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COUNTABILITY PROPERTIES OF FUNCTION SPACES 

R. A. MCCOY 

ABSTRACT. A study is made of those function spaces which have 
such properties as first and second countability, separability, the 
Lindelöf property, and the properties of N0-spaces and cosmic 
spaces. 
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The purpose of this paper is to organize and extend results concerning 
countability properties of function spaces. The term "countability 
properties" refers to those topological properties which involve some 
countable set in their definitions, such as first and second countable spaces, 
separable spaces, or Lindelöf spaces. 

We shall be concerned with function spaces having topologies which are 
of "closed-open" form. That is, if X and Y are topological spaces, and if 
C(X, Y) denotes the space of continuous functions from X into Y9 then a 
topology of "closed-open" form is one generated by the sets of the form 
[C, V) s {/e C(X, Y) I/(C) g V}, where C is from some predetermined 
collection of nonempty closed subsets of X, and V is open in Y. We will 
call r a closed collection from X {compact collection from X, respectively) 
if it is a family of nonempty closed (compact, respectively) subsets of X; 
and we will use the notation Cr(X, Y) to denote the space C(X, Y) with 
the topology generated by the subbase {[C, V]\C e T and Vis open in Y}. 
When r consists of the singleton subsets of X, then the topology on 
Cr(X9 Y) is the topology of pointwise convergence and will be specifically 
denoted by C„(X, Y). The symbol % will then be used to mean the family 
of all singleton subsets of X. Also when r consists of the nonempty 
compact subsets of X, then the topology on Cr(X, Y) is the compact-open 
topology and denoted by CK(X, Y), and K will be used to mean the family 
of all nonempty compact subsets of X. 

The range space Y can naturally be embedded in Cr(X, Y) by associat
ing points of Y with the constant functions; and if Fis a Hausdorff space, 
then this is a closed embedding. Therefore, for a hereditary property (or a 
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closed hereditary property, if Y is a Hausdorff space), it is necessary that 
Y have this property in order that Cr(X, Y) have the property. This fact 
will then pertain to many of the properties which we will investigate. 

A collection g? of subsets of X is called a /"-network for X if whenever 
C e F and U is open in X with C E U, then there exists a P e SP such 
that C i ? i [/. A ^-network is generally called a network, We will 
call F a proper closed collection from X if F is a closed collection from X 
which is a /c-network for X; and we will call F point-proper if Z7 is a net
work. All spaces will be 7\-spaces. 

1. First and second countable spaces and metric spaces. The following 
two facts can be established in a straightforward manner (see for example 
[5, page 121]). 

PROPOSITION 1.1. If F is a point-proper closed collection from X, then 
Cr(X, Y) is a Hausdorff space if and only if Y is a Hausdorff space. 

PROPOSITION 1.2. If F is a point-proper compact collection from X, then 
(a) Cr(X, Y) is regular if and only if Y is regular, and 
(b) Cr(X, Y) is completely regular if and only if Y is completely regular. 

There is no corresponding result for normality. In fact, Borges has given 
an example in [2] of a paracompact Hausdorff (and hence normal) space 
Y such that neither CK(I, Y) nor CK(I, ßY) are normal, where I is the 
closed unit interval in the real numbers R. If Y is a regular Hausdorff 
space, then whenever Cr(X, Y) is second countable, Y is necessarily a 
second countable metric space. Conversely, if X is a locally compact 
second countable space and F is a second countable metric space, then 
Cr(X, Y) is a second countable metric space whenever F is a proper com
pact collection. This follows from 1.1, 1.2, and the following easily proved 
fact (see [7, page 152]). 

PROPOSITION 1.3. Let F be a proper compact collection from a locally 
compact Hausdorff space X. If both X and Y are second countable, then 
Cr(X, Y) is second countable. 

If Cp{X, Y) is to be first or second countable, then it will be necessary 
for X and F to have certain properties. This will be illustrated by the next 
theorem. We will say that F has the countable covering property if there 
exists a countable subset F' E F such that for every Ce F, there exist 
Cl9 ...,Cn eF' with C E d U - U Cn. 

