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ON THE EVALUATION OF (sqJp) 

KENNETH S. WILLIAMS 

Let m be a positive squarefree integer. We denote the class number of 
Q ( V — m) by K — m) a n d the fundamental unit of Q( ̂ /m) by em. We con­
sider only those m for which the norm of em (written N(em)) is — 1, so that 
the only possible primes dividing m are the prime 2 or primes congruent 
to 1 modulo 4. Now, if p is an odd prime such that (m/p) = + 1, we can 
interpret em as an integer modulo/?, and ask for the value of the Legendre 
symbol {ejp). Because of the ambiguity in the choice of ^/m taken mo­
dulo p, we must ensure that (ejp) is well-defined. Since 

where the prime (') indicates conjugation (^/m -* — ^m), this will be 
the case if(— l/p) = 4 - 1 , that is, if p = 1 (mod 4). Thus it is assumed 
throughout that 

Suppose m has the prime decomposition m = qx ... qs, and let a denote 

the number of ambiguous classes of forms of discriminant — Am in the 

principal genus. Then, from genus theory, we know that 

(2s a, if m odd, 
(25-1 a, if m even, 

is an integer dividing h( — m), and we define a positive integer / by 

/ = h(-m)\b. 

We restrict our attention to primes (congruent to 1 modulo 4) represented 
by forms in genera containing ambiguous classes, so that pl is represented 
by an ambiguous form. For such primes /?, when m is a prime or twice a 
prime, the evaluation of (ejp) is known, except in one case. In these cases, 
the generic characters are given by (for k > 0) 
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Xl(*) = m = 2, 

%x <*) = ( ^ ) *(*) = (A), 

ZlW = ( - T
2 - ) , &(*) = 

w = ^(prime) = 1 (mod 4), 

m = 2<7, g(prime) = 1 (mod 4), 

and the ambiguous forms of discriminant — Am are given by 

m = 2, 
m = 0, 
m = 2<7, 

I = (1, 0, 2), 
I = (1, 0, q), A = (2, 2, i ö + 1)), 
I = (1, 0, 2q\ A = (2, 0, ?), 

where (r, s, /) denotes the form rx2 + sxy -h ty2. 
We remark that A (̂ew) = — 1 when m = 2; when m = q (prime) = 1 

(mod 4) (Dirichlet [6: p. 225]); and when m = 2q, q (prime) = 5 (mod 8) 
(Dirichlet [6: p. 226]). m = 2q, q (prime) = 1 (mod 8) is the only case 
which requires the assumption that the norm of the fundamental unit 
be — 1. In this case, the assumption h = h( — 2q) = 4 (mod 8) has also to 
be made, as Lehmer's results [11: Theorems 2 and 3] require that h/4 be 
odd. What happens wrhen h = 0 (mod 8) remains open. Both possibilities 
occur as M>2.41) = N(e2.U3) = - 1 , A(-82) = 4, A(-226) = 8. Writing 
h for h( — m) the results in the known cases can be summarized as follows : 

m 

q = l(mod8) 

q = 5(mod 8) 

2q 

q = l(mod 8) 

2q 

q = 5(mod 8) 

Assumptions Evaluation of Refer­
ences 

-I 
P 

= 1 

P> 

-i)-^ 
7')-(f)-(f)-

Äs4(mod 8) 

(-1)> /2, if> = x2 + 2j2 

(-1)*, if/>*/2 = jc2 + tfj2 

[1] 

[14] [5] 

[11] [13] 

?)-£)-

( - l ) y / 2 , if/7Ä/4 = X2 + 2^2 

(-1)* / 2 , if/?Ä/4 = 2;c2 + ^ 2 
[11] 

( - l ) y / 2 , if/?Ä/2 = x2 + 2 ^ 2 

(_l)./2+l ) if / 7Ä/2 = 2 x 2 _ h ^ 2 
[H] [13] 
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It is the purpose of this paper to discuss the remaining cases when m 
has exactly two prime factors, that is, m = qxq2, where qx and q2 are dis­
tinct primes congruent to 1 (mod 4). 

