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THE REDUCED THEORY OF QUADRATIC FORMS
RON BROWN!
MURRAY MARSHALLZ

Two central problems in the theory of quadratic forms over fields are
the computation of the set of equivalence classes of quadratic forms over
a field (which reduces to the computation of the Witt ring) and the com-
putation of the set of values taken on by a given quadratic form (or
equivalently, the determination of when a given quadratic form repre-
sents zero nontrivially). Recently, a “reduced theory” of quadratic forms
has provided a partial solution to these problems by the computation of
the Witt ring modulo its nil radical and the computation of the additive
semigroup generated by the value set of a quadratic form. Our intention
here is to provide an efficient and fairly self-contained exposition of these
results to the reader knowing the rudiments of the algebraic theory of
quadratic forms (mainly, the definition of the Witt ring) and Pfister’s
local-global principle. These prerequisites can all be found in a few
chapters of either of the books of Lam, Scharlau or Milnor-Husemoller
[7, 14, 10]. The necessary valuation theory can be found, for example, in
Ribenboim’s book [13].

Some of the results and many of the arguments here are new. Little use
is made of the formalism of residue class forms and none of semiorderings.
We do emphasize real-valued places (which allow applications of the
Stone-Weierstrass theorem as well as valuation theory) and closely ex-
amine the maximal preorders over which a form is anisotropic. In spite
of innovations, however, our main goals are expository and we have
borrowed on accasion from the arguments as well as the results of others
(especially including Becker and Brocker [1]).

In §1 we introduce the notions of equivalence and isotropy of forms with
respect to a preorder. The questions of isotropy and representability with
respect to an arbitrary preorder are reduced in §2 to preorders consistent
with only finitely many real-valued places. The main theorems on the
structure of the reduced Witt ring and on representability are in §§3 and
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4, respectively. Isotropy is discussed in §5, which may be read immediately
after §2.

Throughout the paper, K will denote a formally real field. Z and R
denote the sets of integers and real numbers, respectively. “A4*” denotes
the group of units of a unitary ring 4 (so, Z* = {1, —1}). “f|B” denotes
the restriction of a map f to a subset B of its domain. Our notation
involving quadratic forms is standard. For ay, ..., a,€ K, {ay, ..., a),
will denote the equivalence(i.e., isometry)class of the form };;a;,x% and
€ay, ..., a.) = %<1, a;). p L p' denotes the orthogonal sum of
the forms p and p’. X = Xy will denote the set of orderings of K, given
the coarsest topology with X(4) = {Pe X: P 2 A} open for all finite
subsets 4 of K. X is compact and Hausdorff. (It can be regarded as a
closed subset of the product space {l, —1}£".) For P X and a form p,
signp(p) denotes the signature of p at P.

Throughout the paper, T will denote a fixed “preorder” of K, i.e.,
an additively and multiplicatively closed subset of K containing K2 =
{a?: ae K}. Let T* = T\{0}. T" is a subgroup of K* (x~! = x(x~1)?). We
will assume throughout that 7" # K. Since the form {1, —1)1is universal,
this is equivalent to assuming that —1 ¢ T, and hence that 7" is addi-
tively closed. We are mainly interested in the case that 7 is D(c0), the set
of sums of squares in K. The use of arbitrary preorderings allows in-
ductive (Zorn’s lemma) arguments. Also, much of the “local” theory
can be conveniently phrased in terms of preorders (orderings are pre-
orders and real-valued places can be thinly disguised as preorders).

1. Form theory modulo preorders. Throughout this section, p =
{ay, ..., a,y and p’ = <{by, ..., b,) denote forms over K. We let D(p)
= Ta; + +-- + Ta, denote the “T-value set of p”. The forms p and p’
are called T-similar (written p ~ p’ (mod T)) if signp(p) = signp(p’) for
all Pe X(T). They are called T-equivalent if they are T-similar and have
the same dimension. The T-equivalence class of p is denoted pr.

We now show that many basic properties of equivalence classes of
quadratic forms hold for T-equivalence classes. For more details see [2].

The reader might note our use of Pfister’s local-global principle in the
proof of our first lemma. This will be our only application of it, except for
its use in interpreting our results in the case 7 = D(0).

LeEmMMA 1.1. Let a€ K*. Then a € D1(p) if and only if pr = (Ka) L p")r
Jor some form p".

PRrOOF. (=) There exist t;e€ T with a=Ya;t;. Let a; = a; if t;, =0
and a; = a;t; otherwise. Then a is represented by <{a;, ..., a,, s0 p; =
{aj, ...,apr = (Ka) L p")y for some o [7, p. 9].