THEOREM 1.4. Let X be a completely regular space, let Y contain a non-
trivial path, and let F be a closed collection from X. If Cr(X, Y) is first 
countable, then F has the countable covering property. 

PROOF. Let a: I -» Y be a continuous function such that a(0) ^ a(\). 
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Le t /be the constant function from X onto {a(0)}. S o / h a s a countable 
base {Wt), where each 

Wi = [cih v„] n - n [Q*„ vw-
Define T7' = {C0\ i ^ 1 and 1 ^ y ^ A;J, which is a countable subset of 
T7. Now suppose that there exists a C e / 7 such that for every i, C ^ Q, 
U ••• U C f V Let V = Y\{cc(l)}9 and note that [C, K] is a neighborhood 
of/ To get a contradiction, we will show that no W{ is contained in [C, V], 
Let i be a fixed natural number. Since X is completely regular, there exists 
a g e C ( I , r ) such that g(x) = a(l) and g{Cu U - U Ciki) = {a(0)}, 
where x is some element of C \ ( Q U ••• U Q*,)- Then g e Wh while 
g i [C, K]. With this contradiction, we see that r must have the countable 
covering property. 

If r consists of the singleton subsets of X, then r has the countable 
covering property if and only if X is countable. Also, if r consists of the 
nonempty compact subsets of X, then r has the countable covering prop
erty if and only if X is hemicompact. This concept of hemicompactness 
was introduced in [1] and means that there exists a countable family of 
compact subsets such that every compact subset of the space is contained 
in some member of this family. These facts, along with the fact that first 
countability and metrizability are countably productive properties, can be 
used to establish the following corollary of 1.4. 

COROLLARY 1.5. Let X be a completely regular space, and let Y contain a 
nontrivial path. Then 

(a) C%(X) Y) is first countable if and only if Y is first countable and X is 
countable, 

(b) C%{ X, Y) is metrizable if and only if Y is metrizable and X is countable, 
and 

(c) // QCA", Y) is first countable, then Y is first countable and X is hemi
compact. 

Part (c) of 1.5 appears in [1] for the case where Y = R. An alternate 
proof of part (b) of 1.5 is given in [4, page 273] making strong use of a 
metric on Y; however, part (a) of 1.5 does not appear there. 

There is no converse to 1.4 using first countability. However, there is a 
converse using metrizability, but only for certain kinds of T7 — which we 
introduce with the following definition. A closed collection r from X will 
be called hereditary if every nonempty closed subset of a member of T7 is a 
member of T7. The following theorem and its proof are then generaliza
tions of Theorem 7 in [1] and its proof. 

THEOREM 1.6. Let f be a hereditary compact collection from X which has 
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the countable covering property. If Y is metrizable, then Cr(X, Y) is metrt-
zable. 

PROOF. Let f = {Cj be a countable subset of/7 such that for every 
C G / 7 , there exits an n such that C i Q [J - U C r Let d be a com
patible metric on Y which is bounded by 1. For each /, define p{ by pt(f, g) 
= sup {d(f(x)9 g(x)) | x e CJ . Define p by 

oo 

pif,g)=Ti2~'p,{f,g). 
t=l 

Now p is a metric on C(X, Y). 
To see that p is compatible with the topology on Cr(X, Y), let fe 

Cr(X, Y) and let B = [Dl9 FJ f| — fi [AP F»] be a basic open subset of 
C^Z, Y) containing / . Then there exists an integer m such that 

Di U - U A . S Q U - U Cm. 

Also, since each D{ is compact, there exists an e > 0 such that Ns{f{Dt)) 
g F, for each 1 ^ i g «. Now suppose that p(f, g) < e/2n. Then for each 
1 g i g /i, 

ft</, g) £ 2^(/ , g) ^ 2"p(f9 g) < e. 

Let / be between 1 and n, and let x e D{. Then for some y between 1 and m, 
x e Cj. Thus 

so that g(x) G K,-. Hence, g{Dt) ü Ff- for each /, and thus g G B. This means 
that7V£/2w(/) £ A 

Going in the other direction, let e > 0 be arbitrary. Let / be temporari
ly fixed. For each x G Ci9 there exists a neighborhood U(x) of x such 
that f(U(x)) E N£/A(f{x)). Since Cf- is compact, there exist xh ..., xÄ|. G Q 
such that Cf- E */(*i) U ••• U U(*k)- For e a c r i 7 between 1 and kh let 
C,y = T7(x7) n C„ and let K,7 = #j4(/(*/)) . 

