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THE REDUCED THEORY OF QUADRATIC FORMS 

RON BROWN1 

MURRAY MARSHALL2 

Two central problems in the theory of quadratic forms over fields are 
the computation of the set of equivalence classes of quadratic forms over 
a field (which reduces to the computation of the Witt ring) and the com
putation of the set of values taken on by a given quadratic form (or 
equivalently, the determination of when a given quadratic form repre
sents zero nontrivially). Recently, a "reduced theory" of quadratic forms 
has provided a partial solution to these problems by the computation of 
the Witt ring modulo its nil radical and the computation of the additive 
semigroup generated by the value set of a quadratic form. Our intention 
here is to provide an efficient and fairly self-contained exposition of these 
results to the reader knowing the rudiments of the algebraic theory of 
quadratic forms (mainly, the definition of the Witt ring) and Poster's 
local-global principle. These prerequisites can all be found in a few 
chapters of either of the books of Lam, Scharlau or Milnor-Husemoller 
[7, 14, 10]. The necessary valuation theory can be found, for example, in 
Ribenboim's book [13]. 

Some of the results and many of the arguments here are new. Little use 
is made of the formalism of residue class forms and none of semiorderings. 
We do emphasize real-valued places (which allow applications of the 
Stone-Weierstrass theorem as well as valuation theory) and closely ex
amine the maximal preorders over which a form is anisotropic. In spite 
of innovations, however, our main goals are expository and we have 
borrowed on accasion from the arguments as well as the results of others 
(especially including Becker and Bröcker [1]). 

In §1 we introduce the notions of equivalence and isotropy of forms with 
respect to a preorder. The questions of isotropy and representability with 
respect to an arbitrary preorder are reduced in §2 to preorders consistent 
with only finitely many real-valued places. The main theorems on the 
structure of the reduced Witt ring and on representability are in §§3 and 
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4, respectively. Isotropy is discussed in §5, which may be read immediately 
after §2. 

Throughout the paper, K will denote a formally real field. Z and R 
denote the sets of integers and real numbers, respectively. "A'" denotes 
the group of units of a unitary ring A (so, Z* = {1, — 1}). "f\B" denotes 
the restriction of a map / t o a subset B of its domain. Our notation 
involving quadratic forms is standard. For aÌ9 . . . , an e K\ <#!, . . . , d)n 

will denote the equivalence (i.e., isometry) class of the form Yl&iA and 
((«!, . . . , an} = ®?=i <1> «/>. p J_ p' denotes the orthogonal sum of 
the forms p and p. X — XK will denote the set of orderings of K, given 
the coarsest topology with X(A) = {P e X: P ü A} open for all finite 
subsets A of K. X is compact and Hausdorff. (It can be regarded as a 
closed subset of the product space {1, —1}^\) For P e X and a form p, 
signp(|o) denotes the signature of p at P. 

Throughout the paper, T will denote a fixed "preorder" of K, i.e., 
an additively and multiplicatively closed subset of K containing K2 = 
{a2: a e K}. Let T = T\{0}. T' is a subgroup of K' (x~l = x^"1)2). We 
will assume throughout that T ^ K. Since the form<l, — 1 >is universal, 
this is equivalent to assuming that — 1 <£ T, and hence that T' is addi
tively closed. We are mainly interested in the case that T is D(cc), the set 
of sums of squares in K. The use of arbitrary preorderings allows in
ductive (Zorn's lemma) arguments. Also, much of the "local" theory 
can be conveniently phrased in terms of preorders (orderings are pre-
orders and real-valued places can be thinly disguised as preorders). 

1. Form theory modulo preorders. Throughout this section, p = 
<ab . . . , any and p = <èl9 . . . , bm} denote forms over K. We let DT(p) 
= Tai + • • • + Tan denote the "TWalue set of p". The forms p and p' 
are called T-similar (written p ~ p' (mod T)) if signP(p) = signP(p') for 
all P G X(T). They are called T-equivalent if they are T-similar and have 
the same dimension. The T-equivalence class of p is denoted pT. 

We now show that many basic properties of equivalence classes of 
quadratic forms hold for T-equivalence classes. For more details see [2]. 

The reader might note our use of Pfister's local-global principle in the 
proof of our first lemma. This will be our only application of it, except for 
its use in interpreting our results in the case T = Z>(oo). 

LEMMA 1.1. Let a e K\ Then a e DT(p) if and only if pT = « Û > J_ p")T 

for some form p". 

PROOF. (=>) There exist tt e T with a=£aitt: Let a[ = a{ if t{ = 0 
and a[ = a ^ otherwise. Then a is represented by <^i, . . . , an}, so pT = 
<ai, . . . , a'n}T = «a> 1 p")T for some p" [7, p. 9]. 