(<=) Since P+ signp(p), P < X, is continuous, there is an open set
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U 2 X(T) such that p and p” | <{a) have the same signature on U.
Since X\U is compact, it has a finite cover of the form X(—¢t), ...,
X(—t)wheret;e T.Thenp ® (¢, ..., t;) and Kay L p") ® (1, - - -5 L)
have the same signature throughout X (the signatures are zero off of U).
Pfister’s local-global principle [11, Satz 22] then says 27(p ® {f;,
.. L,)) is equivalent to 27(<a) L p") ® (t1, ..., t;) for some r. Since
a is represented by the latter form, it is represented by the former (which
has the same value set as p with respect to T') and is therefore in Dz(p).
As a corollary we obtain the following lemmas.

LemMA 1.2. If pr = pr, then D1(p) = D(p).
LemMA 1.3. (\pexnP = T.

PrOOF. “2” is obvious. If a¢ T, then by 1.2, {a) and (1) are not
T-equivalent and so have different signatures at some element of X(7).
That iS, a ¢ ﬂPEX(T) P.

LEMMA 1.4. If oy = pr, thendetp - T = detp’ - T.
This follows from 1.3 and the identity (for all P € X(T)):
(1) signp(det ,0) — (__ 1)(1/2) (Signp(p)—dim(p)).
LEMMA 1.5. If 0" is a form with (o L ")y = (o' L ")z, then pr = pr-

This follows immediately from the definition of T-equivalence. This
cancellation lemma is also valid for T-similarity classes.

We call p T-isotropic if Y a;t; = 0 for some ¢; € T, not all zero. We call
p T-anisotropic if it is not T-isotropic. It is important to note that p
T-anisotropic implies np is T-anisotropic for any positive integer 7.

LEMMA 1.6. p is T-isotropic if and only if or = ({—1,1) L p")r for
some form p".

PROOF. (<=) Since pr = (ay, —a1) L p")r, by 1.5, Cas, ..., apr =
(K=ay) 1 p")r. Hence —a; € Dr({ay, ..., a,)) by 1.2. Hence a1 +
Niait; = 0forsomet; € T.

(=) Xa;it; = 0 for some t; € T, not all zero. We may assume #; # 0
# t. Then —a; € Dp({a,, ..., a,)),s0{ay, ...,a,0r = Kay L {—ap
1 p")r for some p” (Lemma 1.1).

LEMMA 1.7. There exists a T-anisotropic form p", unique up to T-equiva-
lence, and a unique integer s Z 0 with pr = (" L s{1, —1))r.

The existence of p” and s follows from Lemma 1.6, while their unique-
ness follows from Lemmas 1.5 and 1.6.

Lemma 1.8. If p and o' are T-anisotropic and T-similar, then they are
T-equivalent.
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Proor. We may suppose dim(p) = dio(p’). Also dim(p) = signp(p’) =
signp(p’) = dim(p") (mod 2) for any P € X(T). (Since T # K, Lemma
1.3 implies X(T) is nonempty.) Hence pr = (o' L s{1, — 1))y, where s =
(1/2) (dim g — dim p’). Since p is T-anisotropic, we must have s = 0
(Lemma 1.6).

The reader should note that, as expected, the calculation of the value
set of a T-equivalence class of quadratic forms is closely connected with
the problem of T-isotropy: a € Dr(p) if and only if { —a) | pis T-isotropic
(Lemmas 1.1 and 1.6). Further, the calculation of the set of T-equivalence
classes of forms reduces to the calculation of the set of 7-similarity classes
of (T-anisotropic) forms (Lemmas 1.7 and 1.8).

2. Reduction to semilocal theory. Let M denote the set of all places from
K to the field of real numbers R (i.e., “real-valued places”); and let M(T)
denote the set of ¢ € M satisfying ¢(T) = 0. (We shall agree that co = 0.)
The main result of this section can now be stated.

THEOREM 2.1. Let p be a T-anisotropic form of dimension n. Then p is
S-anisotropic for some preorder S 2 T with |M(S)| < n/2.

Note that the theorem says that a form g is T-isotropic if and only if
it is S-isotropic for all preorders S 2 T with M(S) finite. We will also
show in this section that a continuous map f: X(T) —» Z is “‘representable”
(by a form—see below) if and only if its restriction f|X(S) is representable
for all preorders S 2 T with M(S) finite. Further results about T-isotropy
and representability will follow from the relatively easy analysis in later
sections of the preorders S with M(S) finite.

We begin the proof of 2.1 with some basic lemmas.

LEMMA 2.2. Let ¢ be a place on K with valuation ring A. Let S be a sub-
group of K- with K2071(1) & S and o(S () A4°) additively closed. Then
S U {0} is a preorder, and —1¢ S. Now suppose o € M(T). Then —1 ¢
To~YR?),and if U is any subgroup of K- with —1 ¢ U 2 T 67 YR2), then
U U {0} is a preorder.

PRrROOF. Let a, b € S. We may assume ab~! € 4, so o(ab™! + 1) = o(s)
forsomese S () 4. Then

a + b = sb(s~Yab"! + 1)) e So7(1) & S.

