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PERIODIC, NONPERIODIC AND IRREGULAR MOTIONS 
IN A HAMILTONIAN SYSTEM 

PHILIP HOLMES 

ABSTRACT. We study orbit structures in the neighborhoods of 
homoclinic orbits connecting saddlepoints with real eigenvalues in 
certain four-dimensional Hamiltonian systems. Under suitable 
hypotheses we prove the existence of dense non-periodic orbits and 
of periodic orbits of infinitely many periods. 

1. Introduction. Recently Markus and Meyer [12] have proved the 
generic existence of solenoids in Hamiltonian systems of dimension ^ 4. 
The existence of solenoids implies that the set of orbits of the system is 
extremely complicated and in particular, that it contains orbits of arbi
trary periods in addition to nonperiodic recurrent motions. The results 
of [12] are general and somewhat abstract. Devaney [4-7], has obtained 
more specific results on Hamiltonian systems possessing homoclinic 
orbits connecting hyperbolic saddle points, cf. Silnikov's studies of 
homoclinic orbits in general (non-Hamiltonian) system [15,16]. 

Here we discuss a specific situation applicable to certain mechanical 
problems, e.g., the erratic behavior of a spherical pendulum swinging over 
arrays of two or three magnets. We shall study the structure of orbits in 
the neighborhood of solutions doubly asymptotic to a saddle point. Such 
doubly asymptotic solutions are called homoclinic orbits and occur 
generically in Hamiltonian systems [4, 5]. Their occurrence in non-Hamil
tonian differential equations is, of course, non-generic, cf., [2]. 

In a four dimensional system there are essentially three structurally 
stable types of saddle point possible: the saddle-center, with eigenvalues 
{±oc, ± iß\a, ß > 0}; the "saddle-saddle", with eigenvalues { ±/ , ± k\l9 

k > 0} and the saddle-focus, with eigenvalues {±(a ± iß) \ a, ß > 0}. 
The saddle foucs was treated in [4]. Here we consider the saddle-saddle 
and briefly mention the saddle-center. Only the saddle-focus and saddle-
saddle are hyperbolic fixed points, since the saddle-center has a pair of 
purely imaginary eigenvalues. 

Since the saddle-saddle is a hyperbolic critical point with stable and 
unstable manifolds Ms, Mu each of dimension 2, transverse homoclinic 
orbits can occur generically at the (transverse) intersection of Ms(o) and 
Mu(o) within the three dimensional energy surface H-1(0), where o is 
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the saddle-saddle at energy level 0, cf. [4]. However, in the case of the 
saddle-center, Ms(o) and Mu(o) are each of dimension one and would 
not appear to intersect generically within H-1(0). For a homoclinic orbit 
to exist, Ms(o) and Mu(o) would have to be identified. We return to 
this case in §4 after discussing the saddle-saddle case. 

For general background on Hamiltonian system in this context, see 
[3, 13]. 

2. The main result: the saddle-saddle. We consider the case of a saddle 
point o with purely real eigenvalues ±1, ±k; I > k. For comments on 
the case I = k, see §5. Our main assumptions here imply the existence of 
an inherent symmetry. 

ASSUMPTION 1. There are two transverse homoclinic orbits 7 ,̂ yh at o; 
fa leaves o in the first quadrant of M.foc(o) and reenters in the second quadrant 
of Mfoc(o) ; fb leaves o in the third quadrant of Mfoc(o) and reenters in the 
fourth quadrant ofM\oc{6). (See Fig. 1). 

We can equally well replace 'first . . . second; . . . third . . . fourth' 
by'second . . . first; . . . fourth . . . third'and there are other possible 
combinations. However, the cases 'first . . . first; . . . third . . . third' 
etc. do not appear amenable to the present methods unless we assume 
the presence of further orbits. We now develop our notation and can 
then state our assumption more precisely. 