(<=) Since P I-* signp^o), P e X, is continuous, there is an open set 
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U Ü X(T) such that p and p" J_ <a> have the same signature on U. 
Since X\U is compact, it has a finite cover of the form X( — ti), . . . , 
X( - /,) where t^eT. Then p ® ((tl9 . . . , /,» and «a> J_ p") ® (fa, . . . , f,)> 
have the same signature throughout X (the signatures are zero off of U). 
Pfister's local-global principle [11, Satz 22] then says 2r(p ® ((tl9 

. . . , ts))) is equivalent to 2 r«#> _L p") ® {(tl9 . . . , ts)) for some r. Since 
a is represented by the latter form, it is represented by the former (which 
has the same value set as p with respect to T) and is therefore in DT(p). 

As a corollary we obtain the following lemmas. 

LEMMA 1.2. If pT = p'T, then DT(p) = DT(p). 

LEMMA 1.3. Ç\P^X{T)P = T-

PROOF, " i f ' is obvious. If a£ T, then by 1.2, <#> and <1> are not 
T-equivalent and so have different signatures at some element of X(T). 
Thatis,tf <£p)peX(T) P. 

LEMMA 1.4. If pT = pT, then det p • T = det p' • T. 

This follows from 1.3 and the identity (for all P e X{T))\ 

(1) signF(det p) = ( - \ywi*&pV>-**W. 

LEMMA 1.5. Ifp" is a form with (p J_ p")T = (p' _L p")T, then pT = pT. 

This follows immediately from the definition of T-equivalence. This 
cancellation lemma is also valid for T-similarity classes. 

We call p T-isotropic if J^a{ti = 0 for some tt e T, not all zero. We call 
p T-anisotropic if it is not T-isotropic. It is important to note that p 
/"-anisotropic implies np is T-anisotropic for any positive integer n. 

LEMMA 1.6. p is T-isotropic if and only if pT = « — 1, 1> _|_ p")T for 
some form p". 

PROOF. (<=) Since pT = ((al9 -a{> J_ p")T, by 1.5, <a2, . . . , an}T = 
« - # i > ± P")T- Hence -ax e DT((a29 . . . , a„}) by 1.2. Hence ax\ + 
TioiaiU = 0 for some t{ e T 

(=>) Tifiti = 0 for some /,- e T, not all zero. We may assume tx ^ 0 
# t2. Then - « ! G Z) T «Ö 2 , • • •> <0)> so <a1? . . . , an}T = «#!> J_ <-fli> 
_L p'Or for some p" (Lemma 1.1). 

LEMMA 1.7. There exists a T-anisotropic form p\ unique up to T-equiva-
lence, and a unique integer s ^ 0 with pT = (p" _L s< 1, — 1 » r . 

The existence of p" and *? follows from Lemma 1.6, while their unique
ness follows from Lemmas 1.5 and 1.6. 

LEMMA 1.8. If p and p' are T-anisotropic and T-similar, then they are 
T-equivalent. 
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PROOF. We may suppose dim(p) ^ dio(jo')- Also dim(p) = signup') = 
signP(p') = dim(p') (mod 2) for any P e X(T). (Since T ^ K, Lemma 
1.3 implies X(T) is nonempty.) Hence pT — (p J_ s<l, — l » r , where s = 
(1/2) (dim p — dim pf). Since p is ^-anisotropic, we must have s = 0 
(Lemma 1.6). 

The reader should note that, as expected, the calculation of the value 
set of a T-equivalence class of quadratic forms is closely connected with 
the problem of T-isotropy : a e DT(p) if and only if {—a} _[_ p is T-isotropic 
(Lemmas 1.1 and 1.6). Further, the calculation of the set of T-equivalence 
classes of forms reduces to the calculation of the set of T-similarity classes 
of (J-anisotropic) forms (Lemmas 1.7 and 1.8). 

2. Reduction to semilocal theory. Let M denote the set of all places from 
K to the field of real numbers R (i.e., "real-valued places"); and let M(T) 
denote the set of a G M satisfying a(T) ^ 0. (We shall agree that oo ^ 0.) 
The main result of this section can now be stated. 

THEOREM 2.1. Let p be a T-anisotropic form of dimension n. Then p is 
S-anisotropic for some pre or der S Ü T with \M{S)\ ^ nj2. 

Note that the theorem says that a form p is T-isotropic if and only if 
it is S-isotropic for all preorders S Ü T with M(S) finite. We will also 
show in this section that a continuous map/ : X(T) -> Z is "representable" 
(by a form—see below) if and only if its restriction f\X(S) is representable 
for all preorders S 3 Twith M(S) finite. Further results about T-isotropy 
and representability will follow from the relatively easy analysis in later 
sections of the preorders S with M(S) finite. 

We begin the proof of 2.1 with some basic lemmas. 

LEMMA 2.2. Let a be a place on K with valuation ring A. Let S be a sub
group of K' with K'2a~l{\) Ü S and a(S f] A') additively closed. Then 
S U {0} Is a preorder, and — 1 $ S. Now suppose a G M(T). Then —1$ 
Ta~l(R'2), and if U is any subgroup of K' with — 1 $ U Ü T'a~~\R'2), then 
U U {0} is a preorder. 

PROOF. Let a, b e S. We may assume ab~l e A, so a(ab~x + 1) = a(s) 
for some s G S f] A'. Then 

a + b = sb(s-\ab-\ + 1)) G S<r\\) E S. 

