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UNIFORM DIFFERENTIABILITY, UNIFORM ABSOLUTE 
CONTINUITY AND THE VITALI-HAHN-SAKS THEOREM 

RUSSELL G. BILYEU AND PAUL W. LEWIS* 

1. Introduction. In the following paper we continue the study of the 
relationship between differentiability of the norm in spaces of measures 
and absolute continuity which was initiated in [3] and pursued in [4], [8], 
and [22]. The first portion of this discussion is concerned with the nature 
of smooth points in abstract L-spaces and characterizations of uniform 
differentiability—uniform absolute continuity. Our results are obtained 
by using elementary norm-lattice properties and without using the deep 
theorem of Kakutani [20] on the concrete representation of L-spaces. 
Only briefly in the concluding section of the paper do we make use of this 
representation theorem. We do, however, use some of the terminology 
and preliminary lemmas of [20]. In particular, we shall refer to units 
rather than weak order units [26], [29]. The interested reader may want 
to refer to Schaefer [29] or Peressini [26] for results on units in the setting 
of ordered topological vector spaces. We note that a concept related to 
that of units, namely the notion of cyclic vectors and cyclic subspaces, 
is discussed in Lindenstrauss and Tzafriri [24]. 

As a corollary of our discussion of uniform differentiability, we obtain 
the following geometrical characterization of weak compactness in the 
space of bounded finitely additive measures defined on a ring: (*) A 
subset K of ba(^) is conditionally weakly compact if and only if there 
is a point ju e ba(^) so that the derivative of the norm at /x in the direction 
v exists uniformly for v e K. In keeping with the theme of this paper, the 
preceding result is stated in terms of uniform differentiability—uniform 
absolute continuity. 

The question of whether condition (*) characterizes weak compactness 
in the space Ll(ju, X) of Bochner integrable functions (as well as in arbi
trary Banach spaces) is also discussed in some detail. While neither im
plication is valid in general, an easy uniform differentiability result for 
compact subsets of arbitrary Banach spaces is established. This result is 
used to produce a new proof of the classical Vitali-Hahn-Saks Theorem, 
a major theorem long of interest to measure theorists and functional 
analysts and the focal point for the next section of the paper. We note 
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here that Diestel and Uhi [12] have recently given a very thorough dis
cussion of the Vitali-Hahn-Saks theorem. In [12] the authors point out 
that the version of the Vitali-Hahn-Saks theorem in Brooks and Jewett 
[7] may be reduced to the scalar case and use a result of Rosenthal as a 
principal tool in their development of this and related results. In this 
section, we produce a lattice theoretic proof of a theorem due independ
ently to Brooks [6] and Drewnowski [14]—a result which we feel has not 
been properly appreciated—to produce a simplified proof of the Vitali-
Hahn-Saks theorem without the strong boundedness assumption present 
in [7]. The equivalence of the so called Brooks-Jewett Theorem and the 
Phillips Lemma is also established. 

In the concluding section of the paper, we characterize those L-spaces 
with units (producing, in the process, a simple argument to show that an 
order interval is weakly compact in an L-space), and we discuss a question 
raised by preceding results. 

Some useful terminology and notation follow. All Banach spaces are 
defined over the real field. If ^ is a ring of sets and X is a Banach space, 
then ba(^, X) is the Banach space of all bounded, finitely additive X-
valued set functions defined on 01 equipped with the supremum norm, 
i.e., if /^eba(^ , X% then \\ju\\ = sup{||/zCO|| : A e &}. The countably 
additive members of ba(^>, X) are denoted by ca(^, X). If ju is a finitely 
additive X-valued set function defined on ^ , then ju is said to be strongly 
additive (s-additive) if ß(A{) -> 0 whenever (A{) is a disjoint sequence 
from 0t\ the totality of all s-additive X-valued set functions defined on 
<% is denoted by sa(^, X). It should be noted that sa(^, X) forms a closed 
linear subspace of the Banach space ba(^, X)(||^|| = sup{||//(,4)|| : A e &}) 
and that LM^*) converges unconditionally in X whenever (A{) is a 
disjoint sequence from ^ and [i e sa(^, X). (An application of the Orlicz-
Pettis Theorem yields the unconditional convergence.) The members of 
sa(^, X) have been referred to as exhaustive or strongly bounded measures 
[5], [28], [15]. If X is the scalar field, then the notation is shortened to ba(^) 
and ca(^), and these spaces are equipped with the equivalent total varia
tion norm, i.e., if / i eba (^ ) , then ||/i|| = sup{|/i|(^) : A e m), where 
\ju\(A) = sup{21^(^)1 : ßi• e ^ for each / and (£,-) forms a finite partition 
of A). A subset K of sa(^, X) is uniformly exhaustive (or uniformly s-
additive) if [i{At) -»' 0 uniformly for pt e K whenever (At) is a disjoint se
quence form 01. 

If X is a Banach space and x, yeX, the D+(x, y) and D~(x9 y) are 
defined, respectively, to be limw(||«x + y\\ — \\nx\\) and limM(||«x|| -
|| nx - y ||), and the norm is said to be Gateaux differentiable at x in the 
direction y if — D+(x, y) = D+(x, —y), i.e., 

lim l | x + tyìì - N l 

*-o t 
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exists. This limit is denoted by D(x, y). Since the norm function is convex, 
the existence of this limit is equivalent to the inequality D+(x, y) g 
D~(x, y); furthermore, we note that for all positive integers n we have the 
inequality 

||AIJC|| — \\nx — y\ ^ D~(x, y) ^ D+(x, y) ^ \nx 4- y\\ — ||fljc||. 

