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1. Introduction. A complete group is a group with trivial center and all 
its automorphisms are inner. These are exactly the properties needed of a 
group to ensure that it is a direct factor of every group containing it as a 
normal subgroup. Groups that are direct factor of their holomorph are 
either complete or a direct product of a cyclic group of order 2 and a 
complete group without a subgroup of index 2 [5]. 

The symmetric groups Sn, n ^ 2, n ^ 6 , are the best known examples of 
complete groups [7]. If G is a direct product of non-abelian simple groups, 
then Aut G, the automorphism group of G, is complete [8]. Similarly, if G 
is finite with trivial center, then the tower of automorphism groups of G is 
finite and its final term is complete [10]. Many examples of complete 
groups are given as the holomorph of certain groups [5]. 

In this paper we get necessary and sufficient conditions for a relative 
holomorph of an abelian group A by a group 0 of automorphisms of A to 
be complete. Of course, these conditions also tell when the holomorph of a 
(necessarily) abelian group is complete. An infinite number of new infinite 
complete groups are then determined. There is considerable overlap in this 
paper to that of Rose [6]. However this paper considers the general case of 
relative holomorphs, whereas Rose restricts his attention to the finite case. 

2. Notation. In this section, we list most of the notation subsequently 
used that may have some ambiguity. We also give appropriate references 
for definitions in some cases. 

A 
a,b,c -
Aut G -
0 
a,ß 
fix 0 
A x00 -
aa 

&(G) -

- a group written additively, usually abelian 
- elements of A 
- the group of automorphisms of a group G 
- a subgroup ^ 1 of Aut A 
- elements of 0 
- all elements ae A such that aa = a for all a e 0 
- the relative holomorph of A by 0 [9] 
- the inner automorphism of A defined by aa(b) = -a + b + a 
- the center of a group G 
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F, F' — 
A\0) — 
v> * — 
v — 
Z){0,A)~ 

B\(0, A)-
H}(0,A) — 
fg — 

elements of Aut (A xd0) 
the normalizer of 0 in Aut A [9] 
elements of J^(0) 
for r) G JV{0), rj{a) = 7)cc7]~l defines fj G Aut 0 
all crossed homomorphisms from 0 to A with respect to 
the morphism y : 0 -> Aut ̂ 4 [4] 
all principal crossed homomorphisms of Z*(0, ^) 
the first cohomology group when A is abelian 
elements of Z\{0, A). 

3. The Main Results. Since complete groups must have trivial centers, we 
include this usefuls reult. 

PROPOSITION 3.1. &(A xe 0) = {(a, aa)\ae fix 0, afl G&(&)}. 

PROOF. For (a, a) G &(A x e 0), we have 

(a + ab, aß) = (b + ßa, ßa) 

for all (6, j3) G A xe0. Hence a e &(0), and if we set ß = 1, we get 
a + aft = b + a, or a = aa. Now set b = 0, and we get ßa = a for all 
/3 G 0, and so a G fix 0. 

Conversely, take a G fix 0 with aa G £T(0). For arbitrary (b, ß)e A xe 0, 
we have 

{a, aa)(ft, 0) = (a + aa6, or, /3) = (ft + a, ßaa) = (ft + /3a, /3aJ 

= (6, /3) (a, aa). 

COROLLARY 3.2. <^(^ xe 0) = {(0, 1)} i/ A/K/ ow/y 1/ 0 ^ a G fix 0 
//wp/fey aa £ &(0). 

COROLLARY 3.3. If A is abelian, then 2? (A xe0) = {(0, 1)} // and only if 
fix 0 = {0}. 

PROPOSITION 3.4. If A is abelian and A is a characteristic subgroup of 
A x Q 0, then 

Aut (Axe0) = {F\ F(a, a) = (Va + fa, Jja), (rj, f) G JT{$) X Z\{0,A)} 

and distinct pairs (7j,f) G J^(0) X Z\{0, A) yield distinct F e Aut(A x e 0). 

NOTE. We are identifying A with {(a, 1) | a e A} < A xe0. 

PROOF. For rj e JV{0), fe Z\, define F(a, a) = (rja + / a , ça). Then 

F[(a, a) (b, ß)] = F(Ö 4- aft, a/3) 

= 0?(a + aft) +Kaß)9r)(aß)) 

= (Va + 7](ab) + /(a) + r)(a)f(ß), rj{aß)) 
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= (Va + f(a) + 9(a) [V(b) + f(ß)]9 y(a)7j(ß)) 

= F(a, a) F(b9 ß). 