In the unique factorization domain Z[i] of Gaussian integers, we have 
<7i = 7Ci7üi, q2 = ^2^2» where iz\ and %2

 a r e primes, which we can take to 
be primary, that is, to satisfy iz\ = TL2 = 1 (mod (1 4- /)3). Now either 
eqiq2 or eqiq* is of the form T+U \/q\q29 where Tand t/are positive integers 
with Teven and Uodd. Since N(T+ U^/qiq2) = — 1, we have, forj = 1, 2, 
7Cj\(T + i)(T - /), that is, iuj\T ± /, as TÜJ is prime. Replacing TUJ by its 
complex conjugate 7Uj, if necessary, we can assume 

nj\T+i ( 7 = 1,2). 

Writing [ J7Cj]2 (resp. [ /7zry]4) for the quadratic (resp. biquadratic) 
residue symbol (mod TUJ), and ( //?)4 for the rational biquadratic symbol 
(mod p) (p an odd prime), we have 

THEOREM 1. If p, qh q2 are distinct primes congruent to 1 (mod 4), such 
that (q\q2/p) = + 1, then 

-<7l<72 <7i<72 

P Ji Kl J4 L ^2 J4 

where m, %2 are defined as above. (Compare Furuta [7: Theorem 3]) 

PROOF. AS T is even, (T + ï)\%\%2, and (T — Ï)ITCI%2 are coprirne 
Gaussian integers. Since their product is C/2, by the unique factorization 
property, (T + ï)\%\%2 must be an associate of a square, say, 

r + / = u%i7t2a
2, 

where u is a unit of Z[i], that is, u = ± 1 , + /. Reducing this equation 
modulo 2, we obtain u = i (mod 2), so that w = ± /. Replacing a by /a, 
if necessary, we have 

(1) T + i = Ì7Ci7U2a
2. 

As U > 0, aâ > 0, this gives U = aä . Hence, from 

2(T 4- i ) ( r + C V Ä = (T + i + t V Ä * , 

we have 

(2) (1 + 027Ui7U2(T -f U^qxq2) = (i%X7Z2a + a^qxq2)
2. 

Let ^ be a primary prime factor of/? in Z[i], so that/? = ^7r, TU = 7f = 1 
(mod (1 + /)3). Interpreting \/q\q2 as an integer modulo/?, we have from 
(2) 
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\ / T + U^/qxq2 \ _ 

7l\7Z2 

71 J2 TZ; J2 

r + U\/qxq1 

%2_ 

71 J2 

Jul 

71 

7Z " 

•I 

^2 

X2 J 

7ZT7T 

L 7T2 

(by the law of quadratic reciprocity in Z[/]) 

71 

\_7Z\ 

71 

k L ^ 2 . 

^ 1 J4 L ^ 2 J4 

TT 

^ 2 

L 7Ci7Ci7C27Ü2 J4 

L^2 J4 

7C "1 

^ 1 J4 7ZT2 ^ 2 J4 

^1 ^ 2 tfl?2 J4 

_ ffl -

~_p_ _; 

4 

4 

. ^2 _ 

~ _P_~ 
_ ^ 2 . 

4 

4 

" ffl<72 " 
TT 

(T) 

4 

4 

(by the law of biquadratic reciprocity 

in Z[i]) 

COROLLARY 1. Ifp,q\, ^2 are distinct primes congruent to 1 modulo 4, 
such that (qi/p) = (q^P) = + 1 , then 

-QlQl 

<7l /4\ P AV ?2 M P /4 

(Furuta [7: Corollary, p. 143]) 

PROOF. A S (qx/p) = (q2/p) = 1, we have {qxq2lp\ = (qilphiq^P)^ and 
by the law of quadratic reciprocity (p/qi) = (plq^ = 1, so [pJTZ^ = 
(plqiiii [pl^h = (PÌQui- The result now follows immediately from 
Theorem 1. 

