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HYPERBOLIC SYSTEMS 

DAVID S. GILLIAM 

0. Introduction. Potentials are widely used in the physics literature 
in the study of a great variety of wave-propagation problems, but it is 
not altogether clear how (or if) a potential for a particular problem might 
be discovered. In a recent paper [4] J. Schulenberger showed that the 
Lagrange identities and potentials for Maxwell's equations and the equa
tions of two-dimensional elasticity derive in a natural way from the 
spectral resolutions of the corresponding operators. More recently, 
J. Schulenberger and the author have shown [3] that there is a class of 
symmetric hyperbolic systems, describing most wave-propagation phe
nomena of classical physics, which is characterized by admitting potentials 
of a special form, called there "potentials of classical type". These poten
tials are very useful in studying symmetries, degeneracies, and conserved 
quadratic forms, but they suffer the disadvantage of being nonlocal. 

It is the purpose of this paper to show that this same class of symmetric 
hyperbolic systems is also characterized by another type of potential 
decomposition which is very often in applications local and which even 
more strongly emphasizes the special nature of this class of equations. 
It is, furthermore, easier to compute these local potentials than those of 
[3](cf. §3). 

1. Definitions and Notations. We shall be concerned with first-order 
symmetric hyperbolic systems 

(1.1) idtu = A(D)u = f ] Aßtu, Dt = -idXl 

where At is an m x m hermitian matrix. The operator A = A(D) with 
domain 

(1.2) g>{A) = {fejf: Afe 2?) 

is self-adjoint in #? — L(Rn, Cm) and generates the unitary group U(t) = 
exp(-^0(cf.[3],[4],[5],[6],[7]). 

We shall be concerned with those systems (1.1) with symbol A(p) = 0A 
of the form 
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(1.3) A(p) = 
AU o jxj-

where A* means conjugate transpose, k + j = m, k ^ j and 0 denotes 
Fourier transform in Rw, that is 

0fip) = f(P) = (2TT)-«/2 J exp( - 1 px) f(x) dx 
R" 

and its inverse 0*f(p) = @f(—p). 
The symbol A{p) of (1.1), /? e Rw\{0}, has real eigenvalues hip) which 

are homogeneous of degree one and continuous on RM. Enumerating them 
in the order 

(1.4) l-N(p) S £ A-i(/>) £ hip) ^ 0 S hip) ^ ' ^ A„(p), 

it was shown in [4] that 

UP) = -;u/0 = M-P) 

and that the multiplicity of each hip) is a constant, say vh on RW\Z where 
Z is a closed set of measure zero in Rn which intersects the sphere, S"-1, 
in a set of surface measure zero. 

The matrices AA*(p) ik x k) and A*A(p) U x j) have eigenvalues 

(1.5) hip) = 0 ^ Af(/7) ^ ... ^ ^(/>) 

again with constant multiplicity on RM\Z (Note that A*Aip) may be elliptic 
(cf. [3])). In Ck (respectively O) we have the resolution of the identity 
for AA*iA*A) given by 

(1.6) Ikxk = ZPKp)(Ijxj = tP{(p)) 
1=0 1=0 

where Pfip) iPjip)) is the orthogonal projection onto the eigensubspace 
corresponding to Xfip). These projections are given by 

Pfip) = - (2TH)-1 „ j lAA*(p) - Ç/ ]" 1 ^ 

(1.7) and 

\tf(p)-t\=d 

Pfo) = -(27i/)-i j [A*A(p) - f / ] - i « 
uf (/o-e i =5 

where the integration goes over a small circle in C enclosing only the 
eigenvalue Xf(p) in the positive direction. Let Pf = 0*Pf0 and P\ = 0*P{0, 
to obtain the decompsotions 

(1.8) #* = Z U(*n, C*), ^ = £ L£(R», O) 
/=o /=o 

where L (̂RW, C*) = Pf^k and L^ = L (R«, O) = Pffi. When the 
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symbol A(p) has the form (1.3), the resolution of the identity for A(p) 
can be expressed in terms of the above notation in a simple way. First de
note by y(Rw, C-0 the Schwartz space of rapidly decreasing, infinitely dif 
ferentiable functions from R« to O and let Sfl = ^/(Rw, O) = P£$*(R», O) . 
Simple consequences of the above definitions and notation are 

(i) {A<j>\<j> e yt} is dense in L£(R», C*) 

(1.9) and 

(ii) Pf(p) = XTXP)A(P)P{(P)A*(P). 