Thus S is additively closed, so S |J {0} is a preorder, and —1¢ S. Now
suppose 6 € M(T). Then ¢(T) = 0,s0 —1 ¢ To~1(R2). Alsog(U ) 4°) =
o(A4) N R? which is additively closed. (If o(u) < 0, ue U, then —1 =
u(—u1) e UsY(R?) € U, a contradiction.) Thus U |J {0} is a preorder.

M is given the coarsest topology with the evaluation maps ¢ + o(a)
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- (0 € M) continuous for all ae K. Here R |J {oo} is regarded as the
onepoint compactification of R.

LEMMA 2.3. There eixsts a continuous surjection A: X — M with A(P) = ¢
if and only if 6(P) Z O (for all P€ X, 0 € M). A maps X(T) onto M(T).

PrOOF. (See 1, §6; 6, p. 259.) Let pe X. P induces an Archimedean
ordering on the residue class field, call it F, of the valuation ring {a € K:
n+aePandn — ac P for some ne Z} [8, p. 272]. There is a unique
embedding of Finto R preserving this ordering. Let ¢ be the composition
of this embedding with the canonical place K — F |J {c0}. Then s € M
and ¢(P) = 0. If ¢ # 7 € M, then o(x) # 7(x) for some x € K. We may
assume g(x) # o # 7(x) (otherwise replace x by (x + r)~1for some
appropriate integer r) and even that g(x) < 0 < 7(x) < oo (if necessary
replace x by +x + s, for a suitable reational 5). Then —x € P (otherwise
x € P, and g(x) = 0), so 7(P) £ 0. This proves the existence of A. Clearly,
if Pe X(T), then A(P) e M(T). To prove continuity note that the inverse
image under A of the subbasic open set {c € M: g(a) < 0} of M (where
ae K)is )1 X(n + a, n + a1, —a). The surjectivity assertions follow
from Lemma 2.2. (Given o € M(T), let P = U |J {0} where U is as in 2.2
with [K*: U'] = 2. Then P e X(T), A(P) = ¢. Take T = D(0) to get the
surjectivity of 1.)

LemMMA 2.4. [6, Lemma 5.13). M is compact and Housdorff. If L is any
compact subset of M, then the image of the evaluation map (),cp0 Y(R) —
C(L, R) is dense in the sup-norm.

PrOOF. The compactness of M follows from the previous lemma. The
closure of the image of the evaluation map contains all rationals and
hence all reals. Thus, by the Stone-Weierstrass theorem it suffices to show
that points are separated. Let ¢ # 7, g, 7 € L. As in the proof of Lemma
2.3, we have a € K with ¢(a) < 0 < 7(a@) < oo. Replacing a by a(l + a?)~!
if necessary, we can assume a € ﬂ p=mp {(R) (note that p(1 + a?) > 0 for
all p € M since p is real-valued). Clearly then, a separates ¢ and 7.

We now prove Theorem 2.1. There is a maximal (with respect to inclu-
sion) preorder S 2 T with p S-anisotropic (Zorn’s Lemma). Suppose
01, 09, - - ., 0, are distinct elements of M(S). Let by = 1. We claim there
exist by, ..., b, in (),ep0Y(R) such that forall 1 < i < r,

l) S + b,-_1S S+ b,'S, and

i)oyb) <0ifj < iandagid) >0
ifj > i(forallj < r).

Suppose inductively that such by, ..., b,_; have been found, where 1 <
t £ r. Applying 2.4 (with L = {o € M(S): a(b,-1) < 0} U {01, .., 7,})
we find b, € (),eyo W(R) with o(b) < 0 if o(b,_;) < 0 and with
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condition ii) above satisfied with i = ¢. If P e X(S) has b,_; ¢ P, then
A(P)(b;,—1) = 0, so by construction A(P)(b,) < 0. Hence b, ¢ P. Thus
S+ b1 S & Sh, + S(by Lemma 1.3 applied to the preorder S + Sb,)
The inclusion is proper since b, ¢ S + Sb,_;. (If b, = s + s'b,_; for
s, 8" € S, then g/(s) = oo and o,(s'b,_1/s) = 0, since g,(b;) < 0, gy(b,—1) = 0
and g(S) = 0. Butthen0 = 1 + ¢,(s'b,_;/s), a contradiction.) This proves
the claim. We may suppose b, = —1.

Set ¢; = b;b;_; for 1 < i < r.Notethatc; = b;. For1 £ i £ r,<{b;_1,
¢;ys =<1, b;>s (Lemmas 1.1 and 1.4). Repeated application of this identity
shows that {cy, ..., ¢,0s =<1, ..., 1, —1);. For each 1 < i < r there
exists a form g; over K of dimension n — 2 with p ~ g{mod S + ¢;5)
(since S + ¢;S is a proper extension of S; use Lemma 1.6). Then

p ® <ls c;‘> ~ gz' ® <l5 ci> (mOd S)
(both forms have signature zero off of X(S + ¢;S)). Hence

(2]‘ - 2) o~ Zz’ér <1’ Ci> ® o~ Z:’sr <1’ C‘,~> ® gi(mOd S)

But p and hence (2r — 2)p is S-anisotropic, so the dimension of the latter
is no more than that of };,, I, ¢;> ® g; (Lemmas 1.7 and 1.8). That is
(2r — 2)n £ 2r(n — 2). Hence r < n/2. Thus |M(S)| < n/2 as claimed.