COROLLARY 2. If p, qÌ9 q2 are distinct primes congruent to 1 modulo 4, 

such that (qx/p) = (q2/p) = - 1 , (ft/02) = - U then 

~JVl2 (P4i\ (Paz\ (Ml\ 

PROOF. AS (q2iqi) = - 1, we have [^Mifc = - U t n a t is> 

Now, from r + / = in^cc2, we have 



so 

giving 

that is, 
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2 = 7üi7Ü2(X2 + 7Ti7T2ä2, 

2 = TZi^ä2 ( m o d 7c{), 

[2/^i]2 = [xilxih[x2lxih = P M M ^ M i k 

fo/^lfe = + 1 , [7U2l7Ci]2 = - I -

563 

Hence we have 

that is, 

(3) 
^ 2 J4I 

_?_2_ = - ( 1) 4 
ff2~ 1 

4 , 

by the law of biquadratic reciprocity in Z[i]. Also, by the law of biquadratic 
reciprocity in Z[i], we have 

(4) 711 

X2 

712 

7Ci 

91-1 
= ( - l ) - T 

g2—1 
4 

Multiplying (3) and (4) together, we obtain 

and Theorem 1 gives 

feW/7) = [p/niUpfaMqiqdp)* 
= -[p<ii/x2Upq2lxiU<ii<i2/p)i, 

= - ( ^ 2 ) 4 ( ^ 1 ) 4 0 ^ 2 / ^ 

as required. 

We are now in a position to obtain the explicit evaluation of (egiq2/p), 
when /?' is represented by an ambiguous form of discriminant — 4qiq2. 
This is done, following ideas of Lehmer [11: pp. 369-371], by using the 
representation of pl to compute the residue symbols appearing in the ex­
pression for (egiqjp) given in Theorem 1 or its corollaries. Many of the 
details are suppressed, as the calculations parallel those given by Lehmer. 
As in Lehmer's work, we require that / be odd, and an assumption to this 
effect is made wherever necessary. The results, which constitute Theorem 
2, are given in the Table. 
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TABLE 

Case m = q1q2 Assumptions Evaluation of 

^1 = ^2 = 1 (mod 8) 
T ) - ( P ) - ( 5 ) - + 1 

Ä=16(mod32) 

+ l9if ph/1'=x* + qlqiy
2 

or qxx
2 + q2y

2 

-\i\f2ph^=x2 + qlq2y
2 

or qxx
2 + q2y

2 

q1 = q2=\ (mod 8) 

te)-
h = S (mod 16) 

- 1 , if 2phl* = xz + qxqzy
% 

-+ 1 . ( ï) = ( 5 ) - ] -J 

Ä = 8 (mod 16) 

+ l,if/7A/8 = ^ x 2 + ^2^2 

- l , i f2 /7 A / 8 = ^1x2 + ^ 2 / 

III 

7i = l, ^2 = 5 (mod 8) y) -tt)-ft) — 
/? = 8(mod 16) 

( - l ) y , if/7A/8=x2 + ^ 2 / 

or <3r
1.T

2 + ^2^2 

IV 

'i = l, <72 = 5 (mod 8) - 1 _ £2 = + 1 (~ l ) y , Ìf/7A/4 = ^2 + ^ ^ ; 2 ^ 

£ + 1, = - 1 ( - l ) y , i f p * / 4 = ^ 2 + ^ 2 / 

<7l = <?2 

(£) 

= 5 (mod 8) 

+ 1 

5)-(5)-+ 1 + 1, i f ^ ^ + ^ j ' 2 

- 1 , if/>*/• = ^ J C 2 * ^ 2 

- 1 = +1 5)-(5 
N(em)=-1 

= - 1 
( - l ) r / \ i f2/>*/ 8 

= x2 + ^r1^2>'2 

( - l ) r / 4 + 1 , if2/?A/8 

= ^XA:2 + ^ 2 ^ 2 

VI 

<7i = <72 : 

w2/ 

E 5 (mod 8) 

-1 

î ) - + 1 

Ä S 8 (mod 16) 

+ 1 if ph/8=x2 + q1q2y
2 

-\1if2ph^ = qlx
2 + q2y

2 

/* = 8(mod 16) 

+ l , i f 2ph<'* = x2 + qlqly
2 

- l , i f •A / 8 = ^1JC2 + ^ 2 / 

N.B. Tis defined by 4 = 7 + 1 / ^ ^ , ^ = 1 or 3 

A is the classnumber of Q( V — m). 

