ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 10, Number 3, Summer 1980

ON THE EVALUATION OF (¢,,,/p)

KENNETH S. WILLIAMS

Let m be a positive squarefree integer. We denote the class number of
Q (4/—m) by h(—m) and the fundamental unit of Q(4/m) by ¢,,. We con-
sider only those m for which the norm of ¢, (written N(e,,)) is — 1, so that
the only possible primes dividing m are the prime 2 or primes congruent
to 1 modulo 4. Now, if p is an odd prime such that (m/p) = + 1, we can
interpret ¢,, as an integer modulo p, and ask for the value of the Legendre
symbol (¢,,/p). Because of the ambiguity in the choice of 4/m taken mo-
dulo p, we must ensure that (e,,/p) is well-defined. Since

(:,1 > _ (&l) - (M> - (@.X@)
p p p pApPJ/
where the prime (’) indicates conjugation (4/m — — /m), this will be
the case if (— 1/p) = +1, that is, if p = 1 (mod 4). Thus it is assumed

throughout that
p 4

Suppose m has the prime decomposition m = ¢, ... g,, and let a denote
the number of ambiguous classes of forms of discriminant —4m in the
principal genus. Then, from genus theory, we know that

b= 25 a, if m odd,
T 251 g, if m even,

is an integer dividing A(—m), and we define a positive integer / by
| = h(—m)/b.

We restrict our attention to primes (congruent to 1 modulo 4) represented
by forms in genera containing ambiguous classes, so that p‘ is represented
by an ambiguous form. For such primes p, when m is a prime or twice a
prime, the evaluation of (¢,,/p) is known, except in one case. In these cases,
the generic characters are given by (for k& > 0)
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R =(2) m=2,
00 = (T 0 = (%), m = q(rime) = 1 (mod )
1) =(Z2) 0 =(£). m=2q g(prime) = 1 (mod )
and the ambiguous forms of discriminant —4m are given by
1=(1,0,2), m =2,
I=(,0,9),4=2,2,%q+1), m=yq,
I1=(,0,29),4=1(0,¢9), m = 2q,
where (r, s, t) denotes the form rx2 + sxy + ty2.
We remark that N(e,,) = —1 when m = 2; when m = ¢ (prime) = 1

(mod 4) (Dirichlet [6: p. 225]); and when m = 2¢, g (prime) = 5 (mod 8)
(Dirichlet [6: p. 226]). m = 2q, g (prime) = | (mod 8) is the only case
which requires the assumption that the norm of the fundamental unit
be — 1. In this case, the assumption 2 = A(—2g) = 4 (mod 8) has also to
be made, as Lehmer’s results [11: Theorems 2 and 3] require that 4/4 be
odd. What happens when 2 = 0 (mod 8) remains open. Both possibilities
occur as N(ey.q1) = N(egi13) = —1, h(—82) = 4, h(—226) = 8. Writing
h for h(—m) the results in the known cases can be summarized as follows:

m Assumptions Evaluation of (%”) R;fceer;
—(2)\= /2 if p=x2 2
2 =\7 =1 (=12, if p=x2+2y 1
] if ph/d— x2 2
g = 1(mod 8) ):(,‘1)=1 +1, il pri=xt+qy (14] (5]
p — 1, if 2p#/4=x2 +qy?
g = S(mod 8) >=<,,;L)=1 (1), if pr2=x24+qy  [11][13]
24 ,>=<7727>=<'q4>=1 (=172, if ph/4=x2+2qy"
p p | [11]
q = 1(mod 8) Nieg)=—1 (=122, if ph/4=2x2+qy2
h=4 (mod 8)
. Jo()-r DRI gy

g = 5(mod 8)

(= 1)=/2+1 if ph/2=2x2 4 g2
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It is the purpose of this paper to discuss the remaining cases when m
has exactly two prime factors, that is, m = ¢;q,, where ¢; and ¢, are dis-
tinct primes congruent to 1 (mod 4).

