SOME EXAMPLES OF ALGEBRAIC DEGENERACY AND HYPERBOLIC MANIFOLDS

KAZUO AZUKAWA AND MASAAKI SUZUKI

1. Introduction. Let D be an algebraic curve in the complex projective space \mathbf{P}^2 of dimension 2. We shall call a non-constant holomorphic mapping from the complex line \mathbf{C} to the manifold \mathbf{P}^2 -D a holomorphic curve in \mathbf{P}^2 -D. A holomorphic curve f in \mathbf{P}^2 -D is called algebraically degenerate if the image $f(\mathbf{C})$ lies in an algebraic curve in \mathbf{P}^2 . It is conjectured by \mathbf{M} . L. Green $[\mathbf{2}, \mathbf{3}, \mathbf{4}]$ that for any D with normal crossings and of degree d at least d, any holomorphic curve in d0 is algebraically degenerate.

We shall first give some examples of algebraic degeneracy in the case of d = 4 (Examples 1, 2 and 3 in section 2).

Next using a result of N. Toda [7] we shall give an example of D for which there is no holomorphic curve in \mathbf{P}^2 -D (Theorem in section 3). Consequently we shall have an example of a complete hyperbolic manifold of the form \mathbf{P}^2 -D where D is non-singular (Proposition in section 4).

2. **Examples of Algebraic Degeneracy.** We shall give three new examples of D and f where D is an algebraic curve in \mathbf{P}^2 with degree 4 and f is a holomorphic curve in \mathbf{P}^2 -D and the image $f(\mathbf{C})$ lies in an algebraic curve.

In what follows we use (z_0, z_1, z_2) for the homogeneous coordinate system of \mathbf{P}^2 . In the following examples we use k for an arbitrary nonconstant entire function.

EXAMPLE 1. Let *D* be defined by $(z_0^2 + z_1^2)^2 + (z_0^2 + z_2^2)^2 = 0$ and *f* be defined by $(1 + i, (1 + i) (e^k - e^{-k}) / \sqrt{2}, e^k - ie^{-k})$. Then the image $f(\mathbf{C})$ lies in the conic $z_0^2 + z_1^2 + z_2^2 - \sqrt{2} z_1 z_2 = 0$.

EXAMPLE 2. Let *D* be defined by $z_0 (z_0^3 + z_1^3 + z_2^3) = 0$ and *f* be defined by $(9e^{4k}, -9e^{4k} + 3e^k, -9e^{3k} + 1)$. Then the image $f(\mathbf{C})$ lies in the quartic $9z^0z_2^3 = (-2z_0 + z_1)^3 (z_0 + z_1)$.

Let *D* be as in Example 2. A trivial example of *f* is defined by $(1, k, \sqrt[3]{-1} k)$. Then the image f(C) lies in the line $\sqrt[3]{-1} z_1 = z_2$.

Example 3. Let D be the Fermat curve $z_0^4 + z_1^4 + z_2^4 = 0$ and f be de-

fined by $(\sqrt[4]{2} (\sin^2 k - \cos^2 k + i \sin k \cos k)$, $\alpha (\sin^2 k + 2i \sin k \cos k)$, $\alpha (-\cos^2 k + 2i \sin k \cos k)$) where $\alpha^2 = i$. Then the image $f(\mathbf{C})$ lies in the conic $iz_0^2/\sqrt{2} - z_1^2 - z_2^2 + z_1z_2 = 0$.

3. **Main Theorem.** We shall consider an algebraic curve D^d_{ε} in \mathbf{P}^2 of even degree d, with a parameter ε of non-zero complex number, defined by the equation

$$z_0^d + z_1^d + z_2^d + \varepsilon (z_0 z_1)^{d/2} + \varepsilon (z_0 z_2)^{d/2} = 0.$$

By calculation we have

- (i) D_{ε}^d is non-singular if and only if ε^2 is not 2 nor 4,
- (ii) D_{ε}^d is reducible if $\varepsilon^2 = 2$ or if $\varepsilon^2 = 4$ and d is divisible by 4.

Our main result is the following:

Theorem. Let D^d_{ε} be as above. Suppose that D^d_{ε} satisfies one of the conditions

(1)
$$\varepsilon^2 \neq 4$$
 and $d \geq 30$,

$$\varepsilon^2 = 2 \text{ and } d \ge 14.$$

Then there is no holomorphic curve in \mathbf{P}^2 - D_{ε}^d .