Here we have used the identity 7](ab) = 7j(a)7](b). 
If (0, 1) = F(a, a), then a = 1 since yj G Aut 0. Hence fa = 0 and 

97(a) = 0. But 97 G Jf(@) implies a = 0. We conclude F is a monomor-
phism. For (b/ß)e A xe 0, 

Hv-Kb - f(rl(ß)))> TKß)) = (b, ß), 
so Fe Aut (y4 x e 0). Certainly distinct pairs (r),f) yield distinct F. 

Conversely, suppose we start with FeAut(A xd0). Since A is 
characteristic in A x d $, we have F(#, 1) = (za, 1) for some monomor-
phism T: A -+ A. Also, F(0, a) = (/a, sa) where s: 0 -» 0 is an epimor-
phism and/G Z^tf), /4). (Here we compute with (a, a) = (a, 1)(0, <%) and 
(0,a/3) = (0,a)(0,/3).)From 

(0, a) (a, 1) = (aa, a) = (aa, 1) (0, a) 

one gets 

( /a -f s(a)z-(tf), 5a) = (r(aa) + f(a), sa) 

and consequently 

(3.1) s(a)z(a) = r(afl). 

If s(a) = 1, then ra = z(aa) for all a G A. Hence a = 1, and s is an auto­
morphism. 

If F-\a, a) = fr'a + / ' a , s'a), then 

(a, 1) = Fo F-i(a, 1) = Ffr'a, 1) = (rr'a, 1), 

and we conclude that z G Aut A. 
From (3.1) we get s(a) = z -a- z~l, and so ze^V(0) and s = r. Final­

ly F(tf, a) = F[(a, 1)(0, a)] = (ra + / a , fa). Certainly distinct F G 
Aut(^t x Q 0) yield distinct pairs (z,f). 

PROPOSITION 3.5. For an abelian group A and z G 0, the map 

MT:Z}(09A)^ZI(0,A) 

defined by MT(f) = z~l°fis an isomorphism and induces an isomorphism 
between B\(0, A) and B\(0, A) by restricting MT to B\(0, A). 

PROOF. Certainly Mr is a morphism. FromO = MT(f) = T_1°/,we have 
/ = 0 since z G Aut A. For fe Z{, zofeZl and Mt(z-f) = / . I f / (a) = 
(1 - f(a)) a for some a e A, then z~l Qf(a) = (1 — a)z~l(a), so MT(/) G J5{. 
As just noted,/(a) = (1 - a) ä in ZJ is the image of f(a) = (1 - r(ct))r(fl) 
in Z| . 
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PROPOSITION 3.6. If A is abelian andûx 0 = {0}, then 

V*:BI(0,A)-+A 

defined by 7)*{f) = a, where f (a) = (1 — 7)(a))a, is an isomorphism. 

PROOF. If f(a) = (1 - fj(a))a = (1 - r)(a))a', then a - af = 
fj(a) {a — a'). Since rj e Aut 0, a — a' e ûx 0 = {0}. Hence 77* is well de­
fined. Trivially 77* is a morphism. For é e ^ , g(a) = (1 — >7(a:))6 defines 
g e i?| and ?7*(g) = Ä. It is direct that 77* is injective, hence 77* is an isomor­
phism. 

We are now in a position to prove our main result. 

THEOREM 3.7. Let A be an abelian group. If A xe 0 is complete, then 
1) fix 0 = {0} ; 2) A is a characteristic subgroup of A xe0;3) H\{0, A) = 
{0}, and A) J^(0) = 0. Conversely, ifi) fix 0 = {0}; ii) A is a characteristic 
subgroup of A xe0, and iii) H\(0, A) = {0}, then Aut(A xe0) and 
A x0 Js~(0)are isomorphic. If in addition, iv) JV(0) = 0, then A xQ0 is 
complete. 

NOTE. Condition ii) is somewhat unsatisfactory since it is a property of 
Aut(y4 x 6 0) used to prove a property of Aut(A x d 0). This objection will 
be partially eliminated by theorem 3.9. 

PROOF OF 3.7. If A xe0 is complete, £?(A xd0) = {(0, 1)}, and so 
fix 0 = {0} by 3.3. Hence 1) is true. 

For F e Aut(A xd0), we get F(a, 1) = (za, na), F(0, a) = (fa, sa), 
where n: A -+ 0 and s: 0 -* 0 are morphims a n d / e Z*($, -4). Also 

(3.2) F(a, a) = (za + tf(tf)/(a), /i(a)s(a)). 

