other hand, (27) holds, we take two inequalities g%~2) < 0 and g^~l) > 0 
valid in y fi (*» •*«) anc* t w o inequalities gm~2) > 0 and g^ -1 ) > 0 from 
(29) which are valid in (b, Q, and similarly conclude that g^~1} must 
have at least two zeros in (b, sm). This also contradicts Theorem 4, and 
completes the proof that g $ Ah 0 g / < [fc/2]. Since Lemma 1 states that 
g e Ai for some /, 0 g / g À, where ^ = [(« — l)/2] for (E;) and (Eiv) 
and X = [H/2] for (EH) and (EHi), we deduce that g e ALk/2ì. 

Every nontrivial linear combination of g and vM belongs to A[k/2y 

The proof of this assertion is obtained when vk is replaced by g in the earlier 
proof that every nontrivial linear combination of vk and vk+i belongs to 
d[k/z] if vk anc* vk+1 are linearly independent. Summarizing the results so 
far obtained, we have that q{A[k/2) ^ 2 if equation (E) is k — (n — k) 
disfocal on [b, oo) for some b ^ a. 

Now it only remains to show that AW2i cannot contain more than two 
solutions of which every nontrivial linear combination again belongs to 
A[k/2]. The required proof is essentially the same as the proof of the 
Theorem in [8]. For the sake of completeness, however, it will be pre
sented here. Assume to the contrary that Alk/2i contains three solutions 
Yl9 Y2, and Y3 such that every nontrivial linear combination of Yl9 Y2, 
and Y3 belongs to Alk/2]. According to Lemma 2 in [8], we may assume 
that Y3 > Y2 > Yi > 0 on [c, oo) for some c ^ b and 

l i m ~ ^ ì = oo, 1 < j < k < 3. 

Let {rji} be an increasing sequence of numbers such that rji ̂  c and 
rji -* oo as / -> oo. By virtue of Lemma 3 in [8] there exists for each /, 
a solution 

Vi = atYx + ßtY2 + TiY3, al + ßj + fi = h 

such that Vi ^ 0 on [c, oo) and Vfa) = V-(Q = 0 for some Çr- e (57,, 00). 
Put 

lim at- = a, lim ßt- = ß, lim 7-,- = 7-
/ - •oo /-»co /->oo 

(take subsequences if necessary). Then MK(x) = aY^x) + ßY2(x) + jY3(x) 
is a nonoscillatory solution belonging to class A[km. Since ^ ^ 0 in 
[c, 00), we have 
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(30) W > 0, W > 0, . . . , W*-v > 0 

on [ch oo) for some cx ^ c by Lemma 1. We remark that k is odd for 
(Ei) and (Eiv) and even for (EH) and (EiH). Since lim^«, V^ = WWJ = 0, 
1, . . . , « , uniformly in any finite subinterval of [c, oo), there exists a 
number N such that i > N implies 

(31) vMcd > w(J)
2
(Cl) > o, j = o, i, ..., k - i. 

We may assume that y]t- > cx for / > N. Since Vt- e Alk/2Ì and Vt ^ 0 in 
[c, oo] for all /', Vfk) > 0 on [c, oo) by Lemma 1. This means that 

Vj*-Hci)£ VI*-»(T), *e[cl9 oo), 

which may be combined with (31) to get 

(32) vr»(r)> W™iCl\ T6[Cl ,oo). 

When this inequality is integrated from cx to x e [c1? oo) and (31) with 
j = k — 2 substituted in the resulting expression, we obtain 

If we repeat a similar procedure k — 2 times, we finally arrive at the 
inequality 

A ; 2(ik-l)! l i ; 2(ifc-2)! l i ; 

(33) 
+ - ^ M , xe[cl9ao). 

However, this inequality cannot hold throughout the interval [cx, oo). 
In fact, for * = £,.> y, > cx(i > N), the left-hand side Vt(Zi) = 0, while 
the right-hand side is positive by (30). This contradiction proves that 
q(Alk/2{) = 2 if (E) is k — (n — k) disfocal and (P) holds on [b, oo), b ^ a. 
On the other hand, if (E) is not k — (n — k) disfocal, then Alk/2i is empty 
[4, Theorem 2], i.e., q(A[k/2i) = 0. 

Since k is even for (EH) and (EHi), the class A0 of (Eü) and (EiH) is not 
included in the above consideration. Likewise, the class Ain/2i of (EHi) 
and (Eiv) has to be considered separately. In this connection we have 
q(A0) = 1 for (E„) and (EiH) and q(A[n/2ì) è 1 for (EHi) and (Eiv) [5, 7]. 
Furthermore, employing a procedure similar to the one used to establish 
the inequality q(AW2i) ^ 2, we can prove that q(A[n/21) ^ 1 [8]. Con
sequently, q(Ain/2i) = 1 for (EHi) and (Eiv). Thus we have proved the 
following statements. 
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THEOREM 5. For the equation (E), we have 
q(Aj) = 0 or 2,j = 0, 1, . . . , (/i - 2)/29 for (E{); 
q(A0) = 1 andq(Aj) = 0 or 2J = 1, 2, . . . , ( /* - l)/2,/i?r (Eü); 
^ o ) = 1, ft^y) = 0 or 2, j = 1, 2, . . . , ( « - 2)/2, awrf ^(^w/2) = 1 

for (Ei{)\ and 
q(Aj) = 0 or 2, y = 0, 1, . . . , ( « - 3)/2, mrf <7(^(n-i>/2) = 1 /or (Eiv). 