Now let m be such that 2£»+i 2-« < e/2, and let 

W=f]f] [Cih V{j\. 

First, note t h a t / e ffby construction. Next, if g e W, then for each 1 g i 
^ m and for each z e C„ z e C„ and hence g(z) e Vi} for some 7. But 

Vu = Nt/i(fiXi)) S Ar£/2(/(z)) 

since/(z) e AU(/(*/))- Therefore ^ ( z ) , / ( z ) ) < £/2,so that ft</, g) g e/2. 
Then S j t j 2-<>,(/, *) < e/2, and thus p(f, g) < e. Therefore W g Nt(J). 
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We now have the following corollary of 1.6. 

COROLLARY 1.7. Let Xbe a completely regular space, and let Y contain a 
nontrivial path. Then CK(X, Y) is metrizable if and only if Y is metrizable 
and X is hemicompact. 

Corollary 1.7 has no analog for first countability as suggested by 1.5. 
This can be seen by letting X and Y both be the unit square in the plane 
with the order topology gotten from lexicographic ordering. This space, 
call it Z, is a first countable compact HausdorfT space which contains a 
nontrivial path. However, CK(Z9 Z) is not first countable. To see this, let 
e e CK(Z, Z) be the identity, and let { Wt) be a sequence of neighborhoods 
ofe, where each 

Wi = [c,7, v„] n ... n [ciki9 vtkt]. 
Since each CtJ is compact, we may assume that each V{j is the finite union 
of basic open sets. So for each/ andy, the set S{j = {sel\ V^ f] ({s} x / ) 
is a nonempty proper subset of {s} x /} is finite. Let S = U {St-j\ i = 1,2, 
... and j = 1, ..., &,},which is a countable subset of /. Therefore, there 
exists an s0

 e Ï\S. Let 70 be the interval (0, 1/3) in /, and let V = {s0} x I0, 
which is an open subset of Z. For each i andy, either V E V{j or V (] V{j 

— 0 . Now let <p: I -> / be a continuous function such that ^(0) = 0, p(l) 
= 1 and <p(l/3) = 2/3. Define/e C(Z, Z) by taking / « s , />) = <s> <p(0> 
if s = sQ and / « ^ , />) = <X t} if s ^ s0. If we define W = [«So, l/3>}, 
V], then eeW. Bu t / e Wt\W for each i, so that W{ g ^ f o r each /. There
fore, since { Wi} was arbitrary, e has no countable base, and hence CK(Z9 Z) 
is not first countable. 

This example raises an interesting problem. Find necessary and suffi
cient conditions for Cr(X, Y) (and in particular for CK(X9 Y)) to be first 
countable for a large class of spaces X and Y, such as X being completely 
regular and Y containing a nontrivial path. We do not have a complete 
answer to this problem, but there is an interesting analog of Theorem 1.6 
for first countability of Cr(X, Y), where we weaken the metrizabihty of Y 
to Y having a point-countable base. This is a generalization of a theorem 
in [13], and it has a similar proof. Therefore, we omit its proof, but merely 
note that it hinges on the fact that /(C) is second countable for each /e 
Cr(X, Y)and C e / 7 . 

THEOREM 1.8. Let r be a hereditary compact collection from X which has 
the countable covering property. ïf Y has a point-countable base, then 
Cr(X, Y) is first countable. 

Therefore, if A"is completely regular and if Y has a point-countable base 
and contains a nontrivial path, then CK(X, Y) is first countable if and 
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only if X is hemicompact. However, it is not necessary for Y to have a 
point-countable base in order that CK{X, Y) be first countable. This can 
be seen from the following example. As above, let Z be the unit square 
with the lexicographic ordering topology. Since we have already shown 
that Q(Z, Z) is not first countable, then we know that Z cannot have a 
point-countable base because of Theorem 1.8. But CJJ, Z) is first count
able since the image of each element of CÄ(/3 Z) lies in a vertical slice of Z. 
That is, i f / e Q(Y, Z), then/(/) is actually second countable; so an argu
ment like that in the proof of Theorem 1.8 will work to construct a count
able base for/. 