Since Fis an inner automorphism, there is a (&, /3) G A xe0 such that 

(3.3) F(a, a) = (Z>, /3)(a, a)(b, /3)"1 = (ft + ßa - ßaß~l b, ßaß~l). 

Hence n(a)s(a) = ßaß~l and so n(a) = 1 and F(a, 1) = (ra, 1). This gives 
2). 

Since 4̂ is characteristic in A x60, 3.4 applies. If rjejr(0), and 
fe Z\(0, A), then F(a, a) = (rja + /<*, 77(a)) defines an F e Aut(^f x e 0), 
and so, as in the above paragraph, 

yja + fa = b + ßa - ßaß~lb 

for some (b, ß) e A xe0. Setting a = Q,fa = (1 — /3(a))6 follows. From 
a = l, 77 = ß follows. Hence 3) and 4) hold. 

We now consider the converse. From fix 0 = {0} and 3.3, we conclude 
^(A xQ0) = {(0, 1)}. Since A is characteristic in A xd0, theorem 3.4 
tells us how to construct Aut(^ xe0). For F e Aut(^ xd0), there is a 
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unique pair (57, / ) e jr(0) x Z\. Now H\{09 A) = (0), so Z\{09 A) = 
B\{09 A). From 3.5 we get H\(09A) = (0) and Z\{09 ,4) = J?J(0, ^ ) . By 
3.6, the unique pair (rj9 / ) gives the unique pair (ç*(/), 07) e ^ x J^(0). 
Thus F~(V*(f), rj). If F - (A*(g), A), / (a) = (1 - ç(a))a, and g(a) = 
(1 - X(a))b9 then 

/ToF'(x, a) = (Vk(pc) + (7]g + fï)(a)9 rjl{a)). 

But 

bjg + /2](a) = ç[* - Â(a)è] + (a - ^o^(a)a) 

= a + 7]b — rjl(a)r){b) - rjX(<x)(a) 

= (a + 976) - çÂ(a)(fl 4- 7j(b)) 

= (1 - ^ (a )X* + VW). 

Hence 

F o F> <_» (fl + vb9 vx) = (a, 97X6, A) = 0 f ( A tfX^fe), X)eA xe Jf{0\ 

This gives an isomorphism between Aut(^4 x 0 0) and A x e J^(0). 
If JV{0) = 0, then it is direct to see that each F e Aut(y4 xe0) is 

inner. That is, 

F(a, a) = (ßa + (1 - j3(a))6, jSa) = {b + ßa - ßaß~lb9 ßaß~l) 

= (b9ß)(a9a)(b9ß)K 

Hence A x e 0 is complete. 

REMARKS 3.8. As pointed out to the author by A. Fröhlich, it is 
informative to look at the condition H\{09 A) = (0) in another way. We 
have the semidirect product A x e 0, which can be thought of as a split 
short exact sequence 

0 > A > A xe0] * 0 > 1, 
c 

where ju(a9 a) = a and £ is a morphism such that //•£ = 1. Now L,(a) = 
(h(a)9 a)9 and so 

(K«ß), aß) = Ç(a/3) = Ç(a)Ç(/3) = (*(«), cc)(h(ß)9 ß) = (h(a) + ah{ß)9 aß). 

Hence, h e Z\{09 A). Since H\{09 A) = (0), there is a c e ^ such that 
h(a) = (1 — a)c. Consequently, 

Ç(a) = ((1 - a)c, a) = (c, a ) ( - c , 1) = (c, 1)(0, a)(c, l)"1. 

Consequently, up to conjugation by elements of A9 there is only one way 
to define the required splitting map £. 



736 J. R. CLAY 

This leads to an observation that will be used later. The condition 
H\(0, A) = (0) is equivalent to the condition that any complement to 
A in A x Q0 is a conjugate of 0 in A xe0 by an element of A. This is 
exactly Satz 17.3b), Kapitel / in [2], or it can easily be proved directly. 

The following theorem is useful for constructing examples of complete 
groups, when used in conjunction with 3.7. 

THEOREM 3.9. In addition to A being abelian, suppose one of the following 
is true : 

i) 0 is regular (i.e., A xe0 is a Frobenius group), and A is finite', 
ii) Horn (4 ,0 ) = {0}; 

iii) 0 is abelian, and \-a e Aut A for some ae0; 
iv) 0 has exactly two orbits, {0} and A\{0} ; 
V)(M| , |0 | )= 1. 