Thus S is additively closed, so S U {0} is a preorder, and — 1 <£ S. Now 
suppose a G M(T). Then a(T) ^ 0, so - 1 t Ta~\R'2). Also a(U fl A') = 
o(A) fi R'2 which is additively closed. (If a(u) < 0, u G U, then — 1 = 
u{ — u~l) G Ua~\R'2) Ü U, a contradiction.) Thus U U {0} is a preorder. 

M is given the coarsest topology with the evaluation maps a •-> a(a) 
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• (G e M) continuous for all a e K\ Here R U {00} is regarded as the 
onepoint compactification of R. 

LEMMA 2.3. There eixsts a continuous surjection A: X -> M with X(P) = a 
if and only ifo(P) è 0 (for all P e X, o e M). À maps X(T) onto M(T). 

PROOF. (See 1, §6; 6, p. 259.) Let p e X. P induces an Archimedean 
ordering on the residue class field, call it F, of the valuation ring {a e K: 
n + a e P and n — a e P for some ne Z} [8, p. 272]. There is a unique 
embedding of F into R preserving this ordering. Let G be the composition 
of this embedding with the canonical place K -» F [} {00}. Then a e M 
and G(P) ^ 0. If a ^ T G M, then G(X) ^ z(x) for some xe K\ We may 
assume G(X) ^ 00 # T(X) (otherwise replace x by (x + r ) _ 1 for some 
appropriate integer r) and even that G(X) < 0 < z(x) < 00 (if necessary 
replace x by ± x 4- s, for a suitable reationals). Then —xeP (otherwise 
x e P, and o(x) ^ 0), so T(P) è 0. This proves the existence of X. Clearly, 
if P e X(T), then X(P) e M(T). To prove continuity note that the inverse 
image under A of the subbasic open set {G G M: a(ä) < 0} of M (where 
a e K)ì§ {Jn^>iX(n + a, n + a~l, —a). The surjectivity assertions follow 
from Lemma 2.2. (Given a e M(T), let P = U (j {0} where £/ is as in 2.2 
with [K-. U-] = 2. Then P e X(T\ X(P) = o. Take T = D(oo) to get the 
surjectivity of A.) 

LEMMA 2.4. [6, Lemma 5.13]. M is compact and Housdorjf. If L is any 
compact subset of M, then the image of the evaluation map Ç]a^MO~l(R) -^ 
C(L, R) is dense in the sup-norm. 

PROOF. The compactness of M follows from the previous lemma. The 
closure of the image of the evaluation map contains all rationals and 
hence all reals. Thus, by the Stone-Weierstrass theorem it suffices to show 
that points are separated. Let G ^ r, 0, z e L. As in the proof of Lemma 
2.3, we have a e AT with a(a) < 0 < z(a) < 00. Replacing a by a(l + a2)~l 

if necessary, we can assume a e f]peMp~K^) (note that p(l + a2) > 0 for 
all p G M since p is real-valued). Clearly then, a separates G and z. 

We now prove Theorem 2.1. There is a maximal (with respect to inclu
sion) preorder S Ü T with p 5-anisotropic (Zorn's Lemma). Suppose 
Gi, G2, . • -, or

 a r e distinct elements of M(S). Let b0 = 1. We claim there 
exist bÌ9 . . . , br in Ç]0^MO~\R) such that for all 1 g / ^ r, 

i) S + *,_!£ £ S + biS, and 
ii) ff/if) < 0 if y S i and Gj(bt) > 0 

if7 > /(for ally g r). 
Suppose inductively that such bh . . . , 6,_! have been found, where 1 ^ 
/ ^ r. Applying 2.4 (with L = {<J G M(S): * (* ,_I ) ^ 0} U fa, . . . , tfr}) 
we find Z>, G O^M^'H^) with ^(^) < 0 if <r(*,_i) ^ 0 and with 
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condition ii) above satisfied with i = t. If P e X(S) has bt_i $ P, then 
A(P)(*,_i) ^ 0, so by construction À(P)(bt) < 0. Hence bt $ P. Thus 
S 4- 6,_i S E So, + S (by Lemma 1.3 applied to the preorder S + Sbt) 
The inclusion is proper since bt$ S + 56^!. (If 6, = s + -s'èf-i for 
s, s' e S9 then at(s) = oo and Gt(

s'bt-ils) ^ 0, since cr,(^) < 0, at(bt_i) ^ 0 
and at(S) ^ 0. But then 0 = 1 + ot(s'bt__ils), a contradiction.) This proves 
the claim. We may suppose br = — 1. 

Set Ci = bibi-x for 1 ^ i S r. Note that c1 = ô^ For 1 g / ^ /% <6,_i> 
Q ) S = <1> ^ / ) S (Lemmas 1.1 and 1.4). Repeated application of this identity 
shows that <c1? . . . , cr}s = <1, . . . , 1, — 1>S. For each 1 ^ / g r there 
exists a form g{ over AT of dimension n — 2 with p ~ g,-(mod S + c{S) 
(since 5 + c{S is a proper extension of S; use Lemma 1.6). Then 

p ® <1, Q> ~ gf. ® <1, cf-> (mod S) 

(both forms have signature zero off of X(S + c^S)). Hence 

(2r - 2) p ~ 2 ^ r <1, c,> ® p ~ S."*- <1, C|-> ® gf<mod S). 