2. Separable and Lindelöf spaces. Characterizations of a function space 
being separable or Lindelöf have been given for certain classes of topolo
gical spaces. For example, Vidossich has shown in [10] that if X is a com
pletely regular space and y is a nontrivial separable convex subset of a 
locally convex Hausdorff space, then the following are equivalent. 

(1) C^X, Y) is separable. 
(2) CK(X, Y) is separable, 
(3) Zis submetrizable and has a dense subset of cardinality less than or 

equal to 2*°. 
Also, Warner showed in [11] that CK(X, R) is separable if and only if the 

topology on X is stronger than a separable metrizable topology on X\ 
for example, if Z is the union of a countable family of compact metrizable 
subsets. 

As for the Lindelöf property, Corson and Lindenstrauss showed in 
[3] that if Zis metrizable, then the following are equivalent. 

(1) C%(X, R<») is Lindelöf. 
(2) CK(X, R>) is Lindelöf, 
(3) X is separable. 

Along the same lines, Zenor showed in [12] that if X is completely regular, 
then the following are equivalent. 

(1) CxiX, R") is hereditary Lindelöf. 
(2) CJJC, Y) is hereditary Lindelöf for every second countable space Y. 
(3) X03 is hereditary separable. 

This was also shown to be true with the concepts of hereditary Lindelöf 
and hereditary separable interchanged. 

In this section we prove general results which include these latter two 
results as corollaries. We will use the same basic tool which was used 
in [12], and which we state as the following lemma. 

LEMMA 2.1. Let X, Y, and Z be topological spaces with Y second countable, 
and let f: X x Z -> Y be a function such that 

(a) fis continuous on X, and 
(b) Z has the weakest topology for which fis continuous on Z. Then, 
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( 1 ) ifX03 is hereditary Lindelöf Z is hereditary separable, and 
(2) ifX°> is hereditary separable, Z is hereditary Lindelöf. 

For the next theorem, we will need to consider a closed collection r 
from l a s a topological space. The topology on r will be the Vietoris 
topology (see for example [8]). Basic open sets in r will be those of the 
form (Uh ..., Uny s j C e f l C g ^ U - U Un and C {] U{ ^ 0 
for each /} , where Uh ..., Un are open in X. The notation T(Y) will 
refer to the space {/(C) \fe C(X, Y) and CeT} with the Vietoris topology. 
Finally, the notation T7», r°>(Y)9 and Cf(X, Y) in the following theorems 
will be used to denote the countable infinite product spaces. 

THEROEM 2.2. Let X and Y be topological spaces, and let r be a point-
proper closed collection from X such that r(Y) is second countable. Then, 

(1) ifr* is hereditary Lindelof, Cf{X, Y) is hereditary separable, and 
(2) ifT0* is hereditary separable, Cf(X, Y) is hereditary Lindelof 

PROOF. Define 0: T x C?(X, Y) - r°>(Y) as follows. If CeT and 
F = Udi^ e C?(X, Y), then take 0(C, F) = (f(C))^œ. For each CeT, 
let 0C: Cf(X, Y) -• r<»(Y) be defined by 0C(F) = 0(C, F). Also for each 
Fe Cf{X, Y), let 0F: T -> r»(Y) be defined by 0F(C) = 0(C, F). Then 
2.2 will be established if we show that 0 satisfies the hypotheses of 2.1. 

To see that each 0F is continuous, let CeT and let ' J? = 
KiKiVu •••> P*>) be a subbasic open subset of r°>(Y) containing 0F(C). 
If F = (fj)Jea9 then define W = W C i ) , — / r T O > - It is straight
forward to verify that Ce Wand that 0F{W) E B. 