In proving the theorem we shall use two lemmas.

LEMMA 1. Let P, Q be polynomials of one variable such that P(0) = 0, Q(0) = 0 and n_i $(i = 1, ..., r)(r \ge 0)$ be positive integers. Suppose

$$\sum_{i=1}^{r} \frac{1}{n_i} < \frac{1}{\|P\| + \|Q\| + r - 1}$$

where ||P||, ||Q|| are the numbers of the monomials included in P, Q respectively. Then for any entire solution $(g_0, ..., g_r)$ of the functional equation

$$P(e^{g_0}) + Q(e^{-g_0}) + \sum_{i=1}^r g_i^{n_i} = 1,$$

at least one of the g_i is constant.

PROOF. If P = Q = 0 the assertion is a corollary of Theorem 1 in [7]. Generally we can find a positive integer n_0 such that the inequality

$$\frac{\|P\| + \|Q\|}{n_0} + \sum_{i=1}^r \frac{1}{n_i} < \frac{1}{\|P\| + \|Q\| + r - 1}$$

holds. Then we can apply the result for the case of P = Q = 0.

LEMMA 2. Any entire solution of the functional equation $g_0^2 + g_1^2 = 1$ is of the form $g_0 = (e^h + e^{-h})/2$, $g_1 = (e^h - e^{-h})/2$ where h is an entire function.

PROOF OF THEOREM. We take any holomorphic mapping $f: \mathbb{C} \to \mathbb{P}^2$. We shall show that f is a constant mapping. Now f is written by (f_0, f_1, f_2) where f_i are entire functions not vanishing at the same time. By assumption we have

$$f_0^d + f_1^d + f_2^d + \varepsilon (f_0 f_1)^{d/2} + \varepsilon (f_2 f_0)^{d/2} = e^h$$

where h is an entire function. Considering $f_i e^{-h/d}$ in stead of f_i we may assume

(3.1)
$$f_0^d + f_1^d + f_2^d + \varepsilon (f_0 f_1)^{d/2} + \varepsilon (f_0 f_2)^{d/2} = 1.$$

Part (1): Suppose $\varepsilon^2 \neq 4$ and $d \ge 30$. Applying Lemma 1 to the functional equation

$$g_1^d + g_2^d + g_3^d + g_4^{d/2} + g_5^{d/2} = 1$$
,

we have by (3.1) and d > 28 that at least one of the functions f_0 , f_1 , f_2 , $f_0 f_1$, $f_0 f_2$ is constant. In each case we examine as follows.

(a) $f_0 = c$ (const.): By Lemma 1 we may assume $c^d = 1$. Then

$$(f_1^{d/2} + \varepsilon'/2)^2 + (f_2^{d/2} + \varepsilon'/2)^2 = \varepsilon'^2/2 \neq 0$$

where $\varepsilon' = \varepsilon c^{d/2}$. By Lemmas 2 and 1 we have that f_1 and f_2 are constant.

(b) f_1 or $f_2 = c$ (const.): By symmetry we may assume $f_1 = c$. Suppose $c^d \neq 1$. We may assume by Lemma 1 that $f_0 f_2 = c_1$ (const.) and $c_1 \neq 0$. Writing $f_0 = e^h$, $f_2 = c_1 e^{-h}$ where h is an entire function and applying Lemma 1, we have that h is constant and so are f_0 and f_2 . If $c^d = 1$ (3.1) implies

$$(f_2^{d/2} + \varepsilon f_0^{d/2}/2)^2 + \varepsilon''(f_0^{d/2} + \varepsilon'/2\varepsilon'')^2 = \varepsilon'^2/4\varepsilon''$$

where $\varepsilon' = \varepsilon c^{d/2}$, $\varepsilon'' = 1 - \varepsilon^2/4$ ($\neq 0$, by assumption (1)). By the same argument as (a) we can show that f_0 and f_2 are constant.

(c) f_0f_1 or $f_0f_2=c$ (const.): By symmetry we may assume $f_0f_1=c$. By (a) and (b) we may assume $c \neq 0$. Denote $f_0=e^h$, $f_1=ce^{-h}$ where h is an entire function. If $\varepsilon c^{d/2} \neq 1$, applying Lemma 1 we have that f_2 or e^hf_2 or h is constant. Then f_0 , f_1 and f_2 are constant. If $\varepsilon c^{d/2}=1$ we have

$$1 + (ce^{-2h})^d + (f_2e^{-h})^d + \varepsilon (f_2e^{-h})^{d/2} = 0.$$

By Lemma 1 we have that h or f_2e^{-h} is constant. Then f_0, f_1 and f_2 are constant.

