EXPRESSING GROUP ELEMENTS AS COMMUTATORS

ROBERT M. GURALNICK.

Let G be a group. If $x, y \in G$, the commutator of x and $y,[x, y]$, is defined to be the element $x y x^{-1} y^{-1}$. These elements generate a characteristic subgroup, called the commutator subgroup of G, and is denoted G^{\prime}. It is not true in general that G^{\prime} consists only of commutators. Thus we define $\lambda(G)$ to be the smallest integer n such that every element on G^{\prime} is a product of n commutators.

Perhaps the first example of a group G with $\lambda(G)>1$ was given by Fite [1]. He discovered a group G of order 256 with G^{\prime} elementary abelian of order 16 containing only 15 commutators. In [2] a group G with $|G|=240, G^{\prime}$ cyclic of order 60 , and $\lambda(G)=2$ was exhibited. This was later shown to be the smallest such example in the case G^{\prime} is cyclic (cf. [3]).

Then the question naturally arises: what are the groups G with $|G|$ or $\left|G^{\prime}\right|$ minimal satisfying $\lambda(G)>1$? In [3] the author has partially answered this question by proving the following theorem.

Theorem 1. If (i) G^{\prime} is abelian and $|G|<128$ or $\left|G^{\prime}\right|<16$, or (ii) G^{\prime} is nonabelian and $|G|<96$ or $\left|G^{\prime}\right|<24$, then $\lambda(G)=1$.

In this paper, we construct groups to show that the bounds in Theorem 1 can not be improved. The next two lemmas will be useful in determining which elements are commutators.

Lemma 1. If G is a group and $x, y, z \in G$, then
(i) $[x, y z]=[x, y] y[x, z] y^{-1}$
(ii) $[x y, z]=x[y, z] x^{-1}[x, z]$.
(iii) If y and $[x, y]$ commute, then $\left[x, y^{e}\right]=[x, y]^{e}$.
(iv) If x and $[x, y]$ commute, then $\left[x^{e}, y\right]=[x, y]^{e}$.

Proof. (i) and (ii) follow by writing out the elements. (iii) and (iv) follow by a straightforward induction. For details see [6].

Lemma 2. Suppose G is a group with a subgroup H such that $H \supseteq G^{\prime}$ and $G=\langle H, x\rangle$. If w is a commutator in G, then $w=\left[a x^{e}, b\right]$ for some $a, b \in H$ and $e \in \mathbf{Z}$.

Proof. We first note that if $g \in G$, then $g=h x^{m}$ for some $h \in H$ and $m \in \mathbf{Z}$. Also, if $h_{1}, h_{2} \in H$, then

Received by the editors on February 13, 1978.

$$
\left(h_{1} x^{s}\right)\left(h_{2} x^{t}\right)^{r} \equiv h_{1} h_{2}^{r} x_{1}^{s+r t}\left(\bmod G^{\prime}\right)
$$

since G / G^{\prime} is abelian. Thus since $H \supseteq G^{\prime}$,

$$
\left(h_{1} x^{s}\right)\left(h_{2} x^{t}\right)^{r}=h_{3} x^{s+r t} \text { for some } h_{3} \in H .
$$

Now suppose $w=\left[g_{1}, g_{2}\right]$ is a commutator in G. Then $g_{1}=h_{1} x^{s}$ and $g_{2}=h_{2} x^{t}$, where $h_{1}, h_{2} \in H$. If $t=0$, we are done. Suppose $s=0$. Then by Lemma 1 we have

$$
\begin{aligned}
w & =\left[h_{1}, h_{2} x^{t}\right]=\left[h_{1}\left(h_{2} x^{t}\right), h_{2} x^{t}\right] \\
& =\left[h_{1} h_{2} x^{t}, h_{2} x^{t}\left(h_{1} h_{2} x^{t}\right)^{-1}\right]=\left[h_{1} h_{2} x^{t}, h_{1}^{-1}\right] .
\end{aligned}
$$