For each C e T, each / e co, and each open V in F, the subbasic open 
set 7Zj\[C, V]) in Cf{X, Y) can be written 

Therefore, part (b) of Lemma 2.1 will follow if we can show that each 
0C is continuous. So with C fixed, let F = ( / J ) ^ e QJ(Jf, F) and let 
5 = 7T,«^b •••, P*>) be a basic open subset of T^Y) containing 
0C(F). Then C g / r K ^ i U — U Vk), and there exist xu ..., xke C 
such that Xjefj\Vj) for each y = 1, ..., k. Since T is point-proper, 
there exist C\, ..., Cke T with Xy e Cy E fi\Vj) for eachy. Now define 

r = [cu VU n - n [ck9 vk] n [c, ^ u - u vk\ 
Then Fe%j\V\ and 0 c ( * r W ) E Ä 

We now give a partial converse of 2.2. 

THEOREM 2.3. Le/ X be a completely regular space, let Y be a second 
countable space which contains a nontrivial path, and let T be a point-proper 
closed collection from X. Then, 
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(1) ifCf(X, Y) is hereditary Lindelof Xe0 is hereditary separable, and 
(2) ifCf(X, Y) is hereditary separable, X" is hereditary Lindelöf. 

PROOF. Define W: Cr(X, Y) x X°> -> Y°> as follows. I f / e Cr(X, F)and 
x = (xt)ieaeX»9 then take W(f x) = ( / (x , ) )^ . For e a c h / e Cr(X, Y), 
let ^ : X" -+ 7« be defined by $>(x) = r ( / x). Also for each x e X», 
let y , : Q(JT, 7) -> y« be defined by »",(/) = jf(/, x). Then 2.3 will be 
established if we show that W satisfies the hypotheses of 2.1. 

To see that each Wx is continuous, l e t / e Cr(X, Y) and let B = %i\V) 
be a subbasic open subset of Yœ containing Wx(f). If x = (xj)jGù), then 
/(x,-) G K Since T7 is point-proper, there exists a C G/1 such that x{ G C g 
/_ 1(K). Then define PF = [C, F], which contains/ It is now easy to see 

thatrx^o g B. 
Let S = {Wf(icT\V))\fs Cr{X, Y), ieco, and V is open in y}. Each 

member of S is open since W^\icj\V)) = nil(f~\V)). Finally, it remains 
to show that S generates all the open subsets of X*. So let x = (xt)iŒ(0 G 
X°>, and let B = 7cj\U) be a subbasic open subset of Xa containing x. 
Let a: I -+ y be a continuous function such that a(0) ^ a(l). Since Xis 
completely regular, there exists an fe Cr(X, Y) such that f(X) g a (7), 
/(*.) = a(0), and f(X\U) = {a(l)}. Let K = y\{a(l)}, and let W = 
Wf(%j\V)). Since x2- e / - i (K) g *7, then l e ^ i Ä 

The next two statements are then corollaries of 2.2 and 2.3. 

COROLLARY 2.4. Let X be a completely regular space, and let Y be a 
second countable space with contains a nontrivial path. Then 

(1) C%(X, Y) is hereditary Lindelöf if and only if Xw is hereditary separ
able, and 

(2) C%(X, Y) is hereditary separable if and only if X«> is hereditary 
Lindelöf. 

COROLLARY 2.5. Let Xbe a metric space, and let Y be a second countable 
space which contains a nontrivial path. Then the following are equivalent. 

(1) X is separable. 
(2) C%{X, Y) is hereditary separable. 
(3) C%(X, Y) is hereditary Lindelöf. 
(4) C%(X, Y) is hereditary separable. 
(5) C%(X, Y) is hereditary Lindelöf. 

PROOF. If X is a separable metric space, then the space of all nonempty 
compact subsets of X under the Vietoris topology is a separable metric 
space (see [8]). 

Two questions are suggested by these results. First, if X°> is hereditary 
separable (hereditary Lindelöf, respectively), is T0* hereditary separable 
(hereditary Lindelöf, respectively)? Second, if Cr(X, Y) is hereditary 
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separable (hereditary Lindelöf, respectively), is Cf{X, Y) hereditary separ
able (hereditary Lindelöf, respectively)? The converses of these questions 
are, of course, true. 