In the unique factorization domain Z[{] of Gaussian integers, we have
g1 = 7171, g2 = TWaTe, Where z; and z, are primes, which we can take to
be primary, that is, to satisfy z; = 7, = 1 (mod (1 + §)3). Now either
€aya, OT £qy4° 18 Of the form T+ U 4/q;4,, where Tand U are positive integers
with Teven and U odd. Since N(T' + U+/q192) = — 1, we have, forj = 1,2,
(T + i) T — i), that is, z;|T + i, as «; is prime. Replacing z; by its
complex conjugate 7;, if necessary, we can assume

LT +i (j=1,2).

Writing [ /z;}z (resp. [ /xz;]y) for the quadratic (resp. biquadratic)
residue symbol (mod z;), and ( /p), for the rational biquadratic symbol
(mod p) (p an odd prime), we have

THEOREM 1. If p, q1, q, are distinct primes congruent to 1 (mod 4), such
that (q192/p) = +1, then

() =L L),

where 1, o are defined as above. (Compare Furuta [7: Theorem 3])

Proor. As T is even, (T + i)/myme, and (T — i)/7 72 are coprime
Gaussian integers. Since their product is U2, by the unique factorization
property, (T + i)/z;m, must be an associate of a square, say,

T + i = umymoa?,

where u is a unit of Z[i], that is, ¥ = +1, +i. Reducing this equation
modulo 2, we obtain # = i (mod 2), so that ¥ = +i. Replacing a by ia,
if necessary, we have

(0))] T + i = imymoal.
As U > 0, a@ > 0, this gives U = aa. Hence, from
AT + (T + Uvqigz) = (T + i + Un/q192)?,
we have
#)) (I + D2m172(T + Un/q192) = (imimex + @ 4/q192)%

Let 7 be a primary prime factor of p in Z[i],sothatp = zZ, z =7 = 1
(mod (1 + ©)3). Interpreting /¢4, as an integer modulo p, we have from

@ '
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<5q1qz> <T+ l;«/qlqz> [T + lév/chqz]
p 2
[e2-[2[z]

} (by the law of quadratic reciprocity in Z[i])
EIRENEARE Y
AEVEE EELVEEL
-ElE ==L EEEEL

7 } (by the law of biquadratic reciprocity

in Z[i])
LA ML= L)

COROLLARY 1. If p, q1, q, are distinct primes congruent to 1 modulo 4,
such that (q:/p) = (q2/p) = +1, then

(5 = Gl @) ).

(Furuta [7: Corollary, p. 143])

PROOF. As (q1/p) = (q2/p) = 1, we have (4192/p)s = (41/P)s(42/p)s, and
by the law of quadratic reciprocity (p/q;) = (p/q2) = 1, so [p/mils =
(pl9)s [p/mals = (P/g2)s. The result now follows immediately from
Theorem 1.

COROLLARY 2. If p, q1, q; are distinct primes congruent to 1 modulo 4,
such that (q1/p) = (q2/p) = —1, (¢1/92) = — 1, then

(52) = = GO ")
p gz /a\ 91 /&\ P /4
PROOF. As (g2/q1) = — 1, we have [go/71], = —1, thatis,

[wo/mi]y [Tolmi)e = — 1.

Now, from T + i = imj7ea?, we have
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2 = mmoa® + TT2a3,

)
2 = wWea? (mod 7y),
giving
2/7]; = [7m1/mile[7o/m1le = [2/71)el7e/ 71)e,
that is,

7ol = +1, [7o/mi], = — 1.
Hence we have
[m1/maly [mo/mils = [m1/mllmalmils = [mo/molal /703
= [71/7olaT2/ 1 Lo[To/ 7 1)

—[m1/7ma)al 7o /7114

Il

that is,

2 ™
by the law of biquadratic reciprocity in Z[i]. Also, by the law of biquadratic
reciprocity in Z[i], we have

o EEleen

Multiplying (3) and (4) together, we obtain
[91/7alalgz/]y = — 1,
and Theorem 1 gives
(eg00/ P) = [P/l P/72la(@192/P)a
—[pq1/7aldl Pg2/71]a(0192/P)4s
= (Pq1/92)4(P92/91)4(q192/P)1s

as required.