We say f'e C(X(T), Z) is representable when there exists a form p with
J(P) = signp(p) for all Pe X(T). The computation of the set of represent-
able functions is equivalent, then, to the computation of the set of 7-
similarity classes of forms.

THEOREM 2.5. Suppose fe C(X(T), Z). Then f is representable if and only
iff | X(S) is representable for all preorders S 2 T with M(S) finite.

We begin the proof of 2.5 with a lemma.

LEMMA 2.6. Let f€ C(X(T), Z). There exists a finite set A = {ay, ..., a,}
in K with f(P) = f(P’) for all P, P' € X(T)with A (1 P = A () P'. Further,
27f is represented by Y. f.laier, - - ., a,e,) where e = (eq, - . ., €,) runs over
{1, —1}7 and f, denotes the value f takes on X(T) (\ X(aey, .. ., aye,) (and
f. = 0 if this set is empty).

Proor. The existence of 4 follows from the fact that f is uniformly
continuous. The uniformity on X(7) has a basis consisting of all sets
{(P,P"): PN A = P’ (] A} where A4 runs over the finite subsets of K. The
rest of 2.6 follows by inspection.

PrOOF OF 2.5. (compare with the proof of [1, Prop. 5.1]). Suppose
f1X(S) is representable for all S 2 7 with M(S) finite. First note that
f(P) = f(P)(mod 2) for all P, P’ € X(T). (After all,{P, P’} = X(P | P'),
and A(X(P | P)) = M(P [ P’),so by hypothesis f|{P, P’} is represent-
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able.) We may suppose that 2f is representable (by the above lemma and
induction on the least s with 25f representable), say by a T-anisotropic
form p = {ay, ..., a,). By hypothesis, for each S 2 T with M(S) finite
we can find an S-anisotropic form p(S) and a (necessarily nonnegative)
integer rg with p and 2p(S) + rs {1, —1) S-equivalent (Lemmas 1.6 and
17.). For S as above and P € X(S),

(=121 P P = (det p)P* = (—1)rsP*

(cf., formula (1) and Lemma 1.4). Since f has constant parity on X(7T),
rg = re(mod 2) holds for all preorders S, S’ 2 T with M(S) and M(S’)
finite. If rg were odd for any S 2 T with M(S) finite, rg would be odd,
and hence nonzero, for all such S. Theorem 2.1 would then say that p is
T-isotropic, a contradiction. Hence rg is even for all such S. Since a; €
Ds(p) = Ds(p(S) L rs/2<{1, —1)), for some form g(S) we have o(S) L
rs/2{1, —1), and <{a;> 1 g(S) S-equivalent. Thus <ay, ..., a,) is S-
equivalent to {a;> | 2g(S), so {—ay, a;, ..., a,) is S-isotropic for
all S with M(S) finite. Hence (Theorem 2.1), it is 7-isotropic. Thus
pr = (2{a;) L p")r for some form p’ of dimension n — 2 (Lemma 1.1).
The theorem now follows by induction on n. (The map P — 2(f(P)) —
signp(a,)), P € X(T), is represented by p’.)

The reader may wish to skip over the next three lemmas until they are
needed and proceed directly to either §3 or §5. (They are put here so that
§5 may be read directly after §2.)

For ¢ € M(T) and B € M(T), set T, = To~}(R?) and Ty = (\,ep T,
By 2.2, T, and T’y are preorders.

LeEMMA 2.7. If B is closed, then M(Tg) = B.

PrOOF. If 7 ¢ B, then by 2.4 there exists a € 771(—R2) | ((\ses
07(R?)). Thenae Tybut t(a) < 0,s0 7 ¢ M(Ty).

LemMmA 2.8. Let gy, ...,0,€ M, ay, ...,a, € K'. Suppose for all i, j,
a,a;' is a unit in the valuation ring 67*(R)a7'(R). Then for any ¢ > 0 there
existsae K withlo (1 — a,a V)| < eforalli < m.

Proor. This special case of [5, Th. 2.1A] can also be deduced as follows.
By [13, Th. 1, p. 135] there exists b € K* such that u; = a;b~1 € o7Y(R’)
for all i £ n. By Lemma 2.4 applied to L = {¢y, ..., 0,} there exists
¢ € (Joero”W(RY) such that | — ¢ < gu)odc)? <1 + ¢ for all i < n.
Take a = bc.