The symbol A{p) has resolution of the identity given by 

(1.10) / = QO(P) + E IQtp) + Q-tp)] 
1=1 

where Qr(p) denotes the projection in O onto the eigensubspace cor
responding to Àr(p). Now, as an immediate consequence of (1.6) through 
(1.10), we have 

(1.11) Q±l{p) = 

Qo(p) = 

1 
2 

-XT
2(p)APiA*{p) 

.±KlP{A*{p) * 

~PM o " 
J) P{{p)_ • 

so that (1.10) becomes 

(1.12) I : 
N 

= 2 
1=0 

~P?(P) < 
_o 

3 

P{(P\ 

t^APjip) 

P{(PI 

Defining the projections in $£ by Qt = 0*g/0 we obtain the decomposi
tion 

(1.13) tf = £ j f „ jf0 = Ôo^r, tfi = [Qi + Q-Ù&. 
1=0 

This decomposition is the same as that obtained in (1.8). 
For each / = 1, ..., N define the Beppo-Levi space 

(1.14) BD x V2 = BD(R», Àh O) x Z^(R", O) 

as the completion of «^/(RB, O) x ^(R w , O) in the norm. 

0.15) I / I 2 = j W(p)\fi(p)\2 + \f2(pf}dp-

The operator 

(1.16) H, = 0*77,0, H, = / 
0 
- ^ ) / y x y 0 
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with domain 

(1.17) ®{flò = {fe BU x U2:f2 e BU, tf(p)Up) e U} 

is self-adjoint in BU x Ll
2, and generates the unitary group Sfa) = 

exp( — it Hi). 
For v = Sfa)ffe 0(i//), the equation 

(1.18) /3,v = #,v 

is a generalized wave equation; in the case where A(p) is isotropic, i.e., 
^i(p) = ^i(\p\), (1.18) is a classical vector wave equation. Denote by At 

and Ufa), respectively, the operators A and U(t) restricted to jtft. 
DEFINITION. A collection of unitary maps 

(1.19) 07: BU x Ll
2^ j^t 

such that 

(1.20) Ufa) = alSfa)ai\l= 1, ...,7V, 

is called a potential decomposition for (1.1). If further, 07 has the form 

(1.21) <Tif=0*(A(p)A(p),if2(p)) 

then 07 is called a vector potential and the decomposition (1.19), (1.20) 
a vector-potential decomposition. 

2. The Main Result. THEOREM 1. The system (1.1) admits a vector-
potential decomposition if and only if the symbol A(p) has the form (1.3). 

PROOF, (of the sufficiency) Dehne a1: BLt x Ll
2-^j^i by (1.21); the 

proof of sufficiency is contained in the lemma: 

LEMMA, (i) 07 is unitary, (ii) a0(H^) = Q>(Aj), 

(2.1) (iii) a^Ufa^ = Sfa) 

PROOF. For fin (BU x L0 f| Wi * ^ / ) we have 

| ^ / / | | 2 = ( 4 / i ^ / i ) + 072,f/2) 

= WM/1,/1) + (/2,/2) 
= J{^)|/i(rt|2 + |/2(^)|2}* 
= ll/ll2-

So (7/ is an isometry. 
If/ = (/*, / / ) in tff) x jf-j = j ^ is orthogonal to the range of 07, then 

for all <f) = ((f>i, (f>2) in S?i x «^ we have 

0 = (/, £4) = (A Ä ) + (A 2̂) 
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and hence /> = 0 since Sfi is dense in j f f The fact that fk = 0 follows 
because {A<[)\(J) e 6^1} is dense in ,#% see (1.9). 

If / is in ^1 x Sfi then we have 

I w||2 = Mooôl2 

= \\iA{p)h{p)\\* + | A K P ) / I Q » | 2 

= 11/2 2||BL/ 4- WP)UP)\\: 

Hence/is in the domain of Ht if and only if atfis in the domain of A. 
For g = (gk, gì) in an appropriate dense subset of ^Ct = ^"f x jf-j we 

have 

oJxS = <t>*QT2(P)A*(p)gk(pl - ' H o 

using this, the result (iii) follows from the identity 

arlAa,f = 0*i ih 

-mh 
~lj2A*Aft 

_-AA*A J 
= 0*H,f = HJ. 