3. Cosmic spaces and X0-spaces. The concepts of cosmic spaces and 
Ko-spaces are strengthenings of the concepts of hereditary Lindelöf and 
hereditary separable spaces. A cosmic space is a regular space having a 
countable network, and an N0- space is a regular space having a countable 
AT-network (see [9]). Basic properties for these concepts include: 

(1) every separable metric space is an «0-space, 
(2) every N0-space is a cosmic space, 
(3) every cosmic space is both hereditary Lindelöf and hereditary 

separable, and 
(4) every first countable K0-space is a separable metric space. 
Michael showed in [9] that if X and Y are cosmic spaces, then C%{X, Y) 

is a cosmic space; and that if Xand Y are K0-spaces, then CK(X, Y) is an 
«o-space. In fact, when X is completely regular, the following are equiv
alent. 

(1) CK(X, R) is a cosmic space. 
(2) CK(X, R) is an N0-space. 
(3) XìSSLYÌ^Q-SpSLCQ. 

Also, when X is completely regular, C%(X, R) is a cosmic space if and 
only if X is a cosmic space. On the other hand, CK(X, R) is an K0-space 
if and only if X is countable. 

In this section we consider closed-open topologies for more general 
compact collections T7. The key concept here is that of what we shall call 
a r-cosmic space, where T7 is a compact collection from the space. By this 
we mean a space X having a countable /^-network. If r is point-proper, 
the concept of a ^-cosmic space is intermediate between the concepts of a 
cosmic space and an K0-space; but it may not be strictly intermediate. 
For example, if 2 denotes the nonempty compact countable subsets of the 
space, then Guthrie has shown in [6] that a regular space is a J-cosmic 
space if any only if it is an «-space. 

If r is a compact collection from X, then f will be called countably 
full if whenever C e / 7 and D is a compact subset of Xcontaining C such 
that D\C is countable, then DeT. Also, if X and Y are spaces and A is 
a compact collection from Y, then the notation A~l(X) will stand for the 
compact collection {C|C is a compact subset of X such that/(C) e A for 
every/e C(X, Y)}. The notation A~l will be used for A~l(X) if JTis under
stood. 

THEOREM 3.1. Let r and A be compact collections from spaces X and Y, 
respectively, such that T7 E A~l(X) and A is countably full. If X is a T7-
cosmic space and Y is a A-cosmic space, then Cr(X, Y) is a cosmic space. 
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PROOF. Let 0> be a countable /"-network for X, and let y be a countable 
J-network for Y. We may assume without loss of generality that gp is 
closed under finite intersections. Let 3F = {[P, S] | Peg* and S G ^ } . 
Now let C e / 7 , let F be open in Y, and l e t / e [C, K]. We shall find P e ^ 
and S e ^ such that C g P, S g V, and / (P) g S. Then fe [P, S] g 
[C, F], so that ^ would generate a countable network for Cr(X, Y). 

Let {Pw} be the members P of ^ such that C g P g f~\V\ and let 
{5W} be the members of £f which are contained in V. Suppose that for 
each n, there exists an xn e Px f| ••• f| Pn such that f(xn)£Sn. Then 
let y4 be the union of C and the sequence {xn}. It can be seen that {xn} 
is eventually in each neighborhood of C, so that A is compact. Since A is 
countably full,/(^) G J ; and since A g / _ 1 (K) , / (^ ) g V. Thus for some 
A:, f(A) g S* g K. But/(x^) <£ S ,̂ which is a contradiction. Therefore, there 
exists an n such/(Pi fi — fi Pn) E S"», so that P = Px fl — fl ^« 
and S = Sn are the desired elements of @> and ^ . 

The converse of 3.1 is not true without some restrictions. For example, 
let X be a connected space which is not a cosmic space (say not separable), 
and let F be a cosmic space which is totally disconnected (say the ration-
als). Then CZ(X, Y) is homeomorphic to Y, and hence, is a cosmic space. 

THEOREM 3.2. Let X be a completely regular space, let Y contain a non-
trivial path, and let Pbe a compact collection from X. IfCr(X, Y) is a cosmic 
space, then X is a r-cosmic space. 