Let A(T) denote the (valuation) subring of K generated by | J,eu
o~ I(R).

LeEMMA 2.9. If T is the place associated with A(T), then z71(1) € T.
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ProoF. By Lemmas 1.3 and 2.3,

D) € oerryo (D) € NrexnP = T.

3. The reduced Witt ring. The set of T-similarity classes of quadratic
forms over K can be regarded in a natural way as a ring, which we will
denote by W(K/T). The operations on W(K/T) are induced by orthogonal
sum and Kronecker product, so that W(K/T) is a factor ring of the Witt
ring W(K). Indeed, if T is the set of sums of squares, D(o0), then W(K/T)
is the Witt ring modulo its nil radical [11, Satz 22]. We compute W(K/T)
here for arbitrary T in terms of basic arithmetic invariants of K, such as
its orderings and their Archimedean class groups.

For each ¢ € M(T), T, 2 T (cf., the paragraph preceeding 2.7), so T-
similarity implies 7 ,-similarity. Hence we have a natural homomorphism

0: W(KIT) — [loeray WKIT,).

0 is clearly injective (if P € X(T'), then A(P)e M(T)and Pe X(T;p))). Thus,
in order to compute W(K/T) it in some sense suffices to compute the image
of § and each of the “localizations” W(K/T,). We begin with the second of
these tasks.

PROPOSITION 3.1. Let 0 € M(T) and P € X(T,). Then the map s induced
by a(+ T,) — signp(e){a), a € K", is a ring isomorphism from the integral
group ring Z(K'[ + T,) onto W(K|T,).

Here, + 7T, denotes T¢-!(R) =T,y —T,. Thus K'/+T, is the
value group of ¢ modulo the values of elements of 7°. When T = D(c0),
W(K|T,) is naturally isomorphic to W(K,) for an appropriate ‘“‘comple-
tion” K, of K at ¢, and the isomorphism s of 3.1 is given in [6 Theorem
2.5]. Also K/ + D(0); is simply the value group of ¢ modulo squares.

Proor oF 3.1. Everything is clear except the injectivity of s. For a € K*
denote by a its image modulo + T';. Suppose a = }];n,4; € ker s, where
n;eZ and a;e K- for all i. Let y€e G = Hom(K*/+T;, Z). Let S =
{ae K: a = 0 or signp(a) = 7(a)}. Then Se X(T) (apply Lemma 2.2).
Thinking of « as a linear combination of characters on G, we have

al(y) = 2miy(a;) = ) n; signp(a;) signg(a;) = signg(s(a)) = 0.
Thus n; = 0 for all i [8, Theorem 7, p. 209].

We now turn to the computation of the image of §. For o, 7€ M(T),
let G,, = K'/T (6"} (R)z~I(R))" and let v,.: K* - G,, be the natural map.
(Thus G, is the value group of the finest common coarsening of ¢ and 7,
modulo the values of elements of T+, and v,, is induced by the valuation
map.) We have a homomorphism ¢,. = ¢%: W(K/T,) — Z/2Z(G,,) with
¢s:({a)) = v,(a) for all ae K* (cf., Proposition 3.1). The following
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theorem was proved in [6] in some special cases, and then, in general, in
(1].
THEOREM 3.2. (g,) € [l cpr(ry W(K/T,) is in the image of 0 if and only if

¢at(ga) = ¢w(gr)for allo', T€ M(T) and the map P SignP(gl (P)), Pe X(T),
is continuous.

PRrROOF. Necessity follows from the continuity of the total signature map
of a form, and the commutativity for all g, z € M(T) of the diagram

W(K|T) — W(K|T,)

l 1

W(K/Tf) I Z/2Z(Gar)

(The continuity requirement is equivalent to saying that(g,) is continuous,
if | JW(K|T,) is given the “open path topology” [6, Lemma 5.10].)

Now suppose (g,,) satisfies the above conditions. It suffices to show the
map f(P) = signp(gim), P € X(T), is representable. Let S be a preorder
containing T with M(S) = {0, 01, ..., 0,} finite. It suffices to show
f1X(S) is representable (Theorem 2.5). We induct on m, and suppose
m = 1. For each i < m set A; = o7 (R). We may (since valuation rings
lying over a given valuation ring are linearly ordered) assume that
oy, ..., O, are indexed so that Ag4d; € Agd; for 1 =i < m. Let B =
{o1, ..., 0}, so that M(Sp) = B (Lemma 2.7) has only m elements. By
induction we can find a form representing f over Si. This form may be
decomposed as

276y 207 i)

with n(y) = 0 (i.e., we have the empty sum) for all but a finite number of 7
and with b, € v, ! (y) for all i, 7. Similarly write

o091
8o = 25,2210 Kayy
where a;, € v,} (7) for all i, y. By hypothesis n(y)" = n(y) (mod 2) so we

0001
may assume n(y) = n(y) (paste on a few hyperbolic planes if necessary).
Scaling by elements of T' we may also assume that for all 4, 7, a;, and b,
have the same value in the value group of Ay4;, and hence in the value

group of AygA, for alls > 1. Hence, we can find
Ciy € Qyy o-a—l(R.z) N (m]"f_—lbtro-j_l(Rz))

for all i, y (Lemma 2.8). Then 3], ¥ ,{c;,» represents f over X(Sg) U X(S,,)
= X(S) (any ordering containing S induces ¢; for some i and hence con-
tains S,, for some 7). This completes the induction and the proof of the
theorem.