The Hamiltonian function for the system XH at o may be written in 
the form 

(2.1) H(x, y) = IxiVi -h kx2y2 + higher order terms, 

and the equation of motion, x = 3///3y, y = — dH/dx becomes 

(2.2) (*! x2, yl9 y2) = (lxl9 kx2, -lyh -ky2) + 0(|x|2, |y|2). 

With suitable assumptions on the higher order terms (cf. [6]), we can 

FIG. 1. Local stable and unstable manifolds. 
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assume that the Xi — x2 plane (y = 0) is the local unstable manifold 
Mfoc(o) and the yx - y2 plane (x = 0) the local stable manifold Mfoc(o). 

We now define certain submanifolds in the neighborhood of o [4, 15]: 

^ = { ( x , y ) e R * | | x | = r ; | y | ^ p u } 

P = { ( x , y ) e R 4 | | x | ^ ps; |y| = r}. 

For small enough r and pu, ps < r, the three dimensional manifolds 2U, 
2s are transverse to the flow of (2.2). We shall also need the two dimension
al manifolds 

^ u = ^ u n H - l ( e ) ; 2s = p n H - l ( e ) 

(although we shall be particularly concerned with the case e = 0), and 
the one dimensional circles 

a» = 2$ H Mfoc(o); a* = ^ s fi Mfoc(o). 

an and as are the center circles of the solid tori 2U and 2s. 
We now let fa

 a n d Tb intersect an and as at the points pa, pb; qa, qb 

respectively, and for the Poincaré map construction below, we consider 
neighborhoods of these points as follows 

OS, Dg cz 2§; Da, Dg c 2ft. 

These cross sections belong to the energy surface H_1(0) and are trans
verse to the flow; ya pierces DJ and Da, yh pierces Dg and D§. We can 
immediately define two (Poincaré) maps 0 a : D£ -> D|, 0h: Dg -> Dg by 
following orbits forward in time until their first intersections with D | or 
Dg. Since D", Dg, etc., are small neighborhoods of ya and fh, 0a and 0h 

are local diffeomorphisms by the implicit function theorem. The situation 
so far is illustrated in figure 1, where it is understood that Mu(o) and 
Ms(o) intersect transversely along ya and yh (cf. figure 4). 

A little calculation shows that the submanifolds 2n, 2$, 2s, 2§ take the 
forms shown in figure 2. Here we have parametrized an and <js by 0U, 0s 

and 'unrolled' the tori 2\ 2*. 
We must how show that points near qa, qb in D*, Dg are mapped into 

D£ U Dg by the action of the flow. Since 2$ and 2Q are near o, the flow is 
determined by equation (2.2) and the higher order terms may be neglected. 
Specifically, we have 

(2.3) xx(t) = x1Qelt; x2(t) = x20e
kt;y1(t) = y wer'*; y2{t) = y^er*. 

We shall consider what happens to thin strips Sa c D|VS, Sb cz Dg\<js, 
transverse to as. In particular, we shall study their images in 2oVu under 
the flow (2.3). To do this we define two further maps 

r a : DiV» - 2%\a»; Wh: D*h\a* - 2&a\ 
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FIG. 2. The manifolds 2U, 2%, 2s and 2S
0. 

noting that points in as, au approach o as t -> + oo and — oo respectively 
and that the maps are therefore not defined on those circles. In the sub
sequent analysis we shall be concerned with the maps 0a o #Ta5 0a o $*b, 
0h°Wa and 0h°Wh. In order that these maps make sense, we must first 
show that, under suitable assumptions, W^ and ¥h map points of D|VS 

and T>l\as into (D£ U Dg)\cru. In Devaney's study this follows from 
the assumption that o is a hyperbolic saddle-focus, since the winding ac
tions associated with the nonzero imaginary parts of the eigenvalues 
guarantees that the images of strips in Ds wind infinitely often around 
2%. Here, however, we must make the following assumption. 