But p and hence (2r — 2)p is S-anisotropic, so the dimension of the latter 
is no more than that of 2 i ^ r 0> Q>®gY (Lemmas 1.7 and 1.8). That is 
(2r - 2)AI ^ 2r(/i - 2). Hence r ^ n/2. Thus |M(5)| ^ w/2 as claimed. 

We s a y / e C(AXr), Z) is representable when there exists a form p with 
f(P) = signP(p) for all Pe X(T). The computation of the set of represent
able functions is equivalent, then, to the computation of the set of T-
similarity classes of forms. 

THEOREM 2.5. Suppose f e C(X(T)9 Z). Then fis representable if and only 
ijf\X{S) is representable for all preorder s S Ü T with M(S) finite. 

We begin the proof of 2.5 with a lemma. 

LEMMA 2.6. Letfe C(X(T), Z). There exists a finite set A = {aÌ9 . . . , an} 
in K withf(P) = f(P')for all P, P' e X(T) with AC} P = AC] P'. Further, 
2nf is represented by £e/e((fli£i, . . . , anen} where e = (si, . . . ,£„) runs over 
{1, — \}n andf denotes the valuef takes on X(T) f| X(a1e1, . . . , anen) (and 

f£ = 0 if this set is empty). 

PROOF. The existence of A follows from the fact that / is uniformly 
continuous. The uniformity on X(T) has a basis consisting of all sets 
{(P, P')\ P fi A = P' fi A} where A runs over the finite subsets oîK. The 
rest of 2.6 follows by inspection. 

PROOF OF 2.5. (compare with the proof of [1, Prop. 5.1]). Suppose 
f\X(S) is representable for all S 3 T with M(S) finite. First note that 
f(P) = f(P') (mod 2) for all P, P' e X(T). (After all, {P, P'} = X(P f] P'), 
and A(X(P f] P')) = M{P fl P')>&o by hypothesis f\ {P, P'} is represent-
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able.) We may suppose that 2 / is representable (by the above lemma and 
induction on the least s with 2 s / representable), say by a /-anisotropic 
form p = (al9 . . . , an}. By hypothesis, for each S g T with M(S) finite 
we can find an 5-anisotropic form p(S) and a (necessarily nonnegative) 
integer rs with p and 2p(S) + rs <1, —1> S-equivalent (Lemmas 1.6 and 
17.). For S as above and P e X(S), 

(_l)*/2-/(P)/>. = ( d e t ^ - = ( - l ) ^ p -

(cf., formula (1) and Lemma 1.4). Since/has constant parity on X(T)9 

rs = rs/(mod 2) holds for all preorders S, S' E T with M(S) and M(S') 
finite. If rs were odd for any S ü T with M(S) finite, rs would be odd, 
and hence nonzero, for all such S, Theorem 2.1 would then say that p is 
r-isotropic, a contradiction. Hence rs is even for all such S. Since a± e 
Ds(p) = Ds(p(S) J_ rs/2<l, - 1 » , for some form g(S) we have p(S) J_ 
rs/2<l, —1», and <ax> _L g(S) 5-equivalent. Thus (a2, . . . , 0W> is »S'
équivalent to <#!> J_ 2g(5), so <— al9 a2, . . . , #w> is S-isotropic for 
all S with Af(5) finite. Hence (Theorem 2.1), it is /-isotropic. Thus 
pT = (2<Ö!> J_ p')T for some form p' of dimension n — 2 (Lemma 1.1). 
The theorem now follows by induction on n. (The map P \-+ 2(f(P)) — 
s ignai) ) , P e X(T)9 is represented by p'.) 

The reader may wish to skip over the next three lemmas until they are 
needed and proceed directly to either §3 or §5. (They are put here so that 
§5 may be read directly after §2.) 

For a e M(T) and B g M{T)9 set Ta = Ta~l(R'2) and TB = Ç\^B Ta. 
By 2.2, Ta and TB are preorders. 

LEMMA 2.7. IfB is closed, then M{TB) = B. 

PROOF. If %$B9 then by 2.4 there exists a e ^ ( - i ? * 2 ) fi ( f U * 
a-l(R'2)). Then a e ^ but T(Ö) < 0, so % $ M(TB). 

LEMMA 2.8. Let G\, . . . , an e M, aÌ9 .. .9 an e K\ Suppose for all i9 j \ 
a^aj1 is a unit in the valuation ring aT\R)aJl(R). Then for any e > 0 there 
exists a e K' with \a^ — *¥*_1)l < s for all i ^ m. 

PROOF. This special case of [5, Th. 2.1 A] can also be deduced as follows. 
By [13, Th. 1, p. 135] there exists b e K' such that u{ = afi-1 e ai\R) 
for all / ^ n. By Lemma 2.4 applied to L = {al9 . . . , an} there exists 
e e Ç)a(=L(j-l(R') such that 1 - e < at{u^at{cYl < 1 + £ for all / ^ n. 
Take a = be. 