0001
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4. Representable functions. The set of representable functions in
C(X(T), Z) (cf., §2) form a subring naturally isomorphic to W(K/T). We
now apply-the structure theory in §3 to give Becker and Brécker’s crite-
rion [1, Th. 5.3] for representability. (A short more elementary proof,
valid for ab stract spaces of orderings, can be found in [9].)

A preorder S # K is called a fan if U U {0} is a preorder (i.e., is addi-
tively closed) for all subgroups U of K- satisfying —1 ¢ U 2 S°. For
example, Lemma 2.2 says T, is a fan for all ¢ € M(T).

REMARK 4.1. Suppose S is a fan. Then U (J {0} is an ordering for every
subgroup U of index two in K- satisfying —1¢ U 2 S°. Thus P ~ signp
gives a bijection from X(S) to {y € Hom(K'/S", Z*): y(—S°) = —1}.
Also W(K/S) =~ Z(K'/+ S*) by the same proof used in Proposition 3.1.
Finally, if ae K*, —a ¢ S, then S |J aS is a preorder,so S + aS =S U
aS. Each of these assertions can, in fact, be shown to be equivalent to the
assertion that S'is a fan.

THEOREM 4.2. Let fe C(X(T), Z). The following are equivalent :
(i) f'is representable,
(i1) f | X(S) is representable for all fans S 2 T with [K': §*) < o0,
(iii) X pex(s) f(P) = 0 (mod | X(S)|) for all fans S 2 T with[K*: S'] < oo.

ProoF. Clearly (i) = (ii). Now assume (ii) and let S 2 T be a fan of
finite index. We may assume fis represented by {a) for some a € K*. Then
2l pex(s) J(P) equals either + |X(S)| or 0 according asae +S ora¢ =S
(in the last case, note that exactly half the orderings of X(S)contain a, cf.
4.1). Now assume (iii). Let S 2 T be a fan. Let 4 be as in Lemma 2.6 and
assume the g; are indexed so that — S, a;S", ..., a,S  (wherem < n)isa
basis for the subspace of K*/S" spanned by —S", 4;S", ..., a,S". Since S
is a fan we can (by linear algebra) find a preorder (and hence a fan) U 2 S
with —U", a;U", ..., a,U" a basis for K'/U". Now fore = (g1, ..., &m)
in {+1}m let P, be the unique ordering in X(U U {asey, . . ., apenm}). Note
as ¢ varies, P, runs through all of X(U). For d = (dy, ..., d,) € {0, 1}~,
leta® = af! - - - a’». Then by Lemma 2.6, 27f| X (S) is represented by

2 S(P) (arer, - - oy men) = 22D f(PK@PE?)
= 21522 f(P.) signp (@)K a®)
= Y2 pexn f(P) signp(a®){a?)
= 2(Xpexan f(P) — 22 pexwy—auv) f(P)) {a®)

(where ¢ and § range over {41} and {0, 1}, respectively) which is in
27 W(K/S) by hypothesis. This shows f|X(S) is representable for all fans
S 2 T. In particular, for all 0 € M(T) we can find a form g, representing
f1X(T,). fis the map P+ signp(g;(p ). Let o, v e M(T), 0 # 7. By Theorem
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3.2, it remains only to show ¢7(g,) = ¢L(g,). Let 7, with residue class
field F, be the place associated with the valuation ring 4 = ¢~(R) z7}(R).
Let G, p,and T denote the real-valued places and the preordering which o,
7 and T'induce on F. Let P, and P, be orderings of F containing T and T,
respectively. Define S = TP, (| P;). Note —1 ¢ S. Suppose U is any
subgroup of K* such that —1 ¢ U 2 S"Then —1 ¢ 5(4 ) U). Since P,
N P.isafanin F(P, () P;hasindex 4in F")it follows that p(4 ) U)is a
preorder of F. Thus, by Lemma 2.2, U is additively closed. This proves
S is a fan. Note that Typ~(F') = Sy (F"). Since f|X(S) is represent-
able, we have

¢g;'(ga) = ¢:§r(ga) = ¢§17(g1') = ¢z;(gr)a
as required.