ASSUMPTION 2. / > k and jâ {resp. ^b) leaves o in Mfoc(o) such that 
pa e au(resp. pb e au) lies at an angle dl e(0, TU/2) (resp. dl €(#, 3TT/2)) and 
enters o in Mfoc(o) such that qa e as (resp. qb e as) lies at an angle di e 
Or/2, %) (resp. 0§ e (3^/2, 2ic)) ; moreover, 

larctan 6U arctan 0s | < -ô + (l/k) exp[(fc// - l) ln(ps/r)], for ô > 0, small. 

We now state the main result of this section. 

THEOREM A. Under the above assumptions, the Hamiltonian system 
XH possesses an infinite set of hyperbolic periodic orbits of all periods and 
dense hyperbolic non-periodic orbits within the energy surface H"1^). All 
the orbits are of unstable (saddle) type and each orbit (9 can be denoted 
by a bi-infiniie sequence of two symbols. . , /"_„, . . , /_2, i-i, i0, z'i, z2, - • -, 
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z'n, . . . where in takes the symbol a or b depending on whether the n'th 
pass of (9 lies in the tubular neighborhood of'f& or fh-

3. Proof of theorem A. We first study Wa and Wh and establish the 
following lemma. 

LEMMA 1. 3P"a(Sa) consists of two components ^(S^) and Wa(S~) lying 
across D£ and Dg respectively, "parallel" to au. ¥h(Sh) likewise consists of 
two components ^ (S f ) and W^(S^) lying across D" and Dg respectively, 
"parallel" to au. (cf. Figure 3). 

PROOF. TO clarify matters, we choose coordinates in 2fi and 2$ as in
dicated in figure 2. In figure 3 we show these two-dimensional strips 
"unwound". Note that we distinguish the components S+b, S~b of 
Sa,b lying "above" and "below" as. Here |x| = {x\ + x|)1/2 and |y| = 
(yì +yì)1/2 a n d + x and + y are oriented on 2§, 2§ as indicated in figure 2. 

The proof proceeds in several stages. We first find conditions on r, pu 

and ps such that the images of Sa and Sb lie within 2§. To do this, we 
consider a curve c c Sa normal to as at qa and show that Wa(c) lies within 
2$; that is, we require thatjf(0 + y\(t) < p\. 
But 

y\(t) + y2
2(t) = y\,e~2* + j2V"2kt < {y\0 + y2

2Q)e~2K 

Since y2
0 + y%0 = r2(c c 2Q), our requirement becomes 

(2.4) r2e~2kt < pl or r/pu < ekt. 

We next estimate t, or more particularly, the minimum time required 
for points of c to be mapped to 2$. This evidently occurs for points at the 
extrema of c, where x\Q + x%0 = pl. Thus we obtain the equation 

(2.5) x\{t) + x2
2{t) = x2

0e
2lt + xl0e

2k* = r2. 

FIG. 3. The maps Wt and Wh. 
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Using the Hamiltonian (2.1)(/x1>'1 = — kx2y2 locally) we can express xiQ, 
x20 in terms of ps and (2.5) becomes 

* T £ T T £ - > " ( & ) 
Thus ekt < r/ps < elt, and we can estimate the minimum time for the 
flow of XH to carry points of c into 2Q as 

(2.6) (1//) ln(r/ps) < tmiti < (l/k) ln(r/Pi). 

Using (2.6) in (2.4) we obtain, after some manipulation 

(2.7) plJp\ > r<-K 

(2.7) expresses the condition for Wa (and hence Wh) to map c into 2$. 
We next find how far around au the image of c extends. Clearly, points 

of c arbitrarily close to as take arbitrarily long to arrive at 2$ and hence, 
since XiQelt » x20e

kt for xi0, x2Q fixed ^ 0 and t large, such points arrive 
in 2Q with angles 0U in the first and third quadrants close to 0 and it. We 
now estimate the angles to which the extrema of c are mapped. Using 
the initial values xiQ, x20 derived above, we have 

(2.8) *?- = J 1 + a2 <?*-'>' = Jyi-e^K y J x± V 1+0-2 ky2 

Hence, taking rmin < (l/k)ln(r/ps), we have, 

> (//*) exp[(l - l/k) ln(r/ps)], 

or 

(2.9) larctan 6U arctan 6S\ > (l/k) exp[(l - l/k) ln(r/ps)]. 