All representations are primitive. 
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Let I, A, B, C denote the classes of the forms [1, 0, qiq2], [2, 2, 
K<7i<72 + 1)], [qh 0, q2], [2qu 2ql9 i(qx + q2)] respectively. These are pre­
cisely the ambiguous classes of forms of discriminant — 4qxq2, so that the 
classes of forms of discriminant — 4qxq2 fall into 4 genera. The generic 
characters are Xi(k) = (-1/*)» &(*) = Wq{)9 x2(k) = (k/q2) (k > 0). 
The six cases appearing in the table are treated below. 

CASE I. qx = q2 = 1 (mod 8), (qi/q2) = + 1 . In this case I, A, B, C are 
all in the principal genus, so that h = h( — qiq2) = 0 (mod 16) (Brown 
[4: Theorem 1]). Thus, ifp is a prime, such that (—l/p) = (qx/p) — (q2/p) 
= 1, there are positive coprirne integers x and y such that pl = x2 + 
qxq2y

2
9 2x2 + 2xy + \{qxq2 + l)j2 , #i-X2 + q2y

2, or 2<sr1x
2 + 2qxxy + 

i(<7i + ^felv2; tnat is» there are positive coprirne integers x and j> such that 

pl or 2/?' = x2 + tfi^J2 or ^ x 2 + ^2J2
? 

where / = hi 16. We now assume that N{eqiq^ — — 1 and /* = 16 (mod 32) 
(so that / is odd). These are two independent assumptions since: #(£41.241) 
= - 1 and A( —41 -241) = 112 = 16 (mod 32), whereas N(e17.B9) = +1 
and h(- 17-89) = 16; also N(s17.281) = - 1 and h(- 17-281) = 32, where­
as N(e17.m) = 4-1 and A(-17-137) = 32. 

Taking/?' = x2 + q\q2y
2 modulo/?, #! and #2> we obtain 

(<lilp)i(<l2lp)i = (2/p)(x/p)(ylp\ 

(Pl<!i)i = (x/qi)9 (p\q2\ = (x/q2), 

so that, by Corollary 1, we have 

Next we set 

x = 2axh X\ = 1 (mod 2), a è 0, 

J = 2 ^ , yx = 1 (mod 2), ß ^ 0. 

By the law of quadratic reciprocity, we have (as / is odd) 

(x/p) = (2/pnxilp) = WPHP/XU = (VPHP'/XI) = (2/Wa(<7i/*i)(<72/*i), 

tv/p) = (2ip)ß(yi/P) = (2/p)ß(piyi) = Qipnp'iyù = {ypf, 

(x/q1) = (2lq1Hxï/q1) = (xjq{), (x/q2) = (2/q2r(x1/q2) = ( x ^ ) , 

giving 
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If/7 = 1 (mod 8), (21 p) = + 1, so (eqJp) = + 1 ; if p = 5 (mod 8), 
then a + ß = 1, and again (eqiJp) = + 1 . 

Similarly, using/?7 = ^ x 2 + q2y
2 in Corollary 1, we obtain 

(*mz\ = (il.) (M\ 
\ p Ì \ q2 M 4i /4 

But, as N(eqiq2) = - 1, we have (qx\q2)lq2\q^ = + 1 
(Brown [2: Lemma 4]), so that (eqiqJp) = + 1 . 