REMARK 4.3. A crucial step in 4.2 is the proof that “enough” fans exist.
On the other hand, there aren’t “too many”’ fans [4]. In fact, if T is a fan,
then |M(T)| =< 2 (by the claim early in the proof of 2.1) and T induces a
fan of index < 4 on the residue class field of A(T"). Additional knowledge
of the map f (such as a bound on the “»” of Lemma 2.6) can allow one to
considerably restrict the number of fans one must consider in 4.2 (iii). For
the more explicit computation of the image of the total signature map of
some special fields, see [6, 7.5].

5. Isotropy and the value set of a form. Throughout this section p = {ay,
..., a,y will denote a form over K. We let 4, denote the valuation ring of
any place ¢ on K, and K, denote the Henselization of K at ¢. Our next
theorem combines (and slightly strengthens) results of Becker, Brocker,
and Prestel on T-isotropy [5, 12, 1].

THEOREM 5.1. The following statements are equivalent:
(i) p is T-isotropic;

(ii) p is P-isotropic for all Pe X(T) and p is To~1(1)-isotropic for all
places o on K satisfying —1 ¢ o(T) and a,a; ¢ A;T" for some i, j;

(iii) p is isotropic in the real closure of K at P for all P e X(T), and p is
KZ T-isotropic in K, for all places o on K satisfying —1 ¢ o(T) and a;a; ¢
A;T" for some i, j; and

(iv) p is S-isotropic for all preorders S 2 T such that [K': S'] < 2771
and either S = K, Se€ X, or a,a; ¢ A(S)'S" for some i, j.

REMARK 5.2. A) That To—!(1) and TK? are preorders (for ¢ as in 5.1 (ii)
and (iii)) follows from Lemma 2.2. Lemma 5.4 below shows that the ques-
tion of isotropy for such preorders reduces to a corresponding (but lower
dimensional) question on the residue class field of ¢.

B) In 5.1 (ii) and (iii) one may restrict attention to those ¢ with valuation
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rings of the form AaA; for a, 8 € M(T) (see the proof of 5.1) and to those
P with a;a; € A(P) T for all i, j (otherwise consider ¢ = A(P)).

C) If [K': S°] < oo, then one can determine in a finite number of steps
whether or not g is S-isotropic. (For each of the sequences b3S", ..., b,S"
of elements of K*/S, one must test the S-equivalence of p and <1, —1,
bs, ..., b,> by computing signatures at elements of X(S).)

D) If K is an algebraic function field in one variable over Q or R, then
there are only finitely many preorders S with a,a; ¢ S°A(S)" for some i, j
and only finitely many equivalence classes of places ¢ with —1 ¢ ¢(7T') and
a;a; ¢ A; T for some i, j.

E) Each isotropy criterion in 5.1 gives at least a formal computation of
D1(p) (cf., the last paragraph of §1). A corollary is: The additive semigroup
generated by the value set of p (i.e., by D(p)) is ﬂ sDs(p) where S ranges
over all preorders of Kwith [K*: .S"] < co.

We begin the proof of 5.1 with two lemmas implicitly involving the
“residue class forms” of p [1, 3, 12]. In both lemmas, ¢ will denote a place
on K “compatible” with T, i.e., with ¢~1(1) € T. We write & for ¢(a),
ac A,, Tforo(4, N T),and pfor<ay, ...,a,)ifa; € A,foralli.

LEmMMA 5.3. Let ¢;, d;€ A, for all i < m. Then {cy, ..., c,» and
{dy, ..., d,»y are T-equivalent if {¢&;, ...,¢,y and {dy, ..., d,> are T-
equivalent.

ProOOF. Apply the definition of T-equivalence. (Note that if P e X(T)
and d € A;, then P € X(T)and signp(d) = signs(d).)

The converse of 5.3 is true, but is not needed here. For the next lemma,
note that p is T-equivalent to a form 37, 19 (b.a,;> with a;; € A4; for all
i,jand by, ..., b, representing distinct cosets in K*/A,T". (Group terms
and scale by elements of 7.) With this notation we have the following
lemma.

LEMMA 5.4. o is T-isotropic if and only if {@;1, ..., @iy is T-isotropic
for some i < m.

PROOF. (=) Suppose X33 b.a;t;; = 0for some t,; € T, not all zero. We
may assume b; = ty; = 1 and that b,a;;t;;€ A, for all i, j (scale by the
multiplicative inverse of a term of least value, and reindex). Then b,a;;t;;
¢ A, foralli > 1,s0 27Ray;t;; = 0.

(=) Immediate from Lemmas 1.6 and 5.3.

We now prove Theorem 5.1.
(i) => (iii). This is trivial.
(iii) = (ii). Clearly if p is isotropic in the real closure of Kat Pe X(T), it
is P-isotropic. Next suppose ¢ is a place as in (ii). Then p is TKZisotropic,
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and hence {d;, ..., @,y is T-isotropic for some i < m (we use the
notation of 5.4 with T replaced by To~1(1)). Hence p is To~1(1)-isotropic.
(Again apply 5.4. Note that ¢ and its extension to K, have the same residue
class field and value group, and that 7o—1(1) and TK2 induce the same
preorder and subgroup, respectively, of them.)