Let A(T) denote the (valuation) subring of K generated by (J^MCT) 

a-KR). 

LEMMA 2.9. Ifz is the place associated with A(T)9 then r - 1 0 ) E T. 
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PROOF. By Lemmas 1.3 and 2.3, 

T-Hl) =fW<r>*-Kl) g f]^xmP = T. 
3. The reduced Witt ring. The set of jT-similarity classes of quadratic 

forms over K can be regarded in a natural way as a ring, which we will 
denote by W(K/T). The operations on W{KjT) are induced by orthogonal 
sum and Kronecker product, so that W(K/T) is a factor ring of the Witt 
ring W(K). Indeed, if Tis the set of sums of squares, D(co), then W(KjT) 
is the Witt ring modulo its nil radical [11, Satz 22]. We compute W(KjT) 
here for arbitrary T in terms of basic arithmetic invariants of K, such as 
its orderings and their Archimedean class groups. 

For each a e M(T), Ta Ü T(cf., the paragraph preceeding 2.7), so T-
similarity implies TV-similarity. Hence we have a natural homomorphism 

0: w(K/T) >U^M(T)W(K/Ta). 

e is clearly injective (if P e X(T), then À(P)e M(r)and Pe X{TUP))). Thus, 
in order to compute W{KjT) it in some sense suffices to compute the image 
of d and each of the "localizations" W{K\Ta). We begin with the second of 
these tasks. 

PROPOSITION 3.1. Let a e M(T) and P e X(Ta). Then the map s induced 
by a(±Ta) «-* signP(a)<a>, a e K\ is a ring isomorphism from the integral 
group ring Z(K'/ ± T„) onto W(KjTa). 

Here, ±T; denotes Ta-l(R) = T; (J -T'a. Thus K'/±T; is the 
value group of a modulo the values of elements of T\ When T = D(co), 
W{KjTa) is naturally isomorphic to W(Ka) for an appropriate "comple
tion" Ka of K at a, and the isomorphism s of 3.1 is given in [6 Theorem 
2.5]. Also K'l±D{co)'a is simply the value group of o modulo squares. 

PROOF OF 3.1. Everything is clear except the injectivity of s. For a e K' 
denote by â its image modulo ±T;. Suppose a = Txinßi^ ker s, where 
^ • e Z and a^K' for all i. Let y e G = H o m ( ^ / ± r ; , Z'). Let S = 
{a e K: a = 0 or signP(a) = ria)}. Then Se X(T) (apply Lemma 2.2). 
Thinking of a as a linear combination of characters on G, we have 

ocir) = 2 > i 7 t o ) = 2>,- sizMau signs(fl,.) = signs(s(a)) = 0. 

Thus n{ = 0 for all i [8, Theorem 7, p. 209]. 

We now turn to the computation of the image of d. For a, z e M(T)y 

let GaT = K'/T'((rl(R)T~KR)y a n d l e t V*T'- K' -+ Gar be the natural map. 
(Thus Gox is the value group of the finest common coarsening of G and r, 
modulo the values of elements of T\ and vffT is induced by the valuation 
map.) We have a homomorphism (j)az = <j)Jt\ W(K/Tff) -> Z/2Z(GffT) with 
^ a r « f l » = vffT(a) f° r all aeK' (cf., Proposition 3.1). The following 
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theorem was proved in [6] in some special cases, and then, in general, in 

[1]. 

THEOREM 3.2. (ga) e Ua^M{T) W(KjTa) is in the image of 0 if and only if 
<j>axiga) = <f>vÄgr)for alla, zeM(T) and the map P >-+ signP(gX(P)), Pe X(T), 
is continuous. 

PROOF. Necessity follows from the continuity of the total signature map 
of a form, and the commutativity for all a, z e M{T) of the diagram 

W{KjT) >W(K/Ta) 

W(K/TT) > Z/2Z(GffT). 

(The continuity requirement is equivalent to saying that(gv) is continuous, 
if Q W(K/Ta) is given the "open path topology" [6, Lemma 5.10].) 

Now suppose (ga) satisfies the above conditions. It suffices to show the 
map/(P) = signP(g;(F)), P e X(T), is representable. Let S be a preorder 
containing T with M(S) = {GQ, <7I, . . . , am} finite. It suffices to show 
f\X(S) is representable (Theorem 2.5). We induct on m, and suppose 
m ^ 1. For each / S m set A{ = aj\R). We may (since valuation rings 
lying over a given valuation ring are linearly ordered) assume that 
ai, . . . , 0m are indexed so that A0AX E AQA{ for 1 ^ / ^ m. Let B = 
{tf-i, . . . , 0m}, so that M(SB) = B (Lemma 2.7) has only m elements. By 
induction we can find a form representing / over SB. This form may be 
decomposed as 

with n(y) = 0 (i.e., we have the empty sum) for all but a finite number of y 
and with bir e v^fr) for all /, y. Similarly write 