PROOF. Let &> be a countable network for Cr(X, Y), and let a : / -> Y 
be a continuous function such thata(O) ^ a(l) . Also let A = a(I), and 
let F = {fe Cr(X, Y) \f(X) g A}. For every P G &>, let P* = {x G Z | 
a_1g(x) > 0 for every g G P fi P}. To see that {P* | P G ^ } is a P-network 
for X, let C G P and let £/ be open in X with C g £/. Since ^ is completely 
regular, there exists a continuous function ß: X -> /such that /3(C) = {1} 
and j8(*\l0 = {0}. Let / = a ° ß, and let V = Y\{a(0)}. Now / e [C, F], 
so that there exists a P G ^ such that/G P g [C, K]. To see that C g P*, 
let x G C. If g G P p /% then g(C) ^ V Ç] A, so that g(x) eV Ç\ A. Thus 
g(x) G ̂ 4\{a(0)}, so that a~lg(x) > 0, and hence x G P*. Finally, to see 
that P* g U, let x G P*. Then, since/G P f] F, crlf(x) > 0. Thus/(x) G 
A\{a(0)} g V, so that since/(Z\C/) = {a(0)}, then x e [ / . 

As a corollary of 3.1 and 3.2 we have the following. 

COROLLARY 3.3. Let X be a completely regualr space, and let Y be an 
Xq-space which contains a nontrivial path. Then 

(1) CK(X, Y) is a cosmic space if and only ifXis an X0-space, and 
(2) CZ(X, Y) is a cosmic space if and only ifX is a cosmic space. 
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As in section 2, we can consider a compact collection r from X as a 
topological space by putting the Vietoris topology on it. Using this to
pology, we have the following relationship. 

THEOREM 3.4. Let r be a compact collection from X. If T is a cosmic 
space, then X is a r-cosmic space. Conversely, if r is hereditary and X is 
r-cosmic space, then r is a cosmic space. 

PROOF. Let 0> be a countable network for F . To see that {U P I P e &} 
is a F-network for X, let C e r and let U be an open subset of X with C E 
U. Then < U} is an open neighborhood of the element C in F , so that there 
exists a P e ^ such that CeP Q <t/>. Clearly C g U P and U P E tt 

Conversely, let ^ be a countable F-network for Z. For each Äl5 ..., 
£w e « , let (Äb ..., Rn)* = {Ci U — U Cn | for each 1 ^ i g », CteT 
and C, E -R,-}. To see that {(Ri, ..., Rn)* \ n is an integer and Rl9 ..., 
i*M e ^ } is a network for F , let CeT and let <C/b ..., Un} be a basic 
open set in r containing C. Then there exist closed subsets Q , ..., Cn 

of C such that each C\ E U{ and Q U ••• U C„ = C. Since F is hereditary, 
each Q G / 7 . SO for each i, there exists an R{ e ^ such that Ct Ü A,- E £/,-. 
Then Ce(Rh ..., JR„)*, which in turn is contained in <C/l9 ..., Un}. 

A corollary of 3.4 is that X is an K0"sPace if a n d only if the space of 
compact subsets of X is a cosmic space. 

If we use the Cantor set K, we can relate r being a cosmic space to a 
certain function space being a cosmic space. 

THEOREM 3.5. Let r be a hereditary compact collection from X. If 
Cri(K, X) is cosmic, then r is cosmic. 

PROOF. Define F = {/e Cr~i(K, X) \f{K) eF} . Since Cr-i(K, X) is cos
mic, then Fis cosmic. Also define <p: F-+ F by <p(f) = f{K). Now since X 
is cosmic (being a subspace of Cr-i(K, X)) and since a (locally) compact 
cosmic space is a (separable) metrizable space, then each element of F is 
metrizable. Therefore cp must be onto. To see that (p is continuous, let / 
e F and let (Ui, ..., Un} be a basic neighborhood of <p(f) in F . Then there 
exist closed subsets C1?..., Cn off(K) such that each Q E {/,- and Cx U ••• 
U CM = / ( * ) . Since F is hereditary,each Q G / 7 , SO tha t / - x (Q) eF" 1 . Then 
^ H [f-\CÙ U{\ fi - fi [ /" '(CJ, tfJ is an open neighborhood of/ in F 
which maps into <C/l5 ..., Un} under >̂. Therefore, ^ is continuous; and 
since the continuous image of a cosmic space is a cosmic space, then 
F i s a cosmic space. 