Thus, since the images of points of c close to as lie at ö u «0 or %, by con
tinuity each component of the image of c will extend around 2Q from 0 
(resp TC) to an angle On(dn + ic) given by (2.9) and will hence intersect 
transversely a foliation of 2S "normal" to an. To ensure that the images 
of c intersect curves ta, tb "normal" to au at pa and pb, we must therefore 
ensure that pa, pb; qa, qb lie in an, as at angles 0U, 0s such that 

(2.10) larctan du arctan 0s\ < - 5 + (l/k) exp[(l - l/k) ln(r/ps)], 

for some small ô > l. The presence of d ensures that we can widen the 
curves c, t into strips S, T in as and cru and preserve the intersections. If 
(2.7) and (2.10) are satisfied, we have the situation of figure 3, where 
Sa and Sb are sufficiently narrow strips and D^, Dg are chosen sufficiently 
narrow in angular extent. This completes the proof of Lemma l. 
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Mu(0) 
FIG. 4. The map 08. 

We next consider the maps $ a : T>1 -* D* and 0h: Dg -> Dg in more 
detail. We first recall that, for transverse homoclinic orbits such as fa, 
and 7*b, Ms(o) and Mu(o) intersect transversely and only along 7̂  and 
fb in their tubular neighborhoods. The global structure near y&9 for in
stance, thus appears as in figure 4. The intersection lies within the energy 
surface H-^O), which locally has the structure of R3. Since ¥a(ßt) and 
Wh(S£) He "parallel" to au their images under 0a must lie transverse to 
as and must intersect and overlap DJ. A similar argument holds for ^a(S~) 
and^b(Sb). 

We thus establish the following lemma. 

LEMMA 2. 0 a : D£ -• D | and 0h: Dg -> D§ ma/? rfri/tfparallel to au into 
strips transverse to as. 

Note that the contraction in Ms(o) and expansion in Mu(o) ensures 
that the strips become even narrower and closer to Mu(o), so that the im
ages of $*a(Sa) and Wh(Sh) intersect Sa and Sb. We summarize the situation 
in figure 5, where the map is now the full Poincaré map P given by P = 
0ao^a (for points in S+); 0ao»"b(St); 0b°ra(S-) and <Z>b°rb(Sb). The exact 
orientations of the images P(SJ) and P(Sf) are unimportant, but note that 
they extend "vertically" across Sa and Sb and lie within them. 

4 -
37T/4 

W£»' 

77T/4 

4>À(SÎ» ^ b W ' 

2TH 

\ 4>tMSo~» 

FIG. 5. The Poincaré map. 
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The next images of Sa and Sb, under P2, will consist of eight thin strips 
lying in pairs within the four strips of (P(Sa) U P(Sb)) fl (Sa U Sb). Due 
to this splitting and doubling, after n iterates the images of Sa and Sb 

each consist of 2n vertical strips lying across D | and D|. Half of the images 
of Sa intersect Da and half intersect Dg; similarly for the images of Sb. 
The mapping clearly has much in common with the Horseshoe map of 
Smale [17, 18]. To complete our analysis we study it in some detail, fol
lowing the symbolic dynamic methods originally used by Smale (see 
Chillingworth [2] for a good introduction and a summary). 

The Poincaré map P. We wish to establish that, under P, there is an 
hyperbolic invariant set A a Da U D^ and then to study the structure of 
this set. First consider the sets 

sx = (P(sa) u P(sb» n (sa u sb) 
= (p(sa) n sa) u (P(sa)nsb)u(P(sb)nsa)u(P(sb) n sb» 

and 

5_x = (p-i(sa) u p-HSb» n (s. u sb) 
= (p-HSa) n sa) u (p-^Sb) n s a )u (p-KSa) n sa) 

u œ - K s j n s^ucp-KSbìn sb). 
5*! consists of four vertical and S_i of four horizontal strips. We extend this 
in the obvious way to considering the sets S+n and S_n consisting of 2n+1 

vertical and horizontal strips each, and then to the sets S+00 and 5_oo formed 
under infinitely many iterates. Evidently the invariant set A cz Sa U Sb is 
given by A = S+00 D S-oo» is divided into two clearly distinct components 
in Sa and Sb, and each component has the structure of the product of 
two Cantor sets, or, equivalently, of a single Cantor set (cf [2], p. 233). 

