EXPRESSING GROUP ELEMENTS AS COMMUTATORS

ROBERT M. GURALNICK.

Let G be a group. If $x, y \in G$, the commutator of x and y, [x, y], is defined to be the element $xyx^{-1}y^{-1}$. These elements generate a characteristic subgroup, called the commutator subgroup of G, and is denoted G'. It is not true in general that G' consists only of commutators. Thus we define $\lambda(G)$ to be the smallest integer n such that every element on G' is a product of n commutators.

Perhaps the first example of a group G with $\lambda(G) > 1$ was given by Fite [1]. He discovered a group G of order 256 with G' elementary abelian of order 16 containing only 15 commutators. In [2] a group G with |G| = 240, G' cyclic of order 60, and $\lambda(G) = 2$ was exhibited. This was later shown to be the smallest such example in the case G' is cyclic (cf. [3]).

Then the question naturally arises: what are the groups G with |G| or |G'| minimal satisfying $\lambda(G) > 1$? In [3] the author has partially answered this question by proving the following theorem.

THEOREM 1. If (i) G' is abelian and |G| < 128 or |G'| < 16, or (ii) G' is nonabelian and |G| < 96 or |G'| < 24, then $\lambda(G) = 1$.

In this paper, we construct groups to show that the bounds in Theorem 1 can not be improved. The next two lemmas will be useful in determining which elements are commutators.

LEMMA 1. If G is a group and x, y, $z \in G$, then (i) $[x, yz] = [x, y] y [x, z] y^{-1}$ (ii) $[xy, z] = x [y, z] x^{-1} [x, z]$. (iii) If y and [x, y] commute, then $[x, y^e] = [x, y]^e$. (iv) If x and [x, y] commute, then $[x^e, y] = [x, y]^e$.

PROOF. (i) and (ii) follow by writing out the elements. (iii) and (iv) follow by a straightforward induction. For details see [6].

LEMMA 2. Suppose G is a group with a subgroup H such that $H \supseteq G'$ and $G = \langle H, x \rangle$. If w is a commutator in G, then $w = [ax^e, b]$ for some $a, b \in H$ and $e \in \mathbb{Z}$.

PROOF. We first note that if $g \in G$, then $g = hx^m$ for some $h \in H$ and $m \in \mathbb{Z}$. Also, if $h_1, h_2 \in H$, then

Received by the editors on February 13, 1978.

Copyright © 1980 Rocky Mountain Mathematics Consortium

$$(h_1x^s)(h_2x^t)^r \equiv h_1h_2^r x_1^{s+rt} \pmod{G'}$$

since G/G' is abelian. Thus since $H \supseteq G'$,

$$(h_1x^s)(h_2x^t)^r = h_3x^{s+rt}$$
 for some $h_3 \in H$.

Now suppose $w = [g_1, g_2]$ is a commutator in G. Then $g_1 = h_1 x^s$ and $g_2 = h_2 x^t$, where $h_1, h_2 \in H$. If t = 0, we are done. Suppose s = 0. Then by Lemma 1 we have

$$w = [h_1, h_2 x^t] = [h_1(h_2 x^t), h_2 x^t]$$

= $[h_1 h_2 x^t, h_2 x^t (h_1 h_2 x^t)^{-1}] = [h_1 h_2 x^t, h_1^{-1}].$

The proof now proceeds by induction on $k = \min\{|s|, |t|\}$. If k = 0, we are done as above. Suppose $|s| \ge |t|$. By the division algorithm, s = qt + r, where $0 \le r < |t|$. Hence as above,

$$w = [h_1 x^s, h_2 x^t] = [(h_1 x^s)(h_2 x^t)^{-q}, h_2 x^t]$$

= $[h_3 x^{s-qt}, h_2 x^t] = [h_3 x^r, h_2 x^t].$

Since $r < |t| \leq s$, we are finished by induction. A similar argument works if |s| < |t|.

Let $G = \langle u, v, w, x, y \rangle$, where $u^2 = v^2 = w^2 = x^8 = y^2 = 1$, uvu = vw, $uxu = x^{-1}$, $vxv = x^5y$, and $w, y \in ZG$. Then $G' = \langle w, x^2, x^4y \rangle = \langle w, x^2, y \rangle \cong C_4 \times K_4$ (where C_n is the cyclic group of order n and K_4 is the Klein group of order 4).

CLAIM. y is not a commutator in G.

PROOF OF CLAIM. Suppose y is a commutator in G. Applying Lemma 2 with $H = \langle u, w, x, y \rangle$, we have

$$y = [x^e y^f w^g u^h v^k, x^q y^r w^s u^t].$$

Using Lemma 1 repeatedly, we obtain

$$y = [x^{e}u^{h}v^{k}, x^{q}u^{t}]$$

= $[x, u^{t}]^{e} [u^{h}, x]^{q} [v, x]^{kq} [v, u]^{kt}$
= $[x, u^{t}]^{e} [u^{h}, x]^{q} x^{4kq} y^{kq} w^{kt}.$

Since the only term involving y is y^{kq} , we must have that $k \equiv q \equiv 1 \pmod{2}$. Hence $w^{kt} = 1$ and so $t \equiv 0 \pmod{2}$. Thus we have

$$y = [u^h, x]^q x^4 y.$$

If h is even, then $u^h = 1$, and $y = x^4 y$, a contradiction. If h is odd, then $[u^h, x] = x^{-2}$ and since q is odd, $y = x^2 y$ or $x^6 y$, a contradiction. Hence y is not a commutator in G.