We are now in a position to obtain the explicit evaluation of (e4,,/p),
when p? is represented by an ambiguous form of discriminant —4gq;g,.
This is done, following ideas of Lehmer [11: pp. 369-371], by using the
representation of p! to compute the residue symbols appearing in the ex-
pression for (e,,,,/p) given in Theorem 1 or its corollaries. Many of the
details are suppressed, as the calculations parallel those given by Lehmer.
As in Lehmer’s work, we require that / be odd, and an assumption to this
effect is made wherever necessary. The results, which constitute Theorem
2, are given in the Table.
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TABLE
Case m=gqq, Assumptions Evaluation of <-e;—)
! 1L pM =X 4 g,q,?
| g=q.= bl ANCANS (12 = P e
9:=9.=1(mod §) ( p )_ (p) = p) 1 or q,x*+q,"
I (‘Ll) =+1 N(ey)=—1 —1,if 2p*** = x*+q,4.5"
92 h=16 (mod 32) or q,x*+¢q,y*
| (24 = (@) = (2) = +1 +1,if pHo =X+ g1,
! p pl\p .
g:=¢,=1 (mod 8) h=8 (mod 16) —1,if 2p**=x"+4,q.y*
I - _— N

1; ) =-1

3=l =l ==

h=8 (mod 16)

g:=1, ;=5 (mod 8)

() =+1

111

¢:=1, g,=5(mod 8)

1
-

(

=1
p

|
| +1,if pP=q,x"+q,y*
—1,if 2p*¥=q,x,+ q,)*

-5~
N(e,)=—1
hiS (mod}g)

(=1, if pPe=x"+q,q,)*

or ¢,x*+¢,y*

-1y

(=1, if pPt=x*+q,q.y"

{
|
| 4:=¢,=5 (mod 8)

v |
(@)=

(=1, if pt=gq,x* +¢,)*

+1, if pP*=x?+4,9.y"

=L if p*i=gq,x* +q.)*

ol
F=(0)=(6=+
New=-1
= ()= (5]
N(E)=—1

(= 1)T74, if 2pH/®

— 42 2
_1\T/4+1 x h_yeqlqzy
(=1)T/4* 1 if 2p

=q,x*+q,)"

h=8 (mod 16)

+1if pPt=x2+q,q,y*

=1, if 2p** =g,x*+q,y*

[

|
p

5= 1))

h=8 (mod 16)

+1, if 2pP®=x24g,q,)*

]! -1if 'h/8=q1x2+q2y2

N.B. Tis defined by e,=T+U +/m, A=1 or 3

h is the classnumber of Q(+/ —m).

All representations are primitive.
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Let I, A, B, C denote the classes of the forms [1, 0, q1g95], [2, 2,

33192 + D) [91, 0, @2l 291, 2q1, 2(q1 + ¢2)] respectively. These are pre-
cisely the ambiguous classes of forms of discriminant —4¢q;¢g,, so that the

classes of forms of discriminant —4g;q, fall into 4 genera. The generic

characters are yy(k) = (—1/k), ya(k) = (k/q1), xo(k) = (k/gz) (k > 0).
The six cases appearing in the table are treated below.

Case l. g; = q; = 1 (mod 8), (q1/g;) = +1. In this case I, A, B, C are
all in the principal genus, so that & = A(—gq1g9,) = 0 (mod 16) (Brown
[4: Theorem 1]). Thus, if p is a prime, such that (—1/p) = (g1/p) = (g2/p)
= 1, there are positive coprime integers x and y such that p! = x% +
1925, 2X% + 2xy + Hqig2 + DA q1x® + g2p%, or 2q1x® + 2qixy +
(g1 + ¢2))%; that is, there are positive coprime integers x and y such that

plor 2pt = x2 + qiqgz)® or 1x% + 2%,

where / = h/16. We now assume that N(e,,,) = — 1 and 2 = 16 (mod 32)
(so that / is odd). These are two independent assumptions since: N(eq1.24)
=—1 and A(—41:-241) = 112 = 16 (mod 32), whereas N(ei7.59) = +1
and A(—17-89) = 16; also N(ey7.051) = — 1 and A(—17-281) = 32, where-
as N(ey7.437) = +1and A(—17-137) = 32,