Using 2/?' = x2 + q\q2y
2 in Corollary 1, we obtain, using the easily 

proved result (2//?)(2/x)(2/.y) = (_l)(«i+«2-2/8)j 

v T / ~ v^/4\^72/4= v^rA^"/' 
where d, e are positive odd integers defined by qxq2 = 2e2 — d2. As 
(^1/^2)4(^1)4 = + 1 (since A^(^2) = - 1) and K-q^) = 16 (mod 32), 
we have (e\q^){e\q2) = - 1 (Kaplan [9: Prop. C[]), so that (eqiqJp) = - 1. 

Using 2/?' = ^ x 2 + ^2 J2 in Corollary 1, we obtain in a similar manner 

CASE II. ^ = r̂2 = 1 (mod 8), (qi/q2) — — 1- In this case I, A are in 
the principal genus and B, C are in the non-principal genus for which 
Z l = + 1 , so that h = h(-qxq2) = 0 (mod 8) (Brown [4: Theorem 1]). 
Thus, if p is a prime such that(— l/p) = (qi/p) = (q2/p) = h there are 
positive coprirne integers x and y such that 

pl or 2pl = x2 + q\q2y
2, 

where / = A/8, and, if (-1//?) = 1, fo/p) = (q2/p) = - 1 , 
such that 

/?' or 2pl = qxx
2 + q2y

2. 

As 0/i/</2) = - 1 we have N(eqiq2) = - 1 (Dirichlet [6: p. 228]), and we 
assume that h = 8 (mod 16) (so that / is odd). The example qx = 17, 
q2 = 735 A = h(— 1241) = 32, shows that this is a genuine assumption. 

Usingpl = x2 + q\q2y
2 in Corollary 1 we obtain (eqiqJp) = + 1 . 

Using 2pl = x2 + q\q2y
2 in Corollary 1, we obtain 

(^H-'>—Q(i), 
the right hand side of which is — 1, as K — q^) = 8 (mod 16) (Kaplan 
[9: Prop. B&. 
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Using pl = qxx
2 4- q2y

2 in Corollary 2 we obtain (eqiqJp) = 4 - 1 . 
Finally, using 2pl = qxx

2 4- q2y
2 in Corollary 2, we obtain 

(£~)-<-""'**rf"s(i),(i).' 
the right hand side of which is - 1 , as h{ — qiq2) = 8 (mod 16) (Kaplan 
[9: Prop. B'2}\ 

CASE III. qx = 1, q2 = 5 (mod 8), (#i/#2) = + 1 . In this case I, B are 
in the principal genus and A, C are in a non-principal genus for which 
£j = - 1 . We have A = h(-qiq2) = 0 (mod 8) (Brown [4: Theorem 1]). 
Thus, if p is a prime for which (-1//?) = (q\/p) = (q2/p) = + 1 , there 
are positive coprirne integers x and y such that 

pi = x
2 4- qxq2y

2 or ^ x 2 4- q2y
2, 

where / = A/8. We now assume that N(eqiq2) = — 1 and A = 8 (mod 16) 
(so that / is odd). 

These are two independent assumptions since: N(si7.53) = —1 and 
A(- 17-53) = 24 = 8 (mod 16), whereas AW229) = 4-1 and A(- 17-229) 
= 40 = 8 (mod 16); also N(eim.5) = - 1 and A(-1601-5) = 48 = 0 
(mod 16), whereas N(al7.13) = 4-1 and A(-17-13) = 16 = 0 (mod 16). 

Using pl = x2, 4- qiq2y
2 in Corollary 1, we obtain (eqiqJp) = (— \)y. 

Using pl = q\X2 4- ^2^2 m Corollary 1, we obtain 

As N(eqiq2) = - 1, we have (̂ 1/̂ 2)4(̂ 2/̂ 1)4 = + 1 (Brown [2 : Lemma 4]), 
so that ( £ J p ) = (-1)*. 