Note that $G = \langle x, y \rangle \langle u, v \rangle$, where $\langle x, y \rangle \cap \langle u, v \rangle = 1$ and $\langle x, y \rangle$ is normal in G. Hence G is isomorphic to a semi-direct product of $\langle x, y \rangle \cong$ $C_8 \times C_2$ and $\langle u, v \rangle \cong D_4$ (where D_n is the dihedral group of order 2n). Thus G is a group of order 128 with G' abelian of order 16 and $\lambda(G) = 2$. This shows that (i) of Theorem 1 can not be improved. It can be shown [3] that if |G'| = 16 and $\lambda(G) > 1$, then either $G' \cong C_4 \times K_4$ or $G' \cong K_4 \times K_4$.

We now construct a class of examples. Let $G_1 = \langle a, b, x \rangle$, where $a^4 = b^4 = x^3 = 1$, $xax^{-1} = b$, $xbx^{-1} = ab$, $a^2 = b^2$, and $aba^{-1} = b^{-1}(G_1 \cong SL_2(3))$, the group of 2×2 matrices of determinant 1 over the field of 3 elements). Then $G_1 = \langle H_1, x \rangle$, where $H_1 = G'_1 = \langle a, b \rangle \cong Q_8$ (where Q_8 is the quaternion group of order 8).

CLAIM. If
$$u, v \in H_1$$
 and $[ux^e, v] = a^2$, then $e \equiv 0 \pmod{3}$.

PROOF OF CLAIM. Suppose not. Note that since $3 \notin e, [x^e, v]$ has order 4, unless $v \in \langle a^2 \rangle$. If $[x^e, v]$ has order 4, then $[ux^e, v] = [u, v]u[x^e, v]u^{-1}$ has order 4, a contradiction. Hence $v \in \langle a^2 \rangle$ and so $[ux^e, v] = 1$, also a contradiction.

Choose G_2 to be any nonabelian group with a normal abelian subgroup H_2 of index 3. Then there exists $y \in G_2$ such that $G_2 = \langle H_2, y \rangle$ and $y^3 \in H_2$. Let G be the subgroup of $G_1 \times G_2$ generated by $H_1 \times H_2$ and the element (x, y). Note $G' = G'_1 \times G'_2$.

PROPOSITION. $\lambda(G) > 1$.

PROOF. Choose $1 \neq c \in G'_2$. We will show that (a^2, c) is not a commutator in G. By Lemma 2 with $H = H_1 \times H_2$, if (a^2, c) is a commutator, then

$$(a^2, c) = [(h_1, h_2)(x^e, y^e), (k_1, k_2)],$$

where (h_1, h_2) , $(k_1, k_2) \in H_1 \times H_2$. Hence $a^2 = [h_1x^e, k_1]$ and $c = [h_2y^e, k_2]$. By the previous claim, $e \equiv 0 \pmod{3}$, and thus $y^e \in H_2$. Hence $c \in H'_2 = \{1\}$, a contradiction, yielding the result.

The group G constructed above has order 24 $|H_2|$. If we take G_2 to be A_4 , the alternating group on 4 letters, then $H_2 = A'_4 \cong K_4$. In this case |G| = 96 and $G' \cong Q_8 \times K_4$. In fact there are exactly 2 groups of order 96 with $\lambda(G) > 1$ (cf. [3]). We can also take G_2 to be any nonabelian group of order 27. Then $|H_2| = 9$ and $G'_2 \cong C_3$. Hence $G' \cong Q_8 \times C_3$, and so G' is nonabelian of order 24. These two examples show that (ii) of Theorem 1 can not be improved.

For other examples of groups G in which some element of G' is not a product of a fixed number of commutators, one can consult [3], [4], [5], and [7]. An open question in this field is whether G simple implies $\lambda(G) = 1$.

R. M. GURALNICK

References

1. W. B. Fite, On metabelian groups, Trans. Amer. Math. Soc., 3 (1902), 331-353.

2. B. Gordon, R. Guralnick, and M. Miller, *On cyclic commutator subgroups*, Aequationes Math., 17 (1978), 241–248.

3. R. Guralnick, *Expressing group elements as products of commutators*, Ph. D. Thesis, UCLA, 1977.

4. —, On groups with decomposable commutator subgroups, Glas. Math. J., 19 (1978), 159–162.

5. I. D. MacDonald, On cyclic commutator subgroups, J. London Math. Soc., 38 (1963), 419-422.

6. W. R. Scott, Group Theory, Prentice-Hall, New Jersey, 1964.

7. R. C. Thompson, *Commutators in the special and general linear groups*, Trans. Amer. Math. Soc., 101 (1961), 16–33.

DEPARTMENT OF MATHEMATICS University of Southern California Los Angeles, CA 90007