Taking p' = x2 + q19,¥? modulo p, ¢; and ¢,, we obtain

(91/P)4(a2/P)s = 2/p)(x/P)(¥[P),

(Plg)s = (x/91), (pla2)s = (x/q2),
so that, by Corollary 1, we have

)= GGG E)

x =2, x;=1(mod2),a =0,

y=2y,y=1(mod2), 5 =0.

Next we set

By the law of quadratic reciprocity, we have (as / is odd)
(x/p) = @/p)>*(x1/p) = @2Ip)*(p/x1) = 2p)*(p/x1) = (2/P)*(q1/x1)(g2/x1),
lp) = @IpY(nlp) = CIpY(ply) = QIpP(p!y) = Q2/p),

(x/q) = Q/q*(x1/91) = (x1/q1), (x/92) = (2/g2)*(x1/92) = (x1/g2),

giving
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If p = 1 (mod 8), (2/p) = +1,s0 (eqqn/P) = +1;if p = 5(mod 8),
then @ + 8 = 1, and again (g,,,/p) = +1.
Similarly, using p! = g;x2 + g, )% in Corollary 1, we obtain

(eqm) = <£IL> (q_z> ,

p qz /4\q1 /4

But, as N(e,,,) = —1, we have (41/g2)4(q2/q1)s = +1
(Brown [2: Lemma 4]), so that (g,,,/p) = +1.

Using 2p! = x2 + ¢;4;)? in Corollary 1, we obtain, using the easily
proved result (2/p)(2/x)(2/y) = (—1)@te28),

()= 0™ @)= Gl

where d, e are positive odd integers defined by ¢;q, = 2¢2 — d2. As

(91/92)4(q2/91)s = +1 (since N(egq,) = —1) and A(—¢q192) = 16 (mod 32),
we have (e/q;)(e/q2) = —1 (Kaplan [9: Prop. Cj]), so that (e,,,/p) = —1.
Using 2p! = ¢1x% + ¢,»? in Corollary 1, we obtain in a similar manner

() =0 @ @ - ()

Cask II. ¢; = g, = 1(mod 8), (¢1/g2) = —1. In this case I, A are in
the principal genus and B, C are in the non-principal genus for which
y1 = +1, so that & = h(—gyq5) = 0 (mod 8) (Brown [4: Theorem 1]).
Thus, if p is a prime such that (—1/p) = (¢1/p) = (¢2/p) = 1, there are
positive coprime integers x and y such that

por2ph = x% + q19,)7%,

where / = h/8, and, if (= 1/p) = 1, (q1/p) = (q2/p) = -1,
such that

plor2p = q1x% + gp)°.

As (q1/g2) = —1 we have N(eg,,) = —1 (Dirichlet [6: p. 228]), and we
assume that 2 = 8 (mod 16) (so that / is odd). The example ¢; = 17,
g = 73, h = h(—1241) = 32, shows that this is a genuine assumption.
Using p! = x% + ¢14,% in Corollary 1 we obtain (¢,,,/p) = +1.
Using 2p! = x2 + ¢19,)? in Corollary 1, we obtain

<5q1q2> — (- l)‘:Ql‘H}Z*Z)/S(i) <l> ,
p q1 /4\ 92 /4

the right hand side of which is —1, as #(—¢;q;) = 8 (mod 16) (Kaplan
[9: Prop. By)).
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Using p! = ¢;x% + g,)? in Corollary 2 we obtain (¢,,,,/p) = +1.
Finally, using 2p! = ¢,x% + ¢,)? in Corollary 2, we obtain

<Elﬁz_> =(=1) (q1+qrz)/8<£_> <_2_>
P q1/4\ 492 /&

the right hand side of which is —1, as A(—q;9,) = 8 (mod 16) (Kaplan
[9: Prop. B;)).