REMARK. If u e A{ and v e ^4,+Ä, k ^ 1, then w s v + Ci/ e y4 m for 
any constant C. 

For definiteness we consider (EHi) ; proofs for the other cases are similar. 
We may assume that u > 0 and v > 0 on [b, oo) for some b ^ a, in which 
case we have by Lemma 1 u > 0, u' > 0, . . . , u{2i~l) > 0 on [Z>2, oo) 
for some b2 ^ b and «<*> > 0, w(2'+1) < 0, w(2<+2) > 0, . . . , w<»-i> < 0, 
on [6, oo), and v > 0, v' > 0, . . . , v<2'+2*-1> > 0, on [Z>2, oo) and 
v<2i+2*> > o, v(2'+2Ä+1) < 0, v(2'+2*+2) > 0, . . . , v(w-!> < 0, on[b, oo). 
I fC ^ 0,th3nw > 0on[Z>2, oo). IfC < 0,thenw™+2k~l) > Oon [b2, oo) 
and H> cannot be oscillatory. Hence, w is nonoscillatory for any constant 
C and w e At for some /, 0 ^ / S n/2, by Lemma 1. For 2/ ^ / ^ 
2/ 4- 2k — 2, v(/)(x) -• oo as x -> oo while |w(/)| is bounded on [b, oo); 
thus eventually w(n(x) > 0 as x -> oo. Similarly, v(2/+2*_1) > 0 and 
monotonically increasing on [Z>2, oo) while M<2*+2*-I> < o a n ( j monotoni-
cally increasing. In fact, u{2i+2k~l){x) -» 0 as x -> oo. If this were not 
the case, we could find a positive constant k such that u{2i+2k~l) < — k 
on [b, oo) and conclude by integration that um+2k~2) is eventually 
negative. However, this is impossible since u{2iJr2k~2) > 0. Consequently, 
w{2i+2k~l)(x) > 0 for sufficiently large x, and therefore w e Ahj ^ / + k. 
To complete the proof, it suffices to show that w e AJ9 j < i + k -h I. 
Evidently, v(2'+2Ä+1) < 0 and u{2i+2k+l) < 0 are monotonically increas
ing, and we conclude as in the case of w(2,+2Ä_1) that v(2*+2*+1) (x) -> 0 
and w(2,+2Ä+1)(x) -• 0 as x -» oo. This means that w{2ï+2k+l)(x) -+ 0 as 
x -• oo. Moreover, >y<2i+2*+i> and w(2ï+2A+2) are eventually of constant 
sign because w is a nonoscillatory solution of (EiH). Hence sgn w{2i+2k+l) 

# sgn w{2i+2k+2) eventually, which implies w e Aj,j < i + k + I. 
It is well-known that equation (E) is k — (n — k) disfocal if and only 

if its adjoint equation is (n — k) — k disfocal [10, 12]. Therefore, the 
self-adjoint equation 

(34) y<M + py = 0 

is k — (n — k) disfocal if and only if it is (n — k) — k disfocal. Recalling 
that A[k/2-] is nonempty if and only if equation (E) is eventually k — 
(n — k) disfocal on [a, oo] (provided (P) is assumed), we conclude from 
Theorem 5 that 
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(35) q(Ak/2-}) = q(A(n-k)/2i) 

for (34), provided (P) holds on [a, oo). If all the classes Aj are nonempty 
for (E), then ZI^O^) = n by Theorem 5 and (E) has a fundamental system 
of solutions F = {yl9 y2, . . . , yn} such that every linear combination of 
them is nonoscillatory, i.e., (E) is nonoscillatory. For example, we choose 
for (Eüi), yx G AQ, y2h y2j+i G ^ / s u c n that every nontrivial linear com
bination of y2j and y2J+1 belongs to Aj, j = I, 2, ..., (n — 2)/2, and 
J» e ^»/2« This choice yields a desired system for (EiH) by the earlier re
mark. Thus, one of the classes Aj must be empty if (E) is oscillatory. In 
particular, if the equation 

(36) y* + py = 0,p>0, 

is oscillatory on [a, oo), either A0 or A± must be empty. In view of (35), 
we further deduce that both A0 and Ax are empty. But every nonoscillatory 
solution of (36) belongs to A0 [} Ax by Lemma 1. Therefore, every solu
tion of (36) is oscillatory if (36) is oscillatory. This result was obtained 
earlier by Leighton and Nehari [9]. 