Thus the proof of the sufficiency of the theorem is complete. 

The proof of necessity is the same as the proof of the necessity part of 
Theorem 1 in [3], therefore will not be reproduced here, but rather the 
reader is referred to [3]. 

It should be commented that in the case of the vector potentials, the 
assumptions for necessity (in contrast to those in [3]) are that A(p) has the 
form 

A{p) = 
T(P) 

A*(p) 

A(p)' 

H(P). 

and there is a vector potential decomposition of the form ot: BU x V -• 

olf=4>*(A(p)fl(p\if2(pj) 

fo r / i n BU x Li, I = 1, ..., N. 
Just as in [3], the existence of a vector potential decomposition for 

(1.1), (1.3) affords a simple characterization of smooth data of a special 
form in each yfh I = 1, ..., N. In contrast to [3] though, in the case when 
A(p) is isotropic, this characterization delivers smooth, compactly sup
ported data in each j ^ t . 

Define the bounded measurable matrix-valued functions J//(O>) on 
S»-i for / = 1, ..., N by 

(2.2) t</Xû>) = 2-i/2Ar1(o>) Pi(o))A*((û) 
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then, using the definitions and remarks in Section 1, we have 

Pf(co) = Zs/?sth P{ = Ist^f 

I = 1, ...,N. The Lagrange Identity in [3] and the statement (1.10) become 

(2-3) l-i,-2Ì\f^ ° 1 
/=i.L0 rfitffi 

Define the operators on @(Rn, Ck) and ^(Rw, CO, respectively, by 

sff(D) = 0*s/f((o) \p\Sa® 
JZ/^D) = Q+tfio)) \p\Sa<& 

where £̂ (RW, Cr) is the space of compactly supported smooth functions 
from Rw to Cr and Sa = [degj//(û/)/2] if stfi(co) has polynomial entries and 
zero otherwise. Here [r] means the smallest integer §: r. 

Let 

Sl = {^(flty: ^6®(R» ,0 )} 

and 

Tt = {J*T(D)<I)\ ^e^(R" ,C^)} . 

COROLLARY. St x Tt is dense in J^h 

The proof is just like the corresponding result in [3] and follows from 
the Lagrange identity (2.3) and properties of the Fourier transform. 

3. Examples. Many of the wave-propagation problems of classical 
physics can be written in the form (1.1), (1.3). Among these are the equa
tions of acoustics, elasticity, magnetohydrodynamics, crystal optics, 
Maxwell's equations, and the equations governing elastic wave-propaga
tion in fiber-reinforced media. For the description of these equations in 
the form (1.1), (1.3) and the pertinent information necessary to construct 
the projections and vector potentials, the reader is referred to [3]. 

It is worth commenting that in the case of Maxwell's equations and the 
equations of elasticity in R3, the vector potentials are the classical vector 
potentials found in the physics literature; also, in [3] only the uniaxial case 
in crystal optics was considered. This was partly due to the difficulty en
countered in constructing orthonormal eigenvectors for the symbol A(p). 
In the case of vector potentials, the eigenvectors are unnecessary; only 
the projections are needed and these are many times easier to compute. 
Below, the symbol and projections for the general biaxial case of crystal 
optics are given. I would like to thank John Schulenberger for presenting 
me with this example. In order to present this example in a more notation-
ally convenient setting, a slight modification of the development given in 
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(1.1) through (1.21) is given. This modification also shows how simply 
the preceding can be extended to more general situations. 

Consider a symmetric hyperbolic system of the form 

(3.1) idtu = A(D)u = E-iA0(D)u, 

with symbol 

\0 A(p)l 

\jA(p) 0 J 
where E is a positive-definite, symmetric matrix of the form 

~E0 01 

A(p) = E-IAQ(P) 

E = 
0 

Here A(p) is a k x j matrix, j + k = m, lA is the transpose of A, E0 is 
a positive-definite, symmetric k x k matrix and / is the j x j identity 
matrix. Replacing the system (1.1) by (3.1), one must also replace J^ = 
L2(R

W, Cw) by jeE = L2(R
n, Cm) with inner product 

(3.2) (f,g)E = (f,Eg). 