Case IIl. ¢, = 1, g, = 5 (mod 8), (q1/q2) = +1. In this case I, B are
in the principal genus and A, C are in a non-principal genus for which
y1 = —1. We have 1 = h(—q19,) = 0 (mod 8) (Brown [4: Theorem 1]).
Thus, if p is a prime for which (—1/p) = (q1/p) = (g2/p) = +1, there
are positive coprime integers x and y such that

P= X% + q192)?% or q1x2 + q5)%,

where | = h/8. We now assume that N(e,,) = —1 and & = 8 (mod 16)
(so that /is odd).

These are two independent assumptions since: N(g7.55) = —1 and
A(—17-53) =24 = 8 (mod 16), whereas N(gy7.099) = +1 and A(—17-229)
=40 = 8 (mod 16); also N(ey40.5) = —1 and A(—1601-5) = 48 =0
(mod 16), whereas N(ej7.13) = +1 and A(—17-13) = 16 = 0 (mod 16).

Using p' = x2 4+ ¢y9,)? in Corollary 1, we obtain (gg,,,/p) = (—1)*.
Using p! = ¢1x% + ¢,)% in Corollary 1, we obtain

Cange \ _ 1y (9L (92
< qP >—( D <¢Iz>4<q1>4'
As N(eqyq) = —1, we have (91/92)4(q2/91)s = +1 (Brown [2: Lemma 4]),
so that (g,,,/p) = (—1).

CaselV. g, = 1, g, = 5 (mod 8), (q1/g2) = —1. In this case I, A,B,C
are each in different genera, with I in the principal genus and B in the non-
principal genus with y; = +1. We have & = h(—g1q,) = 4 (mod 8)
(Brown [4: Theorem 1]). Thus, if p is a prime such that (—1/p) = (¢:/p) =
(g2/p) = 1, there exist positive coprime integers x and y such that p! =
x2 + ¢q1q2y?, where [ = h/4 is odd, and such that p’ = g;x% + ¢5)2,
if (=1/p) = 1, (¢1/p) = (q2/p) = —1. As (q1/q2) = —1, a theorem of
Dirichlet [6: p. 228] guarantees that N(e,,) = —1. Using p! =
x* + q,4,)? in Corollary 1, we obtain (¢,,,,/p) = (—1)*, and using p! =
@1x% + g,)? in Corollary 2, we also obtain (eg,,,/p) = (—1).

CASEV. g, = g, = 5 (mod 8), (q1/g2) = + 1. In this case I, B are in the
principal genus and A, C are in the non-principal genus with y; = +1.
We have h = h(—q;9,) = 0 (mod 8) (Brown [4: Theorem 1]). Thus, if p
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is a prime such that (—1/p) = (q1/p) = (¢2/p) = 1, there exist positive
coprime integers x and y such that p/ = x% + g19,)2 or q;x% + ¢,»?; and,
if (=1/p) =1, (q1/p) = (q2/p) = —1, such that 2p! = x% + ¢;¢,)? or
q1x% + q3)°, where | = h/8. We assume that N(g,,,) = —1, so that by
a theorem of Brown [2: Lemma 4] we have (¢1/¢2)4- (¢2/91)s = 1, and hence
by a theorem of Kaplan [9: Prop. B;] we have 4 = 8 (mod 16), so that /
is odd. Using p! = x? 4+ q19,)? in Corollary 1, we obtain (e,,4,/p) = +1,
and using p! = ¢;x% + q,)? in the same corollary we obtain (g,,,/p) =
—(91/92)4(q2/91)s = — 1.