We now prove that there are orbits of all periods in Sa and Sb. Since 
Sa c Da and Sb a Db are disjoint, we cannot use Smale's methods directly, 
but must proceed in stages. 

Orbits of period one. Consider Sa only, and the horizontal and vertical 
strips Sa H P-1(Sa) and P(Sa) f| Sa lying across it. Continue to iterate 
infinitely many times backward and forward to obtain the strips denoted 
by the semi-infinite sequences 

sa n p-^Sa) n p-2(sa) n ... n p-m(sa) n ... 
and 

... n pn(sa) n ... n p2(sa) n P ( S J n sa. 
These infinitesimally thin strips clearly intersect at just one point in 
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P(Sa) fi Sa fi P-1(Sa). We thus have a point of period one in S+ c Sa. By 
similar arguments, there is a second period one point in Sg" c Sb. Both 
fixed points are clearly hyperbolic, since we have exponential expansion 
in the vertical direction and contraction in the horizontal direction in their 
neighborhoods. For more details on hyperbolicity, see [2,17,18]. 

Orbits of all even periods. Consider Sa and its images under two iterates 
forward and backward of P. There are two vertical and two horizontal 
strips; note that one each of these has been mapped from Sa to Sb and then 
back to Sa. The map P2 restricted to Sa evidently behaves exactly as does the 
Smale Horseshoe map (or, depending on the orientations of P"2(Sa) f| 
p-i(Sb) fi SaandP2(Sa) fl P(Sb) f~l Sa, as a variant of it, cf [18], p. 772). A 
similar argument applies to the map P2 restricted to Sb. We can thus con
clude that P2 has points of all periods plus nonperiodic orbits dense in its 
invariant set Ä. Of course, A' c A, the invariant set of P. 

Orbits of period three and other odd periods. Consider P3 restricted to Sa. 
The image and inverse images of Sa under P3 each consist of four strips 
lying across Sa. If we continue the iteration process as in the case for 
orbits of period one above, it is clear that there will be four fixed points of 
P3 lying in Sa. (One of these, the top left, is the fixed point of P found 
above). We thus have points of period 3 : again a similar argument ap
plies to P3 restricted to Sb. One can continue by induction in this manner 
to show the existence of points of all periods. P3 restricted to Sa is, 
in fact, a map of Horseshoe type corresponding to a shift on a four 
symbol sequence, since P3(Sa) f| Sa and P~3(Sa) f| Sa each have four 
components. 

Note that the labelling of the strips denotes the histories of the orbits: 
for example, the period 3 point lying in 

p3(sa) n p2(sb) n p(sb) n sa n p-Ksb) n p-2(sb) n p~3(sa) 
corresponds to a periodic orbit of the differential equation which passes 
once close to f^ then twice close to j h , then once close to fa, etc. We can 
denote this orbit as . . . abbabbabb . . . . There is a second period 3 
orbit . . . baabaabaa . . . . Tn this manner one can denumerate all 
periodic and nonperiodic orbits by doubly infinite sequences of two 
symbols. This completes the proof of Theorem A. 

REMARK 1. With appropriate modifications to the assumptions and the 
proof, one can extend the above results to the case of (multiple) hetero-
clinic orbits connecting two or more saddle points, (cf. Devaney [4]). 
The symbol sequence would need to include as many symbols as there 
were heteroclinic orbits. 

REMARK 2. The period of the orbits referred to above is a topological 
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concept in the sense that period n denotes n circuits or passes in the 
neighborhoods of ya and yh before returning to the starting point on 
D* or D§. The temporal period, which is of interest in applications, can 
clearly vary very much for orbits close to homoclinic orbits. In particular, 
we have the following theorem. 