Then A is characteristic in A xe0. Moreover, ifv) is true, then H\(0, A) = 
{0} also. 

PROOF. Theorem V. 8.3 of [2] gives our result if i) is valid. If F e 
Aut(A xe0) and F(a, 1) = (z(a), y](a)) as in (3.2), then yj: A -> 0 is a 
morphism. If ii) is valid, then rj(a) = 1, and so F(a, 0) = (za, 1) and A 
is characteristic in A xe0. Otherwise, 

(f(a) + s(a)z(a), s(a)rj(a)) = (f(a), s(a))(z(a), rj(a)) 

= f[(0, a)(a, I)] = f[(aa, 1)(0, a)] 

= (z(aa) + 7](aa)f(a), rj(aa)s(a)). 

Consequently, 

(3.4) s(a)r](a) = 7)(aa)s(a). 

If iii) is true, then (3.4) reduces to 

rj(a) = rj(ad) 

for all a e 0 and all a e A. Let b e A, a e 0 such that 1 — a e Aut A and 
a e A such that b = (1 — a)a. Then 

7](b) = 7][(\ - a)a] = 7)(a)r)( —oca) = 7)(d)j](aa)-l = r](a)r](a)~l = 1. 

Again, this shows that A is characteristic in A xe0. 
If iv) is true, then A is a minimal normal subgroup of A xe0. For, if 

(0, 1) ^ ( i , l ) e J c A, then (a, a)(b, \)(a, ccY1 = (ab, 1). 
If B were another minimal normal subgroup of A xe0, then A f] B = 

{(0, 1)}, so the elements of B commute with the elements of A. Hence, B 
is contained in the centralizer CAXd0(A) of A. Let (b, ß) e CAXd0(A). Then 

(a, \)(b, ß) = (b, ß)(a, 1) 
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for all (a, l). From this it follows that 

ßa = a 

for all as A. Hence ß = 1. Consequently, CAXd0(A) = A, and so we have 
the contradiction that B E A. We conclude that A is the only minimal 
normal subgroup of A x e 0. If A were not characteristic in A xe0, then 
there would be more than one minimal normal subgroup. 

Suppose now that v) is true. Then ii) is true and we have A character­
istic in A xe0. By the Schur-Zassenhaus theorem, [7, Th. 7.15] and [9, 
Th. 9.3.2], every extension of A by 0 is a semidirect product and any two 
complements of A in A x d 0 are conjugate. The remark before theorem 
3.9 allows us to conclude that H&0, A) = {0}. 

For an interesting paper on the automorphism group of relative holo-
morphs, the reader is referred to a paper by Hsu [1]. 

4. Applications. Let A be a vector space over a field K, and let 0 be all 
left multiplications by elements of A? = K\{0}. Then fix 0 = {0} if 
IATI ^ 2. Hence ^(A xd0) = {(0, 1)}. Certainly 3.9 iii) is valid, so A is 
characteristic in A x e 0. 

Suppose fe Z\(0, A). Then 

f(a) + af(ß) = f(aß) = f(ßa) = f(ß) + ßf(a) 

for all a, ß e 0 = F*. Fix ß =£ 1. Then 
f(a) = (1 - a)[/(/3)(l - fl-i] 

and s o / e 5}(0, ^) and #}(#> ^) = {0}. 
If the dimension of A over AT is greater than 1, then J^(0) contains 0 

properly. So we will restrict our attention to A = K+, the additive group 
of AT; i.e., ^ is 1-dimensional. 

For z G Aut K, the group of all field automorphisms of K, we have 
z(ab) = r(a)z"(&). So if z e 0, we would have z2 = z, hence z = 1. Hence 
0>n A u t ^ = {!}• For Î" ^ 1 and a e 0, z(ab) = z(a)z(b). Hence 7r(a) = 
r-or-r -1 andre«/T(0). (Here we are identifying elements of 0 as left 
multiplication mappings with elements of F*.) Conversely, if z e JV{0)\0, 

then z(a) = r -a-r - 1 defines z e Aut AT. In summary we have the following 
theorem. 

THEOREM 4.1. Let A be a vector space over afield K of more than two 
elements, and let 0 be the automorphisms of A given by multiplying by non­
zero elements of K. Then A.ut(A x e 0) ^ A x e J^(0) and £F(A x e 0) 
= {(0, 1)}. Hence A xe0 is complete if and only if A is l-dimensional and 
K has only one field atuomorphism. 