Now as a corollary to 3.1, 3.4, and 3.5 we have the following. 

COROLLARY 3.6. Let f be a countably full hereditary compact collection 
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from X. Then X is a r-cosmic space if and only if Cr-i(K, X) is a cosmic 
space. 

In order to determine when a function space is an K0-
sPace, we need to 

introduce the idea of a fcr-space, which is a strengthening of the concept 
of a À>space. If T7 is a compact collection from X, then X will be called 
fc^-space if the open subsets of X are precisely those sets U such that U f] C 
is open in C for every C e / 7 . For example, if r consists of all compact 
subsets, then a fc^-space is precisely a /r-space; if/7 consists of the singleton 
subsets, then a ^-space is precisely a discrete space; and if r consists of 
the compact countable subsets, then a A^-space is precisely a sequential 
space (for Hausdorff spaces). 

If r is a compact collection from X, and if X is not a fc^-space, we can 
enlarge the topology on X to turn it into a fcr-space as follows. Let kr(X) 
be the set X with the topology consisting of those subsets W of X such 
that W fi C is open in C (with respect to the topology inherited from X) 
for every CeT. Then it is easily seen that the elements of/7 are compact 
as subsets of kr(X), and that kr(X) is a &r-space. Now if kr(X) is a f-cosmic 
space, then X is a /^-cosmic space. For certain Z7, the converse of this is 
true. 

THEOREM 3.7. Le* r be a countably full compact collection from X. If 
X is a r-cosmic space, then kr(X) is a r-cosmic space. 

The proof of 3.7 is the same as the proof of Proposition 8.2 in [9], and 
involves an argument much like that used in proving 3.1. 

THEOREM 3.8. Let r be a countably full hereditary compact collection 
from X. If X is a r-cosmic space and Y is an Xo-space, then Cr(X, Y), is 
an K0-space. 

PROOF. We outline where this proof differs from that of 3.1. First, let 
<? be a countable ^-network for kr{X) (whose existence is guaranteed by 
3.7) and let Sf be a countable ^-network for Y. Instead of taking/e [C, V\ 
take a compact subset D of Cr{X, Y) contained in [C, V]. In the second 
paragraph, instead of using f~\V), use the set {x e X \f(x) e V for every 
fe D}, which can be shown to be an open subset of kr(X). Also instead 
of using the compact set/(^), use the set {f(x) | / e D and x e A}, which 
can be shown to be a compact subset of Y by using the hypotheses that 
r is countably full and hereditary. 

We can put all the above results together and make the following state
ment. 

THEOREM 3.9. Let X be a completely regular space, let Y be an tt0-space 
which contains a nontrivial path, and let f be a countably full hereditary 
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compact collection from X. Then the following are equivalent. 
( 1 ) X is a r-cosmic space. 
(2) kr(X) is a r-cosmic space. 
(3) r is a cosmic space. 
(4) Cr-i(K, X) is a cosmic space. 
(5) Cr(X, Y) is an tt0-space. 
(6) Cr(X, Y) is a cosmic space. 
(7) Cr(kr(X\ Y) is an espace. 
(8) Cp(kp(X), Y) is a cosmic space. 

Finally, we state another application of the A;r-space concept. This is 
an Ascoli theorem for the more general closed-open function space to
pologies. The proof is similar to that of the standard Ascoli theorem 
involving the compact-open topology. 

THEOREM 3.10. Let F be a subset of C{X, Y), and let T be a compact col
lection from X. Then the following are equivalent. 

(1) Fis compact in Cr(X, Y). 
(2) Fis compact in Cr(kr(X), Y). 
(3) F is compact in CK(kr(X)9 Y). 
(4) (i) F is closed in Cr{kr{X\ Y), 

(ii) F[x] is compact for every x e X, and 
(iii) F is evenly continuous on every element of T. 

As a result, we see that if A" is a A^-space, then F is compact in Cr(X, Y) 
if and only if it is compact in CK(X, Y). 
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