THEOREM B. [5, 6]. Let y be a non-degenerate homoclinic orbit to a hyper
bolic equiliriubm point. Then there exists a one-parameter family of closed 
orbits 7v which converges to y as the parameter z approaches infinity. More
overp, z may be chosen to be the period of the closed orbit. 

We therefore can expect some of the periodic motions to have long 
temporal periods, even though their topological periods might be relatively 
low. 

REMARK 3. Since the hyperbolic invariant set A c D* U D§ is homeo-
morphic to a Cantor set, orbits of P near ya and yh will depend on initial 
conditions in a sensitive manner: that is—it is impossible to predict the 
long term behaviour of orbits of P starting near points of A. Moreover, 
the divergent fates of orbits starting nearby manifest themselves in a 
dramatic manner in that they alternately leave the neighborhood of o in 
distinct directions: either close to ya or close to yh. Such behaviour would 
be clearly recognizable as an irregular motion in physical configuration 
space. Note that the periodic orbits in A are all of saddle type, since there 
is a vertical expansion and a horizontal contraction associated with each 
fixed point of Pn. 

REMARK 4. To see that the conditions on the homoclinic orbits of 
Lemma 1 are not excessively strict, consider the case / = 4, k = 1. We set 
r = 1 and ps = 1 — e'9 0 < e < 1. Condition (2. 7) then becomes pn > 
(1 - e)k/l. Since 1 - e < 1 we can choose (1 - e)k/l < pu < 1. The 
conditions on 0U, 0s are then 

larctan 0U arctan 6s\ < -ô + (l/k) exp[(fc// - 1) ln(l - e)]. 

Setting / = 4, k = 1, 0s = TZT/4 (resp 5^r/4), e = 0.1, ö = 0.2, we have 

larctan 0n\ < 4 exp(-0.0792) - 0 . 2 « 3.28, 

or 0U < 73.1° (resp 253.1°). Note, however, that our assumptions on the 
existence of two homoclinic orbits leaving and arriving at appropriate 
angles are essential. Devaney [7] has an example of a completely integrable 
system with homoclinic orbits which do not satisfy such a condition. His 
example has no chaotic motions such as those detected here. 

4. The Saddle-center. We now briefly consider the case of a saddle point 
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with real and imaginary eigenvalues ±a9 ±//3. Locally the Hamiltonian 
function may be written 

(4.1) H(x, y) = axxyx + ßx\\2 + ßy\\2 4- higher order terms, 

and the equation of the system as 

(4.2) (xl9 i 2 , yl9 y2) = (axl9 ßy2, -ayl9 -ßx2) + 0(\x\\ |yp), 

The stable and unstable manifolds Ms(o) and Mu(o) are each one di
mensional and tangent to the yx and jq axes respectively, and there is 
also locally a center manifold Mfoc(o), tangent to the x2 — y2 plane. 

Unlike the cases of purely real and strictly complex eigenvalues, homo-
clinic orbits to center-saddles do not appear to be generic, since the one 
dimensional manifolds Mu(o) and Ms(o) would not normally intersect 
within H_1(0) (they would, in fact, have to be identical). However, if 
we assume rather special symmetries, we can see that there is a situation 
in which Mu(o) = Ms(o). To picture this, we suppress one dimension of 
Mc(o) and represent it by a single (polar) coordinate z = (x§ + jl)1/2. 
In xh yl9 z space the energy surface H_1(0) is thus two dimensional and, 
under suitable assumptions on the existence of a pair of homoclinic orbits 
as in §2, takes the form shown in figure 6. 

Clearly H_1(0) falls into two distinct components which meet only at 
o. There can thus be no orbits passing alternately between these com
ponents and thus no chaotic behaviour of the type discussed in §3. Within 
the separate components of H-1(0), however, one probably does have sets 
of periodic and non-periodic motions close to pa and yh. 