Let K+ x 0 K* denote the group obtained by extending the additive 
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group K+ of K by the multiplicative group K* of K with the operation 
(a, a)(b, ß) = (a + ab, a/3), and let Aut K denote the field automorphisms 
of K. Then we have the following corollary. 

COROLLARY 4.2. If \K\ ^ 2, then the short exact sequence 

1 -+ K+ xd K* -+ Aut(X+ xe K*) -> Aut A: -+ 1 

/$ # .$/?//* extfcf sequence. 

PROOF. In 4.1, /* = #+ and 0 = #*, and 

Aut(X+ x , #*) s # +
 X Ö J /*(X*) . 

Hence the insertion 1 -> £ + x e K* -• A:+ X Ö ^ (X*) gives us part of our 
desired result. 

Define p: K+ xdjV(K*) -> AutÄ'by^a, z) = f wherez(a) = z-a-z~l 

if a T̂  0, r(0) = 0. (Again, we identify elements a e K* with left multipli­
cation mappings of K+, and since z e ^V(K*), z-a-z~l can be identified with 
an element of K* if a G K*.)lt is direct to see that p is a morphism and it is 
easy to see that the kernel of p isK+ xd K*. Hence our sequence is short 
exact. 

The map j \ Aut K -+ K+ xd JV~(K*) defined by y{z) = (0, z) is a mor­
phism since Aut K E JV(K*). We have py = 1, hence the short exact 
sequence splits. 

COROLLARY 4.3. The normalizer J^(K*) of K* in Aut K+ is a semidirect 
product ofK* by Aut K\ i.e., 

\ -+ K* -+ J^(K*) -+ Aut K -> 1 

is split exact. 

PROOF. The maps p and y in the proof of 4.2 must be modified in the 
obvious way. 

As a consequence of 4.1 and 4.2, the group K+ x6 K*, for \K\ > 2, is 
complete if and only if there is only the identity automorphism of the 
field K. Fields with only one field automorphism include all the prime 
fields and all the real closed fields [3, theorem XI. 3]. The real closed fields 
seem to provide new examples of complete groups. Also the following 
class of examples seem to provide new examples of complete groups. 

Let Q be the rationals, so Q is left fixed by any automorphism of a field 
containing Q. Let A be any subset of rational numbers. To each a e A let 
na be an odd positive integer and let aa be the real na-\kv root of a. If 
B = {aa\ a e A}, then Q(B) is a field with exactly one automorphism, hence 
Q(B) yields a complete group. 
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Suppose / is an automorphism of Q(B). Then f(r) = r for all r e Q. 
For <xa e B,a%a - a = 0, hence 0 = f(0) = f(aa)

Ha - a and so 

f(aa) e {aa, aa£, aaÇ
2, ... , aa%

na~1} 

where £ = cos(27c/na) 4- / sin(2^:/«a). Since «a is odd and since f(aa) is 
real, it must be that f(aa) = <xa. Since / fixes each element of Q U B, f 
fixes each element of Q(B), and s o / = 1. 

If £ is a field with more than two elements, then 

Aut(A+ x e À:*) £ K+ xd(K* xe Aut A). 

In [6, Coro 5.6], John Rose has shown that this group is complete if ATis 
also finite. The referee of this paper has shown that this group is complete 
also when K is infinite. His proof is an application of our main theorem, 
theorem 3.7, and it is essentially given blow. 

THEOREM 4.4. Let A be a field of more than two elements. Then 
Aut(A+ x £ Â *) is complete. 

PROOF. We have that 

Aut(A+ x e A:*) S K+ x 0 (A* x e Aut A). 

Let 0 = A:* xe Aut A, so A* is a subgroup of 0, hence fix 0 = {0}. By 
theorem 3.9 iv), AT+is characteristic in K+ xe0. So by theorem 3.7, we 
only need to prove that 7/J(0, A+) = {0} and jr(0) = 0. 

In order to show that J^(0) = 0, we will first show that A* is 
characteristic in K* x e Aut A. If K* were not characteristic in 0 = 
K* x e Aut K, then 0 would have a normal abelian subgroup L such that 
L $ A*. So A* < K* L and so A*L = K*B where 1 * £ = (Aut A) fi 
A*L. 

Let F be the subfield of A consisting of all elements fixed by every mem­
ber of B. Then F* = 3f{K*B). Now K* and L are abelian normal sub­
groups of 0, so A* fi £ ^ &(K*B). Hence 

(^vx^MK* n £) = [̂ *(** n £)][*?(** n £ ) M * * n L)\ 
= [/*(A* n £)][^?'(** n LWX(K* n ^i 

for all /* , xr? G A*, all / , /x e L, since /* / (A* {] L) = /^*(K* fi £)• 
This shows that K*L/K* f] Lis abelian. 