We have proved part (1) of the theorem.

Part (2): Suppose $\varepsilon^2 = 2$ and $d \ge 14$. By a linear change of the coordinate system D_{ε}^d is reduced to the reducible curve defined by

$$(z_0^{d/2} + z_1^{d/2})^2 + (z_0^{d/2} + z_2^{d/2})^2 = 0.$$

With respect to the new coordinate system the functional equation (3.1) is

$$(f_0^{d/2} + f_1^{d/2})^2 + (f_0^{d/2} + f_2^{d/2})^2 = 1.$$

By Lemma 2 we have

$$(3.2) (1+i)f_0^{d/2} + f_1^{d/2} + if_2^{d/2} = e^h,$$

$$(3.3) (1-i)f_0^{d/2} + f_1^{d/2} - if_2^{d/2} = e^{-h}$$

where h is an entire function. Since d > 12, applying Lemma 1 to (3.2) we obtain that at least one of $f_i e^{-2h/d}$ is constant. As we can do the same argument for the others we may assume $f_0 e^{-2h/d} = c$ (const.). If $(1 + i) c^{d/2} \neq 1$, by Lemma 1 we have that $f_1 e^{-2h/d}$ and $f_2 e^{-2h/d}$ are constant, hence f is a constant mapping. Suppose $(1 + i) c^{d/2} = 1$. Eliminating f_0 and f_1 from (3.3) we have

$$-ie^{2h} - 2i (f_2e^{2h/d})^{d/2} = 1.$$

By Lemma 1 we have that h and $f_2e^{2h/d}$ are constant. Hence f_0 , f_1 and f_2 are constant. We have proved part (2) of the theorem.

4. An Example of a Complete Hyperbolic Manifold. From the theorem in the previous section and Theorem 2 in [5] we obtain the

PROPOSITION. Let D^d_{ε} be as in the theorem. Suppose that D^d_{ε} satisfies one of the conditions

- (1) ε^2 is not 2 nor 4 and $d \geq 30$,
- (2) $\varepsilon^2 = 2$ and $d \ge 14$.

Then \mathbf{P}^2 - D_{ε}^d is a complete hyperbolic manifold in the sense of Kobayashi [6].

We have an example of a complete hyperbolic manifold of the form P^2-D where D is non-singular ((1) in the proposition).

If $\varepsilon^2 = 2$ and d = 4, $\mathbf{P}^2 - D_{\varepsilon}^d$ is not a hyperbolic manifold (Example 1 in the section 2).

By the use of the theorem in [1] we obtain another proof of part of the proposition:

For sufficiently small ε , D_{ε}^d is non-singular and \mathbf{P}^2 - D_{ε}^d is a complete hyperbolic manifold provided $d \ge 50$.

ACKNOWLEDGMENT. The authors wish to express their thanks to the referee for some useful comments.

REFERENCES

- 1. R. Brody and M. L. Green, A family of smooth hyperbolic hypersurfaces in P³, Duke Math. J., 44 (1977), 873–874.
- **2.** M. L. Green, On the functional equation $f^2 = e^{2\phi_1} + e^{2\phi_2} + e^{2\phi_3}$ and new Picard theorem, Trans. Amer. Math. Soc., **195** (1974), 223–230.

- 3. ——, Some Picard theorems for holomorphic maps to algebraic varieties, Amer. J. Math., 97 (1975), 43–75.
- **4.** ——, Some examples and counter-examples in value distribution theory for several variables, Compositio Math., **30** (1975), 317–322.
- 5. —, The hyperbolicity of the complement of 2n + 1 hyperplanes in general position in \mathbf{P}^n and related results, Proc. Amer. Math. Soc., 66 (1977), 109–113.
- 6. S. Kobayashi, *Hyperbolic Manifolds and Holomorphic Mappings*, Marcel Dekker, New York, 1970.
- 7. N. Toda, On the functional equation $\sum_{i=0}^p a_i f_i^{n_i} = 1$, Tôhoku Math. J., 23 (1971), 289–299.

DEPARTMENT OF MATHEMATICS, TOYAMA UNIVERSITY, GOFUKU, TOYAMA, JAPAN