CASE IV. ^ = 1, q2 = 5 (mod 8), (qi/q2) = - 1 . In this case I, A, B, C 
are each in different genera, with I in the principal genus and B in the non-
principal genus with ^l — +1 • We have A = A( — qiq2) = 4 (mod 8) 
(Brown [4: Theorem 1]). Thus, if/? is a prime such that (—1//?) = (q^/p) = 
(fàlp) = 1, there exist positive coprirne integers x and j such that pl = 
x2 4- q\q2y

2, where / = A/4 is odd, and such that pl = q\X2 + q2y
2, 

if ( — I //?) = 1, (q^p) = (<72//?) = - 1 . As (q1/q2)= - 1 , a theorem of 
Dirichlet [6: p. 228] guarantees that N(eqiq2) = — 1. Using /?' = 
x2 4- q\q2y

2 in Corollary 1, we obtain (eqiqJp) = (— l)y, and using /?' = 
^ x 2 4- ^ 2 ^ m Corollary 2, we also obtain (eqiqJp) = (— l)y. 

CASE V. qx = q2 = 5 (mod 8), (qi/q2) = 4-1. In this case I, B are in the 
principal genus and A, C are in the non-principal genus with %i ~ +*• 
We have A = h(-qiq2) = 0 (mod 8) (Brown [4: Theorem 1]). Thus, if p 
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is a prime such that (-l/p) = (qi/p) = (q2/p) = 1, there exist positive 
coprirne integers x and y such that/?7 = x2 + ^ i ^ J 2 o r #i*2 + <72.y2; and, 
if (~\/p) = 1, (#!//?) = (<72//?) = - 1 , such that 2/?' = x2 4- ^ l ^ 2 or 
g!*2 + g2>»2, where / = A/8. We assume that N(eqiq2) = - 1 , so that by 
a theorem of Brown [2: Lemma 4] we have (̂ 1/̂ 2)4 • (̂ 2/̂ 1)4 = l,and hence 
by a theorem of Kaplan [9: Prop. B'4] we have A = 8 (mod 16), so that / 
is odd. Using pl = x2 + q\q2y

2 in Corollary 1, we obtain (eqm/p) = -h 1, 
and using pl = qxx

2 + q2y
2 in the same corollary we obtain (eqiqJp) = 

- ( ^ 2 ) 4 ( ^ 2 / ^ 1 ) 4 = - I -

When 2pl = x2 + g i ^ 2 o r <7i*2 + ^ J 2 t n e evaluation of (eqiqJp) 
appears to be more difficult. It was originally hoped to give a third corol­
lary to Theorem 1 expressing (eqiJp) in terms of (2p/qi)A(2plq2)A(q1q2/p)A 

when p, qh q2 are distinct primes congruent to 1 modulo 4, and such that 
(<1IIP) = (telp) = - 1 , (̂ 1/̂ 2) = + 1 , q\ = ?2 = 5 (mod 8). No such 
representation was found, and so instead we apply Theorem 1 directly. 

If 2pl = x2 + q\q2y
2 we have 

o 

P_ 
L ^1 

'_2' 

2T 

"JT 
_7Ti_ 

2_" 
. ^ 1 _ 

2, 
<?2, 

p 

2_ 

x2 

/ - l -

A P li 

2pl 

%x J. 

nJ-l-

^2 

3( / - l ) / 2 | 

2^1 /2i£2\ 
^ 2 J 4 \ P À 

^ ~| 3 ( / - l ) / 2 | 

.^2. 

kWi/Ui/ wi 

x\(x 
4 W W 2 . 