Let 1 ^ teB. For * G A*, 

[(A* n LX*-1 *)][(** n a*o i = K** n LKXIMK* n ^x*-1 *)]. 
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Hence (K* f] L) (x"1 T(X)) T = (£* fl £ ) < » , and so 

x-h(x) eK* n L ^ &(K*B) = F*. 

Thus for each x e X, there is an Û e F such that z(x) — ax. Considering 
K as a vector space over F, then r is a linear transformation of K onto X 
such that every element of K is an eigenvector of T. So r is a scalar trans­
formation, and since r(l) = 1, we have T = 1, a contradiction. Thus we 
conclude that K* is characteristic in K* xe Aut K. 

Since K* is characteristic in K* x ö Aut X, fe JV*(K* X # Aut K) implies 
fe ^V(K*). We have seen in corollary 4.3 that 

jr(K*) ^ K* xd Aut A:. 

Hence JV(0) = 0. 
There remains to prove that H{(0, K+) = {0}. As shown in the remarks 

of 3.8, this is equivalent to showing that if L is any complement to K+ 

inK+ xe 0, then L is a conjugate of 0 by an element of K+. 
In the following argument it is useful to note that 

K+ x d(K* xd Aut K) ^ (K+ x $ K*) xeK\xiK 

and so we represent elements of G by (a+, a*, a) e K+ x K* x Aut K 
where multiplication is defined by 

(a+, a*, «)(*+, 6*, /3) = (a+ + a*a(b+), a*a(b), aß) 

and 

(a+, a*, a)- 1 = (a -Kf l* - 1 )« -^ -^ ) , a"1^*"1). a'1)-

Subgroups K+, K*, Aut K are identified by elements of the form (a+, 1, 1), 
(0, a*, 1), and (0,1, a), respectively. 

Let L be a complement to X+ in X+ x 0 0. Then L f] (X+ x e ^*) is a 

complement to K+ in K+ x e K*. Now H\(K*, K+) = {0} by an argument 
like that at the beginning of §4. Hence AT* and L f| {K+ x e K*) are con­
jugate in K+ xd K* by an element of K+. 

So we can, and do, replace L by a conjugate by an element of K+. 
Since K+ xdK* is normal in (K+ xdK*) xe Aut K, and L g ^ ( X * ) , 

and ./nX*) = Ä:* xö Aut X, we conclude that L = # * x ö Aut X and 
hence //i($> A:+) = {0}. This completes the proof of the theorem. 

The development so far provides an infinite number of new complete 
groups, but they are all infinite. We will now see that the theory also 
provides an infinite number of finite complete groups. These are special 
cases of those given by Rose [6. Th. 5.2]. 

Let us study the requirements of theorem 3.7. We need a 0 such that 
J^{0) = 0. If Q is a Sylow subgroup and 0 => ̂ T(Q), then JV{0) = 0. 
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So, as candidates for 0, let 0 = ^T(Q) for some Sylow subgroup Q. Let 
F = GF(pr), the Galois field of pr elements, with pr > 3 and p an odd 
prime. Let q # p also be an odd prime where q\ (p2r — 1). Since q\ 
\GL(2,p% there is a Sylow ^-subgroup Q of GL(2, pr). Let<2> = ^ ( Q ) . 
Since 3?(GL(2, pr)) g 0 we have fix 0 = {0}. There remains to show 
that A = F+ © F+ is characteristic in ,4 x , 0 and the H{(Q9 A) = {0}. 
By theorem 3.9, it is enough to show (\A\9 \0\) = 1, where |G| denotes 
the order of a group G. 

Now SL(2, pr) contains all elements of order p in GL(2, pr). Since 
\SL{2,pr)\ = 0 2 r - l)pr, we know that SL(2, pr) has elements of order a 
positive power of # from GL(2, /?r)- Now consider PSL(2, pr). We have 
that \PSL(2, pr)\ = ±(/>2r « i ) ^ s o ? | \PSL{2, pr)\. Now M| = p*% 
and if/? | |0|, then some element of order p in PSL(2, pr) would be in the 
normalizer of the Sylow ^-subgroup of PSL(2, pr). That this cannot be 
is an immediate consequence of Satz 8.10, Hilfssatz 8.22, and Haupt­
satz 8.27 in Kapitel II of [2]. Hence, A x 6 0 is complete. 
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