So = XrW<°ir> 

where air e v~^{y) for all /, y. By hypothesis n{y)' = n(y) (mod 2) so we 
may assume n(y)f = n{y) (paste on a few hyperbolic planes if necessary). 
Scaling by elements of T we may also assume that for all /, 7% air and bir 

have the same value in the value group of A0Al9 and hence in the value 
group of A0AS for all s ^ 1. Hence, we can find 

cireair0oKR'2) fi ( n r = i W ( * ' 2 ) ) 

for all /, 7-(Lemma2.8). Then 2 ] r 2 ] , < Q r ) r e P r e s e n t s / o v e r X(SB) \J X(Sff0) 
= X(S) (any ordering containing S induces a{ for some / and hence con
tains Sff. for some /). This completes the induction and the proof of the 
theorem. 
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4. Representable functions. The set of representable functions in 
C(X(T), Z) (cf., §2) form a subring naturally isomorphic to W(KjT). We 
now apply the structure theory in §3 to give Becker and Bröcker's crite
rion [1, Th. 5.3] for representability. (A short more elementary proof, 
valid for ab stract spaces of orderings, can be found in [9].) 

A preorder S # K is called a, fan if U U {0} is a preorder (i.e., is addi-
tively closed) for all subgroups U of K' satisfying — 1 <£ U ü S\ For 
example, Lemma 2.2 says Ta is a fan for all a e M(T). 

REMARK 4.1. Suppose S is a fan. Then U \J {0} is an ordering for every 
subgroup U of index two in K' satisfying - l ^ t / i S ' . Thus P »-> signP 

gives a bijection from X(S) to {7- e Hom(K/S'9 Z ) : r(~s) = - 1 } -
Also W(K/S) ^ Z(K'/±S') by the same proof used in Proposition 3.1. 
Finally, if a e K', —a$ S, then S [j aS is a preorder, so S + aS = S U 
aS. Each of these assertions can, in fact, be shown to be equivalent to the 
assertion that 5 is a fan. 

THEOREM 4.2. Letfe C(X(T), Z). The following are equivalent: 
(i) / is represen table, 

(\\)f\X(S) is representable for all fans S 3 T with [K". S) < 00, 
(iii) LP^X(S)AP) = 0 (mod \X(S)\) for all fans S E Twith[K':S'] < 00. 

PROOF. Clearly (i) => (ii). Now assume (ii) and let S ü T be a fan of 
finite index. We may assume/is represented by <a> for some a e K'. Then 
Hp&x(s)f(P) equals either ± \X(S)\ or0according as A e ±S ora£ ±S 
(in the last case, note that exactly half the orderings of X(S) contain a, cf. 
4.1). Now assume (iii). Let S ^ Tbe a fan. Let A be as in Lemma 2.6 and 
assume the a{ are indexed so that —S'9 aiS\ . . . , amS' (where m g n) is a 
basis for the subspace of K/S' spanned by — £•, aiS', . . . , anS\ Since S 
is a fan we can (by linear algebra) find a preorder (and hence a fan) U Ü S 
with — £/*, flit/*, . . . , #m£/* a basis for K'jU\ Now for £ = (el9 . . . , em) 
in {± l}m let PE be the unique ordering in X(U (J {̂ î i> • • •> ^w^m})- Note 
as s varies, i% runs through all of X(U). For ö = (<5i, . . . , ôm) e {0, 1}W, 
let a0 = öf! • • • ß*p. Then by Lemma 2.6,2m/|Är(S) is represented by 

T,J(PS) ««1*1, • • -, V » l = E.Sa/tf'.XtfV) 

/(P)signF(^)<^> 

= HfàpexmAP) - ^ ^ . ^ / ( P ) ) <o»> 

(where e and 5 range over ( ± l } m and {0, 1}W, respectively) which is in 
2mW(K/S) by hypothesis. This shows f\X(S) is representable for all fans 
S ü T. In particular, for all <7 e M(J) we can find a form g, representing 
f\X(Ta).fis the mapP»-> sign^g^ ( F )). Let <j, T eM(T),a ^ T. By Theorem 
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3.2, it remains only to show <$jT(ga) = (j>J£gx)> Let 77, with residue class 
field F, be the place associated with the valuation ring A = G^iR) T~1(R). 

Let G, p, and T denote the real-valued places and the preordering which a, 
z and T induce on F. Let Pa and PT be orderings of F containing 7^ and Tf9 

respectively. Define S = Tj]~\P0 fi PT). Note — 1 <£ S. Suppose U is any 
subgroup of K' such that - 1 iU 3 S* Then - 1 £ ç(>4 f] #)• Since P , 
fi /% is a fan in FOP, fl ^ has index 4 in F-) it follows that TJ(A fi I/) is a 
preorder of F. Thus, by Lemma 2.2, £/ is additively closed. This proves 
S is a fan. Note that TT)-\F) = Sty-^F-)- Since / | Z ( 5 ) is represent-
able, we have 

as required. 

REMARK 4.3. A crucial step in 4.2 is the proof that "enough" fans exist. 
On the other hand, there aren't "too many" fans [4]. In fact, if Tis a fan, 
then \M(T)\ ^ 2 (by the claim early in the proof of 2.1) and T induces a 
fan of index ^ 4 on the residue class field of A(T). Additional knowledge 
of the map/(such as a bound on the " /1" of Lemma 2.6) can allow one to 
considerably restrict the number of fans one must consider in 4.2 (iii). For 
the more explicit computation of the image of the total signature map of 
some special fields, see [6, 7.5]. 