When 2p! = x% + q1q2)% or q;x% + ¢,)% the evaluation of (eg,,/p)
appears to be more difficult. It was originally hoped to give a third corol-

lary to Theorem 1 expressing (e,,4,/p) in terms of (2p/q,)4(2p/q92)s(q192/P)s
when p, ¢1, g, are distinct primes congruent to 1 modulo 4, and such that

(q1/p) = (q2/p) = —1, (91/92) = +1, g1 =¢, =5 (mod 8). No such
representation was found, and so instead we apply Theorem 1 directly.
If 2p' = x% + q19,y% we have

o)=L m L L)

-l I RO

sl T R RIRLEE T TR ()
[ Xz%)(?)” ””( B A R ARG ¥}
“[allm @G0

s (g) = () = (0) - (%) - (-GN

Now, by Jacobi’s form of the law of quadratic reciprocity, we have (as /
is odd)

Nf‘\w S

SO

() - ERlGXOG) - 0" sk

Setting v = g + hi, where « is defined by (1), we have
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E‘!lq}, _( 1)(41+42—2)/8[_L l:ljl
<p >_ a mﬂzazlaz

=" g Lo

= (_ 1)(41+42—2)/8+T/4+h/2
b

by the supplements to the laws of quadratic and biquadratic reciprocity
in Z[i], since T = 0 (mod 4) in this case. As ; (j = 1, 2)is a primary prime
factor of ¢q; (j = 1, 2), we have z; = a; + ib;, a; =1 (mod 2), b; =0
(mod 2), a; + b; — 1 =0 (mod 4), a% + b% = g;. Since g; = 5 (mod
8), we have, forj = 1, 2,

{a,- = 7 (mod ), b; = 2 (mod 4), ifg; =5 (mod 16),
a; = 3 (mod 8), b, = 2 (mod 4), if g; = 13 (mod 16).

Set a + ib = w7, SO we have
a = a1a, — biby, b = ayby + ayb;.
Clearly we have
a=5(mod8), b=0(mod4), ifqg + g, = 10 (mod 16),
1 (mod 8), = 0 (mod 4), if ¢ + g, = 2 (mod 16).

a

From | — Ti = mmea? = (@ + ib)(g + ih)?, we have
I = a(g® — h?) — b(2gh),

so that
g =1 (mod?2), h=2(mod4), ifg; + g, =10 (mod 16),
g=1(mod2), h=0(mod4), ifg, + g, =2 (mod 16),
giving
h2 = (g1 + gz — 2)/8 (mod 2),
so that

(5q1qz/ p) = (“ I)T/4~
Similarly one can prove that (e, ,,/p) = (—1)7/41, when 2p! = g;x% +
92)%, using (q1/92)4(G/91)s = +1.

Case VI. g; = ¢, = 5(mod 8), (¢1/g2) = —1. In this case I and C are
in the principal genus and A and B are in the non-principal genus with
x1= +1. We have h = h(—q,9;) = 0 (mod 8) (Brown [4: Theorem 1]).
Thus, if p is a prime such that (—1/p) = (q;/p) = (¢2/p) = +1, there are
positive coprime integers x and y such that p! = x% + ¢1¢,)% or 2p! =
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q1x% + g3)%, and if (—1/p) = 1,(q1/p) = (g2/p) = —1, such that p/ =
qi1x% + g2 or 2pt = x% + qi1q9,)%, where [ = h/8. As (qi/q;) = —1, by
Dirichlet’s theorem [6: p. 228], we have N(e,,) = —1, and we assume
that 4 = 8 (mod 16), so that /is odd. The example g; = 5, g3 = 37, h =
h(—185) = 16, shows that this is a genuine assumption.

Using p! = x? + q192»* in Corollary 1, we obtain (e,,/p) = +1,
and using 2p! = ¢;x% + ¢,)? in Corollary 1, we obtain

()
p qz /a\ 41 /¢

the right hand side of which is —1, as 4 = 8 (mod 16) (Kaplan [9: Prop.
B)). Using 2p' = x2 + ¢;¢,)? in Corollary 2, we obtain

Cam\ _ B (91+42+6)/8 <%> <ﬂ> _
<p>_( D qz /a\ 91 4_+1'

Finally using p' = ¢;x% + ¢,)? in Corollary 2, we obtain (¢,,,/p) = —1.