L^2j4W2/W2. 

p 

p\3U-l)/2/X 

W2-

-(Ö"-'-??).-

• m 
m 

Now, by Jacobi's form of the law of quadratic reciprocity, we have (as / 
is odd) 

•if 
x 

2f 
y 

mzT 
x <7i/W2 

so 

P ftlMlK2M\P 

(fll+«2-2)/8r 2 ' 

Ul^2. 
Setting a = g + hi, where a is defined by (1), we have 
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"AWl. = (-1) 
(«l+«2-2)/8 

= ( - l ) 
(91+92-2)/8 2 

1 - Ti 
— ( _ 1) (91+92-2) /8+774+A/2 

L g 4- A/ 
(by(i)) 

by the supplements to the laws of quadratic and biquadratic reciprocity 
in Z[/], since T = 0 (mod 4) in this case. As %j (j = 1, 2) is a primary prime 
factor of qj (j = 1, 2), we have 7r; = ay + ibj, a;- = 1 (mod 2), Ay = 0 
(mod 2), tfy 4- Ay — 1 = 0 (mod 4), aj 4- A2- = qjm Since #y = 5 (mpd 
8), we have, for j = 1,2, 

(aj = 1 (mod 8), bj = 2 (mod 4), if #y = 5 (mod 16), 
[aj = 3 (mod 8), bj = 2 (mod 4), if gy = 13 (mod 16). 

Set a 4- ib = %\%z, so we have 

a = 0x^2 — &1&2> b = 0^2 + #2^1-

Clearly we have 

a = 5 (mod 8), A = 0 (mod 4), if ^ 4- r̂2 = 10 (mod 16), 

a = 1 (mod 8), b = 0 (mod 4), if qx + q2 = 2 (mod 16). 

From 1 — 77 = 7Z7i7r2a:
2 = (Û + z'A)(g + /A)2, we have 

1 = "(g2 - A2) - A(2gA), 

so that 

g = 1 (mod 2), h = 2 (mod 4), if ^ 4- <?2 = 10 (mod 16), 

g = 1 (mod 2), A = 0 (mod 4), if qx 4- q2 = 2 (mod 16), 

giving 

A/2 = (qx 4- (72 - 2)/8 (mod 2), 

so that 

Wc) = (-iF". 
Similarly one can prove that (eqiqJp) = ( — l) r / 4 + 1 , when 2pl = ^ x 2 4-

<72j
2, using (^1/^2)4(^1)4 = + 1 . 

CASE VI. ^ = </2 = 5 (mod 8), (qi/q2) = — 1- In this case I and C are 
in the principal genus and A and B are in the non-principal genus with 
^ = 4-I. We have A = h{ — qiq2) = 0 (mod 8) (Brown [4: Theorem 1]). 
Thus, if p is a prime such that (—\/p) = (qx/p) = {q^P) = +1> there are 
positive coprirne integers x and y such that/?' = x2 4- #i#2J2 o r 2pl = 



570 K. S. WILLIAMS 

<7i*2 + q2y\ and if (-l/p) = 1, (qjp) = (gr2/p) = - 1 , such that pl = 
q\X2 + <72.y

2 o r 2/?' = x2 4- tfi^J2* where / = /*/8. As (<7i/<72) = - 1 , by 
Dirichlet's theorem [6: p. 228], we have N(eqiq2) = — 1, and we assume 
that h = 8 (mod 16), so that / is odd. The example qx = 5, q2 = 37, /* = 
h{—185) = 16, shows that this is a genuine assumption. 

Using pl — x2 4- qiq2y
2 in Corollary 1, we obtain (eqiqJp) = 4 - 1 , 

and using 2pl = ^ x 2 4- q2y
2 in Corollary 1, we obtain 

(^H-'^'m^),. 
the right hand side of which is — 1, as h = 8 (mod 16) (Kaplan [9: Prop. 
B[). Using 2pl = x2 4- q\q2y

2 in Corollary 2, we obtain 

Finally using /?* = g^x2 4- 2̂>"2 m Corollary 2, we obtain (eqiqJp) = — 1. 
This completes the proof of Theorem 2. We remark that parts of II and 

VI of Theorem 2 have been proved without the restriction h( — q\q2) = 8 
(mod 16) using class field theory [5]. 

We conclude with a few examples to illustrate the theorem. 