5. Isotropy and the value set of a form. Throughout this section p = <a1? 

. . . , a„y will denote a form over K. We let Aa denote the valuation ring of 
any place a on K, and Ka denote the Henselization of K at a. Our next 
theorem combines (and slightly strengthens) results of Becker, Bröcker, 
and Prestel on T-isotropy [5,12,1]. 

THEOREM 5.1. The following statements are equivalent : 
(i) p is T-isotropic; 
(ii) p is P-isotropic for all P e X(T) and p is Ta~l{\)-isotropic for all 

places a on K satisfying — 1 $ a(T) anda^aj $ A;T'for some i,j; 
(iii) p is isotropic in the real closure of K at P for all P G X(T), and p is 

K2
a T-isotropic in Ka for all places G on K satisfying — 1 # a(T) and a^j $ 

A"aT' for some 1,7; and 
(iv) p is S-isotropic for all preorders S 3 T such that [K' : S'] ^ 2n~l 

and either S = K, S e X, or ataj <£ A(S)'S'for some ij. 

REMARK 5.2. A) That Ta~l{\) and TK2
a are preorders (for G as in 5.1 (ii) 

and (iii)) follows from Lemma 2.2. Lemma 5.4 below shows that the ques
tion of isotropy for such preorders reduces to a corresponding (but lower 
dimensional) question on the residue class field of G. 

B) In 5.1 (ii) and (iii) one may restrict attention to those G with valuation 
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rings of the form AaAß for a, ß e M(T) (see the proof of 5.1) and to those 
P with üiüj e A(P)'T' for all i,j (otherwise consider a = À(P)). 

C) If [K' : S'] < oo, then one can determine in a finite number of steps 
whether or not p is 5-isotropic. (For each of the sequences b3S\ .. ., bnS' 
of elements of K'jS\ one must test the ^-equivalence of p and <1, — 1, 
Z>3, . . . , bny by computing signatures at elements of X(S).) 

D) If K is an algebraic function field in one variable over Q or R, then 
there are only finitely many preorders 5 with a^j <£ S'A(S)' for some /, j 
and only finitely many equivalence classes of places G with — 1 <£ G(T) and 
üiüj $ A;T' for some i,j. 

E) Each isotropy criterion in 5.1 gives at least a formal computation of 
DT(p) (cf., the last paragraph of § 1). A corollary is : The additive semigroup 
generated by the value set of p (i.e., by D(p)) is f]s^s(p) where S ranges 
over all preorders of K with [K' : S'] < oo. 

We begin the proof of 5.1 with two lemmas implicitly involving the 
"residue class forms" of p [1, 3,12]. In both lemmas, G will denote a place 
on K "compatible" with T, i.e., with G~1(1) E T. We write ä for G(O), 

a e Aff9 Tfor G{AG f| J ) , and p for (äl9 . . . , än} if a{ e A'0 for all i. 

LEMMA 5.3. Let ci9 d^eA^ for all i ^ m. Then <cl5 . . . , cm} and 
<J1? . . ., dmy are T-equivalent //<c l5 . . . , cm> and (dÌ9 . . ., dm} are T-
e qui valent. 

PROOF. Apply the definition of T-equivalence. (Note that if P e X(T) 
and d e A'ff, then P e X(T) and signed) = signp(d).) 

The converse of 5.3 is true, but is not needed here. For the next lemma, 
note that p is T-equivalent to a form Si^=iZ]y=i <^Äy) vvith a{j e A; for all 
i,j and Z>!, . . . , bm representing distinct cosets in K\A'aT\ (Group terms 
and scale by elements of T.) With this notation we have the following 
lemma. 

LEMMA 5.4. p is T-isotropic if and only if(än, . . . , äin(i)} is T-isotropic 
for some i ^ m. 

PROOF. (=>) Suppose ZI/Zly^Ay^y = Ofor some t{j e T, not all zero. We 
may assume bx = fn = 1 and that b^jt^e Aa for all /, j (scale by the 
multiplicative inverse of a term of least value, and reindex). Then b^jt^ 
i A'ff for all i> 1, so Zf^iäifty = 0. 

(=>) Immediate from Lemmas 1.6 and 5.3. 

We now prove Theorem 5.1. 
(i) => (iii). This is trivial, 

(iii) => (ii). Clearly if p is isotropic in the real closure of Kat PeX(T)9 it 
is P-isotropic. Next suppose G is a place as in (ii). Then p is 7^-isotropic, 
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and hence <âa , . . ., äinU)y is P-isotropic for some / ^ m (we use the 
notation of 5.4 with Treplaced by Ta~l{\)). Hence p is 7V-1(l)-isotropic. 
(Again apply 5.4. Note that a and its extension to Ka have the same residue 
class field and value group, and that 7cr_1(l) and TK2

a induce the same 
preorder and subgroup, respectively, of them.) 