For a definite example, consider the two degree of freedom system with 
Hamiltonian 

(4.3) 7/(x, y) = W2/2 + tfß - w*/2 + z*/2 4- w4/4 4- dß(w9 z). 

For 5 = 0, since there are two independent first integrals H1 = u2/2 -

H_1(0) 

FIG. 6. The energy surface H~\0) for the the saddle-center. 
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w2/2 + H>4/4 and H2 = v2j2 + z2/2, the behaviour of (4.3) is considerably 
simpler than that of the systems discussed above. In particular, since 
the system decouples into two independent two dimensional (single degree 
of freedom) oscillators and is completely integrable, there can be no 
orbits corresponding to shift automorphisms of the type described in 
§3(cf.Devaney[4-6]). However, for ö ^ 0 the oscillators are coupled and 
more complex behaviour can arise within the two components of H_1(0). 
The forthcoming survey by Churchill, et al., [3] contains details of the 
saddle center case. 

5. Passage from saddle-saddle to saddle-focus: bifurcations. In a number 
of physical problems, such as the flutter studies of [9, 14] the eigenvalues 
of a fixed point evolve under the action of an external parameter in such 
a way that it is transformed from a saddle-saddle to a saddle-focus. At the 
transition there are two pairs of eigenvalues equal in magnitude but 
opposite in sign ( - a , -a; 4-a, -ha). 

To see how the homoclinic orbit structure of the saddle-saddle changes 
to the saddle-focus structure studied in [4, 6] consider the system with 
Hamiltonian 

(5.1) H(x, y) = x2y\ — xxy2 4- 2dx2y2 + higher order terms, 

where ö > Ois a parameter. The equations of motion are 

(*i, x2, j i , y2) = (x2, - *i + 2<?x2, y2, - yx - 2öy2) 

+ 0(|x|2, |y|2) 

and the eigenvalues of the saddle-point o at the origin are ö ±(d2 — 1)1/2, 
— ö ± (ô2 — 1)1/2. For ô > 1 we have the saddle-saddle case, for ô =1 the 
critical case and for d < 1 the saddle-focus studied by Devaney. The 
system studied here is not in normal form, but it has the advantage that 
we can consider the effect of changing the parameter 5 without an ac
companying change of coordinates at the critical case. Note that, as in 
§2-3, the x-plane is locally the unstable manifold Mfoc(o) and the 
y—plane the stable manifold Mfoc(o). In the critical case the flow re
stricted to either Mfoc(o) or Mfoc(o) takes the form of an improper node 
(cf [8], p. 94); by analogy we call the four dimensional saddle occurring in 
this case an improper saddle. 

In [4] (Lemma, p. 434) it is proven that a smooth curve S c 2Q intersect
ing a5 transversely at the point q (at which the homoclinic orbit y enters) 
is mapped under the flow such that the image of S — q spirals infinitely 
often around 2$. The image of a small vertical strip containing S c 2 j 
must therefore intersect itself a countable number of times, since the map 
0: Du -> Ds, where Du c 2§9 Ds <= 2Q are neighborhoods of the points 
where y pierces ^o and 2Q, is a local diffeomorphism. In the saddle focus 
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case, then, there is no need for the restrictive assumption (2) necessary in 
§2 above. It is interesting to see how the rigour of this assumption can be 
relaxed as the saddle-saddle approaches the improper saddle. 

We define the submanifolds 2U
9 2s, 2%9 2$, an, as and the maps $a, 

$b> â> ^b m a manner similar to that of §2, and such that 2ft, 2ft are always 
transverse to the flow. We similarly postulate the existence of two homo-
clinic orbits 7*a and 7*b. We will see how the hypothesis on the dispositions 
of 7"a>b H au and j-^b C\ ^s c a n be relaxed as ö ^ 1 approaches 1 such 
that images of points near D| and Dg still lie in D | U Dg. 

For d » 1 the situation is essentially as in §2-3, with the xx and x2 and 
y1 and y2 axes interchanged. As d decreases the eigenvectors in both 
Mfoc(o) and Mfoc(o) rotate so that two "quadrants" increase in size and two 
decrease until at ö = 1 the improper saddle situation occurs; cf. figure 7. 