This completes the proof of Theorem 2. We remark that parts of II and
VI of Theorem 2 have been proved without the restriction A(—gq;q9;) = 8
(mod 16) using class field theory [5].

We conclude with a few examples to illustrate the theorem.

ExaMpLE 1. (Compare Kuroda [10: pp. 155-156]) Choose ¢; = 5, g3 =
13, so that (q1/¢q2) = —1, and h = h(—gq19,) = h(—65) = 8. By part VI
of Theorem 2, if p is a prime such that

()-6)-(5)- »

<&> - <M> _ {+ 1, ifp=x+ 65)2
P P =1, if2p = 5x% + 13y%;

then

< ) > < ) ( > ’

<f®> = (8_"'\_/6__5) = {"‘1, if 2p = x2 + 652,
P p —1, ifp = 5x% + I3)2

then

Thus, for example, we have

€65 \ — = 42 .32
(601> +1, as 60l = 42 + 65-32,
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- .29 = 5.32 3.12
<29> I, as2-29 = 5-3¢ + 13-12,

€65 ) — .37 — 132 .12
<37> +1, as2-37 = 3% + 65-12,

€65 \ — _ — 5.62 .12
(193> I, as193 = 5-62 + 13-12.

These are easily verified directly:

<665> <8 -15234) <242> < > o
<V___€,6,s‘> <8 + 6) < > O
29 29 29 ’
€65_ 8 + 18 > < 26 > _
< 37 > ( 37 +1,
<_6,,e_54> - (,8 +,,1,l,4> < 122>
193/ \ 193 193
ExaMPLE 2. Choose q; = 5, g, = 29, so that (q1/q2) = + 1, N(eg,,)

= N(ews) = N(12 + 4/185) = —1, h = h(—qyq;) = h(—145) = 8. By
part V of Theorem 2, we have

(3)-()= )=+

<f1ii> - <M> _ {+ I, ifp=x+ 1452,
d p —1, ifp = 5x% + 29y%;

then

and if p is such that
()= =1 ()-(2)-
P p P

<,§14,s ) _ < 12 + ¢'I45'> _ {+1, if 2p = 5x2 + 29)2,
p P —1, if2p = x% + 1452

then

ExamMpLE 3. Choose ¢q; = 17, ¢ =5, so that (¢;/g;) = —1, and
h = (—q192) = h(—85) = 4. By part IV of Theorem 2, we have that if

p is a prime such that
(5-(5)-
p p

then
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p = x2 + 852,

<585> <%(9+¢85)> =1y, lf(i:) <%> L
d d (=1y, 1f<17> <%>=—1 p = 17x2 + 5)2.

Thus, for example, we have
<§33>=<l(9;9145)> (379) Tl 39 =3+ 852
<%>_ _£9—8+92—1)>_<@ = —1, 89 =224 8512
() =(32E2) = () =+, w=11+s2
<57L§>_<__—(97'§31)>_<%g->= ~1,  T3=17-2 + 512
ExampLE 4. Choose ¢q; = 17, g, = 53, so that (qi/q))= +1, h =

h(—q192) = h(—=901) = 24, N(e,,,) = N(ego1) = —1. By part III of
Theorem 2, we have that if p is a prime such that

(5)=(G)=() =+

(o) - (2250 -y,

39 + 23)

then

where
p? = x2 + 901y2 or p3 = 17x2 + 53)2.

Thus, for example, we have

&g01 \ _ 30+79> <5> 3 _ 2 902
<89>—< 5 )=+l 898 = 58T + 901.202,

<6901> <3°+2> (1 > C1, 133 = 362 + 901-12,
€901 _ 30+9 > <123>_ 3 . 2 . 2
(149>_< st 1) = +1, 149% = 17:269% + 53-198%
€901 30+253> ( 283 > _ 1o 2L <2 c047
<1753> ( hE 22 1, 17533=17-15410%+ 53-50472.
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