(ii) => (iv). Let S be a preorder as in (iv). We may suppose [K". S'] > 2 
(otherwise, p is S-isotropic by (ii), since either S = K or S G X). Then p is 
Ta~l(\y\sotvop\c, where a is the place associated with A(S). (Note — 1 $ 
a(T)9 since a~\\) E S by 2.9, and - 1 $ S.) Since Ta~\\) E S, it follows 
that p is S-isotropic. 

(iv) => (i). Just suppose p is P-anisotropic. Let S ^ 7" be a maximal 
preorder with p S-anisotropic. It suffices to show S satisfies the conditions 
of (iv). We use the notation of Lemmas 5.3 and 5.4, with a the place 
associated with A(S) and with S in place of P(cf., Lemma 2.9). We may 
suppose n ^ 2, and hence that S ^ K. Let us suppose a^j e A(S)S' for 
all ij. We claim S e X(T). By Theorem 2.1, M(S) is finite. We may assume 
at-a e A(S)' for all / (scale by aï1 and elements of S'). Let z G M(S), and just 
suppose M(S) ^ {T}. ThenP = {TJ G M (S): rj # z and , 4 ^ = ^(S)} 
and Z/ = M(S)\L are both nonempty. (Recall that the valuation rings 
AVAT, r] G M(T), all contain AT and hence are linearly ordered by inclusion.) 
Since S ^ SL (Lemma 2.7), p is SL-isotropic. Hence p and < — 1, 1, Ä3, . . . , 
ÄM> are SL-equivalent for some h{ e A(S). (Lemma 1.6 and 5.4). Thus p 
and < — 1, 1, A3, .. ., AM> are SL-equivalent (Lemma 5.3). Similarly p and 
< — 1, 1, c3, . . . , O are ^-equivalent for some c{ G A(S)\ But ^ ^ ^ = 
y4(5) for all rj G L, rj e L'. (For suppose ye L, 7/ e Z/, 77' # T. If AVAV> E 
^ 7 ^ r , then ^ ^ r E ^ ' A £ M$)> a contradiction. Thus ^ ^ 4 , E ^ ^ ^ , 
so ^(S) = ArjAx E ^^4,/ E ^ (S) ) Hence for each /, 3 ^ / ^ «, we can 
find dt in 

(Lemma 2.8). Therefore ps = < —1, 1, J3, . . . , </w>s (any P G ^f(5) has 
>l(P) in L or Z/, hence P e X(SL) or P G ^(S^)). This contradicts that p is 
^-anisotropic and proves that M(S) = {r}. Hence S is an ordering. (Any 
two orderings containing S induce the same trivial real-valued place and 
hence are equal.) Let P e X(S). Then P = S. Since p is P-anisotropic, it is 
P-anisotropic (Lemma 5.4). Hence S = P G X (by the maximality of S) 
and so [#• :£ ' ] ^ 2»-i. 

It remains to show |X\* S'] ^ 2W_1 in the case that a,ay <£ .<4(S)'S" for 
some / , / Then «(/) < n for all / S m. Hence we may suppose by induction 
on n that there exist preorders S, Ü S of ,4(5) with <âa , . . . , â,-w(l-)> 
^-anisotropic and [ÂÇSyj S-] g 2w(^~1 for all / g m. Let S0 = J4(S) if 
n ^ m and pick S0 G ÀX^ÇS1)) if « = m. We may suppose ax = bi = 1. 
Let P denote the subgroup of [K'/A(SyS' generated by the cosets of 
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b2, . . . , bm. First suppose r has dimension n — 1 as a vector space over 
Z/2Z. Then n = m and a2, . . . , am represent independent cosets in 
K'/A(S)'S\ Hence there exists an ordering S* of K containing S [} {a^ 
..., an} (Lemma 2.2). Since p is clearly S*-anisotropic, S = S* and so 
[K-. S-] ^ 2n~l. Now suppose dim T7 < n - 1. Then either n(i) > 1 for 
some / (if m ^ ri) or dim r < m — 1 (if m = ri). Hence — 1 # 5,- for some 
/ ^ 0. Let (/denote the subgroup of Â ' generated by the union of 5, {a e 
A(S)". ä e Plo^^m^J» a n d a subset of if* representing a basis for a 
subspace of K'/A(S)'S' complementary to r. Then U U {0} is a preorder 
excluding —1 (Lemma 2.2) and p is U [j {0}-anisotropic (Lemma 5.4; 
the bt- represent distinct cosets of K'/A(S)'U and for each /, (âa, . . . , 
âin(i)y is ^-anisotropic, and hence U [j {0}-anisotropic). Hence S' = U, 
and so S = £7 fl {0} = f)?*=(Ä a n d K'/A(S)'S' = / \ Hence the dimen
sion of A?/S" as a Z/2Z-space is 

dim K'/S'A(Sy + dim ,4(5)7,4(5)' f] S' 

= dim r + dim ^C^Vfl&i^ 
^ (dim T7 + dim Â(S)'/Sô) + 2 £ i dim A(S)'IS; 

è (m - 1) + (2&i*(0 - 1) = n - 1 

as required. 
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