Some straightforward calculations using (5.1) and (5.2) show that, if 
7-a leaves o in quadrant Au c Mj*oc(o) (resp. Cu) and enters in quadrant 
As c Mfoc(o) (resp. Cs), then the angular extent in 2§ of the images of 
strips in 2ft increases as ö approaches 1. Thus we can successively relax 
our conditions on the dispositions of ^ and j h in Mfoc(o) and Mfoc(o). 

As ô passes through 1, a dramatic change takes place. At 5 = 1 the 
sections Bu, Du, Bs and Ds have shrunk to the positive and negative 45° 
halflines and every strip transverse to as c 2Q is mapped under the flow 
in such a way that its images extend almost all the way around 2. Each 
strip is, of course, split into two components just as in §3: one component 
lies over Au and one over Cu. For d < 1, however, each of these com
ponents now winds repeatedly around 2Q as descrived in [4], 

FIG. 7. Transition from saddle-saddle to improper saddle. 
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Since orbits in the neighborhood of a homoclinic orbit to a saddle-
focus are related to a shift on symbol sequence S«, with a countable (in
finite) alphabet, while the saddle-saddle case corresponds to a finite 
alphabet, as ö passes through 1 the Poincaré map P undergoes a bifurca
tion in which infinitely many new points of all periods, in addition to 
infinitely many dense nonperiodic orbits are created. The situation is 
evidently quite complicated and would repay further study. 

Double and single homoclinic orbits. In the saddle-saddle and improper 
saddle cases it is necessary to postulate the existence of (at least) two 
homoclinic orbits at o, while only one is necessary for the saddle-focus. 
However, if there is only one such orbit. 7% then, since the recurrent be
haviour is confined to a (small) tubular neighborhood of 7-, its physical 
manifestations will not be of great interest. All orbits, whatever their 
symbol sequences, will follow much the same paths and, within the limits 
of physical measurement, may even appear to be identical. However, if 
we again have two distinct homoclinic orbits fa and fh, then by methods 
analogous to those of Devaney and those used in §3 above we can prove 
the existence of a countable number of orbits of each period. Of the orbits 
of period 3, for example, half will have the sequence . . . aabaabaab . . . 
and half . . . bbabbabba . . . , in the terms of §3. (Recall that in the 
saddle-saddle case there is precisely one orbit with sequence . . . aabaab 
. . . and one with sequence . . . bbabba . . . ). If fa and yh are well 
separated in configuration space then these two families of orbits will be 
quite distinct, as will the various sets of orbits of higher periods and the 
non-periodic orbits. 

6. Physical Implications. The invariant set A described in §3 is hyper
bolic and therefore will persist under small perturbations; in particular, 
a set topologically equivalent to A will be found at nearby energy levels 
H_1(£), e < 1 ; cf. [2]. The existence of a set such as A is therefore signi
ficant if it occurs in models of physical situations such as those of [9, 14]. 

Since all the orbits in A are of saddle type, orbits originating near points 
of A will diverge from them exponentially fast, while displaying a sensitive 
dependence on initial conditions. In physical problems this will manifest 
itself as an erratic wandering: the orbit being thrown back and forth for 
a while near A and finally ejected from its neighborhood. 

Horseshoe mappings have also been detected in a study of a single 
degree of freedom forced oscillator, which is another dynamical system in 
a three dimensional manifold (R2 x S1) [10]. They also ocur in certain 
'perturbulent' parameter ranges in the Lorenz equations [11]. In both of 
these cases, while the attractors are relatively simple (closed orbits or 
fixed points), a 'metastable' hyperbolic set of horseshoe type causes typical 
orbits to move erratically for some time before approaching an attractor. 
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In the Hamiltonian case, since there are no attractors, one expects orbits 
to move towards regions containing families of elliptic orbits and there
fore ultimately to tend toward periodic or almost periodic motions. 
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