The proof now proceeds by induction on $k=\min \{|s|,|t|\}$. If $k=0$, we are done as above. Suppose $|s| \geqq|t|$. By the division algorithm, $s=q t+r$, where $0 \leqq r<|t|$. Hence as above,

$$
\begin{aligned}
w & =\left[h_{1} x^{s}, h_{2} x^{t}\right]=\left[\left(h_{1} x^{s}\right)\left(h_{2} x^{t}\right)^{-q}, h_{2} x^{t}\right] \\
& =\left[h_{3} x^{s-q t}, h_{2} x^{t}\right]=\left[h_{3} x^{r}, h_{2} x^{t}\right] .
\end{aligned}
$$

Since $r<|t| \leqq s$, we are finished by induction. A similar argument works if $|s|<|t|$.

Let $G=\langle u, v, w, x, y\rangle$, where $u^{2}=v^{2}=w^{2}=x^{8}=y^{2}=1, u v u=v w$, $u x u=x^{-1}, v x v=x^{5} y$, and $w, y \in Z G$. Then $G^{\prime}=\left\langle w, x^{2}, x^{4} y\right\rangle=$ $\left\langle w, x^{2}, y\right\rangle \cong C_{4} \times K_{4}$ (where C_{n} is the cyclic group of order n and K_{4} is the Klein group of order 4).

Claim. y is not a commutator in G.
Proof of Claim. Suppose y is a commutator in G. Applying Lemma 2 with $H=\langle u, w, x, y\rangle$, we have

$$
y=\left[x^{e} y^{f} w^{g} u^{h} v^{k}, x^{q} y^{r} w^{s} u^{t}\right] .
$$

Using Lemma 1 repeatedly, we obtain

$$
\begin{aligned}
y & =\left[x^{e} u^{h} v^{k}, x^{q} u^{t}\right] \\
& =\left[x, u^{t}\right] e\left[u^{h}, x\right]^{q}[v, x]^{k q}[v, u]^{k t} \\
& =\left[x, u^{t}\right] e\left[u^{h}, x\right]^{q} x^{4 k q} y^{k q} w^{k t} .
\end{aligned}
$$

Since the only term involving y is $y^{k q}$, we must have that $k \equiv q \equiv 1$ $(\bmod 2)$. Hence $w^{k t}=1$ and so $t \equiv 0(\bmod 2)$. Thus we have

$$
y=\left[u^{h}, x\right]^{a} x^{4} y .
$$

If h is even, then $u^{h}=1$, and $y=x^{4} y$, a contradiction. If h is odd, then [$\left.u^{h}, x\right]=x^{-2}$ and since q is odd, $y=x^{2} y$ or $x^{6} y$, a contradiction. Hence y is not a commutator in G.

Note that $G=\langle x, y\rangle\langle u, v\rangle$, where $\langle x, y\rangle \cap\langle u, v\rangle=1$ and $\langle x, y\rangle$ is normal in G. Hence G is isomorphic to a semi-direct product of $\langle x, y\rangle \cong$ $C_{8} \times C_{2}$ and $\langle u, v\rangle \cong D_{4}$ (where D_{n} is the dihedral group of order $2 n$). Thus G is a group of order 128 with G^{\prime} abelian of order 16 and $\lambda(G)=2$. This shows that (i) of Theorem 1 can not be improved. It can be shown [3] that if $\left|G^{\prime}\right|=16$ and $\lambda(G)>1$, then either $G^{\prime} \cong C_{4} \times K_{4}$ or $G^{\prime} \cong$ $K_{4} \times K_{4}$.

We now construct a class of examples. Let $G_{1}=\langle a, b, x\rangle$, where $a^{4}=b^{4}=x^{3}=1, \quad x a x^{-1}=b, \quad x b x^{-1}=a b, \quad a^{2}=b^{2}, \quad$ and $\quad a b a^{-1}=$ $b^{-1}\left(G_{1} \cong \mathrm{SL}_{2}(3)\right.$, the group of 2×2 matrices of determinant 1 over the field of 3 elements). Then $G_{1}=\left\langle H_{1}, x\right\rangle$, where $H_{1}=G_{1}^{\prime}=\langle a, b\rangle \cong$ Q_{8} (where Q_{8} is the quaternion group of order 8).