Note that (3.1) can be put in the form (1.1) with an appropriate choice of 
dependent variables, although, in the specific application given below, 
this change of variables would greatly complicate the notation. The only 
important changes encountered in Section 1 with (3.1) replacing (1.1) are: 
The statement (1.11) becomes 

(3.3) Qi(co) = 2-1 

and the vector potentials (1.21) become 

(3.4) ^if=^(Eô1A(p)f1(plif2(p)). 

For the sake of brevity, only the pertinent information for constructing 
the potentials is given and the reader is referred to [1, 2, 3, 8] for a more 
thorough discussion of the equations of crystal optics. Choosing the 
coordinate system so that the axes coincide with the principal axes of the 
dielectric tensor, the equations of crystal optics (general biaxial case) can 
be written in the form (3.1) where the symbol A(p) is given by 

A(p) = 
0 
-OJÀ 0 

E0
 1CDX 

the Hilbert space J£E is L2(R
3, C6) with energy form, E = diag(£0, 73x3), 

EQ1 = diagfer1, £ï\ es1) = diagli, c2, c3) = C, where 
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-0)3 

0 
0)2 

-Cui 

0 

r ° 
0)X = 0)3 

i-0)2 0)i 

The characteristic polynomial for A(p) is 

det(A(p) - f/) = a ? 4 - *2^)f2 + RA(CO))9 

R2((D) = (c2 + c3)o)l + (q + c3)cüi + ( A + c2)o)j 

= XKco) + x%o>\ 
^4(^>) = ^2^3<^1 + ^ 3 ^ 2 + <V2<^3 = X\(<û)Xl{û)). 

The eigenvalues are thus 

X0(œ) = 0, AÏ(Û>) = 2-i[*2(<ü) + £>(Û))1/2], AKÛ)) = 2-i[A2(û>) - Z>(Û>)1/2] 

where 

WÏ(Û>) - Ai(û>)]2 = /)(<») 

= P 3 2 ^ 1 - ^ 2 1 ^ 3 ) 2 + ^ S l ^ i ï ï O ^ l + ^21^3>2 + ^31^11 

= R2
2(o)) - 4RA(co), d% = c, - cj. 

The projections from (1.7) are 

PJo(œ) = o) ® o), Po(œ) = œ ® ax?', 

where c' = diag(c2c3, qc3 , qc2) and for £ G R3, œ (g) <y(£) = <U(Û; • £), 

P{(o)) = (œXcœX - X\o)XœX)ID^. 

The projections (3.3) are 

— ccoXœX + /lr2Co;/lcûvl — cXï \œXo)XcœX + ^j?^)] 
[/^(co/lca^/l + XIOJX) —œXccoX + XlooXœX 

ccoXœX — X^ccoXcœX cX^KcoXcoXcœX + XiO)X~\ 

_ — X2l(o)Xco)Xo)X + X\o)X) œXccoX — X\o)XœX 

Finally, the vector potentials, ah are given by 

alf=d>*(ccoXfl{p),ih(p)) 

for / in BU x L'2, I = 1, 2 and « = /»/|p|, and the corresponding wave 
operators are given by 

ß2(u>) = 2£>-i^ 

/ / , = Ì0* 
' 3 x 3 "0 

L - ^ ) / 3 x 3 0 
P>, / = 1 ,2 . 

REFERENCES 

1. M. Born, 0/?//7c, Springer-Verlag, Berlin (1933). 



VECTOR POTENTIALS 583 

2. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 2, Interscience, 
New York (1962). 

3. D. Gilliam and J. R. Schulenberger, A Class of Symmetric Hyperbolic Systems 
with Special Properties (preprint). 

4. J. R. Schulenberger, On Lagrange Identities (preprint), Instituto Venezolano de 
Investigaciones Cientificas (1975). 

5. J. R. Schulenberger and C. H. Wilcox, Coerciveness inequalities for nonelliptic 
systems of partial differential equations, Ann. Math. Pura Appi., 88, 229-306 (1971). 

6. , Singularities of the Green matrix in anisotropic wave motion, Indiana Univ. 
Math. J., 20, 1093-1117 (1971). 

7. C. H. Wilcox, Wave operators and asymptotic solutions of wave propagation prob
lems of classical physics, Arch. Rat. Mech. Anal., 22, 37-78 (1966). 

8. , Electromagnetic Signal Propagation in Crystals, Applicable Anal, (to 
appear). 

DEPARTMENT OF MATHEMATICS, TEXAS TECH UNIVERSITY, LUBBOCK, TEXAS 79409 