(ii) = (iv). Let S be a preorder as in (iv). We may suppose [K*: S°] > 2
(otherwise, p is S-isotropic by (ii), since either S = K or S € X). Then g is
To—1(1)-isotropic, where ¢ is the place associated with A(S). (Note —1 ¢
o(T), since ¢~ 1(1) € S by 2.9, and —1 ¢ S.)Since ToI(1) & S, it follows
that p is S-isotropic.

(iv) = (i). Just suppose p is T-anisotropic. Let S 2 T be a maximal
preorder with p S-anisotropic. It suffices to show S satisfies the conditions
of (iv). We use the notation of Lemmas 5.3 and 5.4, with ¢ the place
associated with A(S) and with S in place of 7 (cf., Lemma 2.9). We may
suppose n = 2, and hence that S’ # K. Let us suppose a;a; € A(S)'S" for
all i, j. We claim S € X(T). By Theorem 2.1, M(S) is finite. We may assume
a;a € A(S) for all i (scale by a;* and elements of S°). Let 7 € M(S), and just
suppose M(S) # {r}. Then L = {p e M(S): 5 # ¢ and 4.4, = A(S)}
and L' = M(S)\L are both nonempty. (Recall that the valuation rings
A,A.,n € M(T), all contain A, and hence are linearly ordered by incl_usion.)
Since S # S, (Lemma 2.7), p is Sy -isotropic. Hence pand{—1, 1, A3, .. .,
h,» are §;-equivalent for some 4; € A(S). (Lemma 1.6 and 5.4). Thus p
and {—1, 1, h, ..., h,» are S;-equivalent (Lemma 5.3). Similarly p and
(=1, 1,cs ..., ¢,y are Sy ~equivalent for some ¢, € A(S). But 4,4, =
A(S) forallpe L,y e L'. (For suppose pe L, p'e L',y # ¢.If 4,4, <
AyA,, then 4,4, & Ay A, & A(S), a contradiction. Thus 4,4, S 4,4,,
so A(S) = A,4. & A,4,, S A(S).) Hence for each /,3 < i < n, we can
find d; in

ﬂnGL hﬂ]—l(R-Z) ﬂ (ﬂnyL’ Ci"]_l(R'Z))

(Lemma 2.8). Therefore ps = (-1, 1, ds, ..., d,>s (any P € X(S) has
A(P)in L or L', hence P e X(S) or P e X(S,)). This contradicts that p is
S-anisotropic and proves that M(S) = {r}. Hence S is an ordering. (Any
two orderings containing S induce the same trivial real-valued place and
hence are equal.) Let P € X(S). Then P = §. Since p is P-anisotropic, it is
P-anisotropic (Lemma 5.4). Hence S = P € X (by the maximality of S)
andso[K': §°] £ 271

It remains to show [K': S'] < 277l in the case that a;a; ¢ A(S)S" for
some i, j. Then n(i) < nforall i < m. Hence we may suppose by induction
on n that there exist preorders S; 2 § of A(S) with (d;, ..., d;p»D
S;-anisotropic and [A(S) : S;] < 2"®~1 for all i £ m. Let Sy = A(S) if
n # m and pick Spe X(A(S)) if n = m. We may suppose a; = b; = 1.
Let I" denote the subgroup of [K'/A(S) S generated by the cosets of
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b,, ..., b,. First suppose I has dimension n — 1 as a vector space over
Z/2Z. Then n = m and a,, ..., a, represent independent cosets in
K/A(S) S". Hence there exists an ordering Sy of K containing S U {ay,

.., a,} (Lemma 2.2). Since p is clearly S,-anisotropic, S = S, and so
[K°: §°] £ 271 Now suppose dim /" < n — 1. Then either a(/) > 1 for
some i (if m # n) or dim /" < m — 1 (if m = n). Hence —1 ¢ S; for some
i = 0. Let U denote the subgroup of K- generated by the union of S, {a €
A(S)': @ € (osi=mS:}, and a subset of K- representing a basis for a
subspace of K*/A(S)S* complementary to /’. Then U |J {0} is a preorder
excluding —1 (Lemma 2.2) and p is U U {0}-anisotropic (Lemma 5.4;
the b, represent distinct cosets of K*/A(S)'U and for each i, {d;, ...,
Ay is S;-anisotropic, and hence U |J {0}-anisotropic). Hence S° = U,
and so S = U N {0} = ()S; and K'/A(S)'S" = I'. Hence the dimen-
sion of K*/S" as a Z/2Z-space is

dim K-/S"A(S)" + dim A(S)'/A(S) N S°
= dim [" + dim A(S)"/(\21S;
< (dim I" + dim A(S)'/Ss) + Y72, dim A(S)/S;
S@m—1+ Crn@) — ) =n—1
as required.
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