Claim. If $u, v \in H_{1}$ and $\left[u x^{e}, v\right]=a^{2}$, then $e \equiv 0(\bmod 3)$.
Proof of Claim. Suppose not. Note that since $3 \Varangle \mathrm{e},\left[x^{e}, v\right]$ has order 4, unless $v \in\left\langle a^{2}\right\rangle$. If $\left[x^{e}, v\right]$ has order 4 , then $\left[u x^{e}, v\right]=[u, v] u\left[x^{e}, v\right] u^{-1}$ has order 4 , a contradiction. Hence $v \in\left\langle a^{2}\right\rangle$ and so $\left[u x^{e}, v\right]=1$, also a contradiction.

Choose G_{2} to be any nonabelian group with a normal abelian subgroup H_{2} of index 3. Then there exists $y \in G_{2}$ such that $G_{2}=\left\langle H_{2}, y\right\rangle$ and $y^{3} \in H_{2}$. Let G be the subgroup of $G_{1} \times G_{2}$ generated by $H_{1} \times H_{2}$ and the element (x, y). Note $G^{\prime}=G_{1}^{\prime} \times G_{2}^{\prime}$.

Proposition. $\lambda(G)>1$.
Proof. Choose $1 \neq c \in G_{2}^{\prime}$. We will show that $\left(a^{2}, c\right)$ is not a commutator in G. By Lemma 2 with $H=H_{1} \times H_{2}$, if $\left(a^{2}, c\right)$ is a commutator, then

$$
\left(a^{2}, c\right)=\left[\left(h_{1}, h_{2}\right)\left(x^{e}, y^{e}\right),\left(k_{1}, k_{2}\right)\right]
$$

where $\left(h_{1}, h_{2}\right),\left(k_{1}, k_{2}\right) \in H_{1} \times H_{2}$. Hence $a^{2}=\left[h_{1} x^{e}, k_{1}\right]$ and $c=\left[h_{2} y^{e}, k_{2}\right]$. By the previous claim, $e \equiv 0(\bmod 3)$, and thus $y^{e} \in H_{2}$. Hence $c \in H_{2}^{\prime}=$ $\{1\}$, a contradiction, yielding the result.

The group G constructed above has order $24\left|H_{2}\right|$. If we take G_{2} to be A_{4}, the alternating group on 4 letters, then $H_{2}=A_{4}^{\prime} \cong K_{4}$. In this case $|G|=96$ and $G^{\prime} \cong Q_{8} \times K_{4}$. In fact there are exactly 2 groups of order 96 with $\lambda(G)>1$ (cf. [3]). We can also take G_{2} to be any nonabelian group of order 27. Then $\left|H_{2}\right|=9$ and $G_{2}^{\prime} \cong C_{3}$. Hence $G^{\prime} \cong Q_{8} \times C_{3}$, and so G^{\prime} is nonabelian of order 24. These two examples show that (ii) of Theorem 1 can not be improved.

For other examples of groups G in which some element of G^{\prime} is not a product of a fixed number of commutators, one can consult [3], [4], [5], and [7]. An open question in this field is whether G simple implies $\lambda(G)=1$.

References

1. W. B. Fite, On metabelian groups, Trans. Amer. Math. Soc., 3 (1902), 331-353.
2. B. Gordon, R. Guralnick, and M. Miller, On cyclic commutator subgroups, Aequationes Math., 17 (1978), 241-248.
3. R. Guralnick, Expressing group elements as products of commutators, Ph . D. Thesis, UCLA, 1977.
4. ———On groups with decomposable commutator subgroups, Glas. Math. J., 19 (1978), 159-162.
5. I. D. MacDonald, On cyclic commutator subgroups, J. London Math. Soc., 38 (1963), 419-422.
6. W. R. Scott, Group Theory, Prentice-Hall, New Jersey, 1964.
7. R. C. Thompson, Commutators in the special and general linear groups, Trans. Amer. Math. Soc., 101 (1961), 16-33.

Department of Mathematics
University of Southern Califormia
Los Angeles, CA 90007