It is also known that if yiv + py = 0, p < 0, is oscillatory on [a, oo), 
it has three linearly independent oscillatory solutions [1]. The present 
method enables us to extend the above results on the fourth-order equa
tions to the higher-order equation (34) with m ^ 2. Consider the case 
p > 0. If (34) is oscillatory, A[k/2] is empty for some odd k (recalling the 
parity condition for (EJ). If, in addition, m is even, then [k/2] ^ 
[(2m - k)/2] for all odd k and q(AW2i) = q(Ali2m-k)/2i) = 0 for at least 
one k by (35), i.e, there are at least two distinct classes that are empty. 
Suppose that Ajv . . . , Ajr, j \ < j2 < • • • < j n are nonempty while the 
other classes are empty. Then q(AJt) = 2, i = 1, 2, . . . , r, by Theorem 
5; let y2i-i, y2ieAj.be such that every nontrivial linear combination 
again belongs to Aji9 i = 1,2, . . . , r. Evidently, yl9 . . . , y2r are linearly 
independent and can be extended to a fundamental system yl9 . . . , y2r, 
J2r+i> • • • •> JV We may assume that y2r+u • • • •> yn

 a r e oscillatory solu
tions: If y{ is nonoscillatory for some /, 2r 4- 1 ^ i ^ n, then yt> e AJs for 
some 5, 1 ^ s ^ r. Due to Theorem 5, there exist constants c2s-i and c2s 

such that yt — c2s-i.y2s-i ~~ C2^2s e^ t n e r *s oscillatory or else belongs 
to Ajl for some l,l<s. If it is oscillatory, we replace^- by y{ — c2s-i J25-1 
— c2sy2s in the fundamental system. If it is nonoscillatory, we may repeat 
a similar argument as many times as necessary and conclude that 

2r 

w* = yi - L cjyj 
y=i 

is oscillatory for some constants cl5 . . . , c2r. Again, we may replace y{ by 
w{ in the fundamental system. Since A[k/2i and Ai{2m-k)/2i a r e empty, 
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n — 2r ^ 4 and (34) has at least four linearly independent oscillatory 
solutions. The proof is similar if m is odd but m ^ k. However, if m = &, 
then AW2i = Ai{2m-k)m a n d the preceding argument only shows that 
(34) has at least two linearly independent oscillatory solutions wl and w2. 
If in addition AQ is empty, then there are at least two empty classes and 
we may again conclude that (34) has at least four oscillatory solutions. 
If A0 is nonempty, let yx, y2 e A0 be such that every nontrivial linear 
combination of yi and y2 again belongs to A0. We assert that there exists 
a nonzero constant Kx such that y1 — K1w1 is oscillatory on [a9 oo). If this 
were not true, fK = yx — KWX would be nonoscillatory for any constant K. 
Assume that yx > 0 on [b, oo). Since yx is a solution of (34) with p > 0 
and belongs to the class A09 y[ > 0, y[ < 0, y{' > 0, . . . , y{2m~^ > 0 
on [6, oo). For n > 0 [< 0] we can find a sequence ( p j of real numbers 
with p{ -> oo as / -» oo such that Wi(p,-) > 0 [< 0], / = 1, 2, . . . , because 
Wi is an oscillatory solution of (34). Hence, fXpò < 0 for all / and fl 
cannot be positive throughout any interval of the form [c, oo); thus 
fK e A0 for any constant K. Choose K > 0 such that fK(%) = fK(y) = 0 
for some £ and 77, b g £ < rj < oo, and / ^ > 0 on (77, 00). Then/# e A0 

and /^(T?) 9e 0 by Lemma 1. Since fK > 0 on (77, 00), f^iy) # 0 implies 
7̂ (77) > 0; for this reason we may assume that fK < 0 on (£, 77). Let 
K — sup (7, where G = {K \fK ^ 0 on [£, 77]). Evidently, G is nonempty, 
j ^ > K > 0, and there exists a point r e (£, 7;) such thaty^(r) = /^(r) = 0 
and/# > 0 on (r, 77]. Moreover, / ^ > 0 on [77, 00) because K > K > 0. 
Consequently, /#(?•) = fg(z) = 0, /# ^ 0 on [r, 00) and fg e A0. But this 
is contrary to Lemma 1 and proves that fKl = yx — J^H^ is oscillatory 
for some constant K\. In a similar manner we may prove that j 2 — ^2wi 
is oscillatory for some constant K2. We thus have four linearly independ
ent oscillatory solutions wl5 w2, Ji — ^ ì ^ i , and y2 — Ä^vî . 

Using essentially the same argument, we can prove that if (34) with 
p < 0 and m ^ 2 is oscillatory, it has at least 3 or 5 linearly independent 
oscillatory solutions according as m is even or odd. Also if the odd-order 
equation j;<2m+n + ^ = 0, w ^ l , is oscillatory on [a, 00), it has at 
least 2 or 3 linearly independent oscillatory solutions according as p < 0 
or/? > 0. 
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