EXAMPLE 1. (Compare Kuroda [10: pp. 155-156]) Choose qx = 5, q2 = 
13, so that (qi/q2) = - 1 , and h = h(-qiq2) = A(-65) = 8. By part VI 
of Theorem 2, if p is a prime such that 

then 

(^65 \ _ / 8 + V65~\ _ f+ 1, if;> = *2 + 65j2, 
V /» / \ P l 1 - 1 , if 2/»= 5x2 + 1 3 / ; 

and if p is such that 

(^) -•'•({) -(£)--• 
then 

/^N = /8 +A/65\ = j + 1 , if2/7 = x2 4- 65^2, 
\ /> / \ /> / 1 -1 , if/7 = 5JC2 + 1 3 / . 

Thus, for example, we have 

(-Jgj-) = 4 - 1 , as 601 = 42 4- 65-32, 
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- g £ - ) = - l , as 2-29 = 5-32 + 13-12, 

- J M = +1, as 2-37 = 32 + 65-12, 

^65 1, as 193 = 5-62 + 13-l2. 
193 

These are easily verified directly : 

(JUL) = (.8 + 2J±) = (2*2.) = (JL.) = +1 
V601/ V 601 ) V601 / UOW ' 

^\ = (?+-6\ = (l±]= -1 
297 V "29~) V29/ 

S-H*-^1)-&)-+•• 
_f65 W 8 + "IWi^U -1 
193/ V 193" / \ 193 / 

EXAMPLE 2. Choose q1 = 5, q2 = 29, so that (#i/<72) = + h N(eqiq^) 
= ^145) = N(12 + yT45) = - 1 , A = A(-ftft) = A(-145) = 8. By 
part V of Theorem 2, we have 

then 

and if/? 

f eU5 
\ P 

(y 

-).(Ji± 

is such that 

( ^ ) -

-Hi) 

- + ' • (-

-(f)--' 
f+1, ifp = 
1-1 , if> = 

fMf)=-

J 

X2 + 

5x2 4 

- 1 , 

145j2, 

• 2 9 / ; 

then 

(lus \ = / 12 + yT45'\ = f + 1, if 2/7 = 5x2 + 29j2, 
V /> / \ Z7 / 1 - 1 , if 2/7 = x2 + 145/ . 

EXAMPLE 3. Choose ^ = 17, </2 = 5, so that {q\\q<i) = — U and 
A = ( — ̂ 1^2) = A( —85) = 4. By part IV of Theorem 2, we have that if 
p is a prime such that 

then 
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ïM1 £86\ _ (¥? + V85)' 
P 

| ( - IK if ( ^ ) = ( } ) = ! , /> = *2 + 85^2, 

( - 1)>, if (I7-) = (J-) = - 1, p = 17x2 + 5j2. 
/> / \P 

Thus, for example, we have 

* ) - ( i ß Ä ^ ) - ( Ä ) - + ' . 349 = 3*+ 85-* 

(^-(JS^l)-(£)-+, . „ .„.„ + 5.,. 
(fc)-(J2£lü)-(»)--,. «_,7.» + 5 . . . . 

EXAMPLE 4. Choose ^ = 17, q2 = 53, so that (^1/92)= +1» A = 
A(-ft?2) = A(-901) = 24, # ( £ M 2 ) = iV(£901) = - 1 . By part III of 
Theorem 2, we have that iîp is a prime such that 

- 1 53 = +1, 

then 

where 

p3 = X2 + 901^2 o r / 7 3 = 1 7 j c 2 + 5 3 > ,2 . 

Thus, for example, we have 

(ir)= ( T > ^ ) = (w)= + u 893 = 5872 + 901 ' 2 ° 2 ' 
T r ) = ( ^ i f 1 ) = ( fV)=- 1 ' 133 = 362 + 901.13, 

/_£90L 
V149 

30 + 93 
149 

\ = ü ^ \ = +1, 1493 = 17-2692 + 53-1982, 

( T § 3 " )
 = ( 3°175353 ) = ( i m ) = ~ *' 1 7 5 3 3 = 1 7 - 1 5 4 l ° 2 + 53-50472. 
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