If x ^ 0, then x is said to be a smooth point if D(x, y) exists for each yeX. 
X is said to be smooth if each vector of norm one is smooth. Equivalently, 
the non-zero point JC is a smooth point if and only if there is a unique 
/ e l * such that ||/|| = 1 and/(jc) = ||x||, [11, Chapter 2]. The non-zero 
point x is said to be Frechet smooth or strongly smooth if D(x, y) exists 
uniformly for y & X, \\y\\ g 1, i.e., the norm is Frechet differentiable at x. 
If JC is a Banach lattice, then X is said to be an abstract L-space if the 
following conditions are satisfied : 

(i) if x A y = 0, then \\x -f j>|| = ||x — y\\ 

and 

(ii) if JC, y ^ 0, then ||JC + y\\ = \\x\\ + ||j>||. 

We note that if /u, ve ba(^), then ju A v is defined set-wise as follows: 

fi A v{A) = inf {ju(B) + v(A\B) :B g A,Be@}. 

(For the details, see p. 162 of Dunford and Schwartz [16].) Furthermore 
n\ju\ A \v\ converges in norm (as n -> oo) to the absolutely continuous 
part of \v\ with respect to \fj\ [2]. 

Also, if T is a topology on the Banach space X and K E X, then K is 
said to be conditionally r-compact if the r-closure of K is r-compact. 

2. Differentiability and Weak Compactness. Let X be an L-space. Ac
cording to Kakutani [20], the totality of all non-negative elements of X 
is called the unit ideal, and X is said to have a unit if the unit ideal is prin
cipal, i.e., there exists 0 S xe X such that {y e X: y ^ 0} = {y e X: 
y < JC}, where the notation y < x means that y ^ 0 and if u ^ 0 and JC A 
u = 0, then y A u = 0. Consequently we shall say that JC is a unit for 
X if u ;> 0 and x A u — 0 imply that u = 0. The following argument 
presents a geometrical characterization of units in L-spaces. 

THEOREM 2.1. The element x of the L-space X is a smooth point if and only 
if\x\ is a unit. 

PROOF. The first assertion is that JC is a unit if and only if D(x, y) exists 
for each y ^ 0. To see this, begin by noting that if JC > 0 and y ^ 0, then 

lim (||#uc + ^|| - H D = IMI 
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since the norm is additive on positive elements. And if x is a unit, then 
nx A y -* y, e.g., see Lemma 3.9 of Kakutani [20]. 
Hence 

nx (nx A y)\\ - \\nx\\ -+ D+(x, —y). 

But 

\\nx - (nx A y)\\ = nx \\nx A y\\, 

and consequently 

D+(x, -y) = l i m - \\nxAy\\ = - |MI-
«-oo 

Therefore D(x9 y) exists. 
Conversely, suppose D(x, y) exists for each y ^ 0 and let u be a positive 

element so that x A u = 0. Then Z>+(x, w) = ||w|| and Z)+(x, — w) = 
— ||w||. But nx A u = 0 for each «. Thus \\nx — u\\ — \nx\ = ||«x + w|| 
- ||«x||, and ||M|| = - ||z/1|, i.e., u = 0. 

Next suppose that x is an arbitrary smooth point in X; the claim is 
that |x| = x+ + x~ is a unit, where x+ = x V 0 and x~ = ( —x) V 0. 
Suppose then that u ^ 0 and |x| A u = 0. Now («x+ -h w) A «x~ = 
(nx+ V u) A nx~~ = {nx+ A nx~) V («x - A u) = 0. 

Therefore 
Z)+(x, w) = lim I nx 4- w|| — ||«x|| 

«-> oo 

= lim||wx+ — «x~ + w|| — ||nx+ — nx~|| = \u\. 

»-co 

Similarly, 

«x+ A (u 4- «x~) = nx+ A (w V nx~) 
= («x+ A u) V («x+ A nx~) = 0, 

and therefore 

nx4" 
flX" 

nx 

+ — nx~~ — 
+ w|| - \nx\\ 

\\nx\\ = 
• IMI = D+(x, -Ü). 

It follows that w = 0, and the claim is verified. 
The final assertion is that if x is a unit, then D(x, u) exists for arbitrary 

ueX. One may obtain this result by observing that {y: D(x, y) exists} 
is a subspace—or one may proceed essentially as above. Write u as w+ — 
u~ and note that 

x 4- w+ ^x -> 7)+(x, u+\ 

X — W ^ x 2 1 
-D+(x, ir) 
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-yX A W+ -+ U+
9 

-x A u~ -+ w~~, 

and 

Z)+(x, u) = lim(||«jc + w+ - u~\ - ||/ix|| 

= lim 3 * + -+ 
r* + 

= / ) + ( * , W+) - / ) + ( * , W-). 

Similarly, 

Z)+(JC, -w) = D+(x, ir-) - /)+(*, w+), 

i.e., Z)(JC, w) exists. The result follows by Theorem 2.4, infra. 

COROLLARY 2.2. If X is a weakly compactly generated L-space, then X 
has a unit. 

PROOF. By a result of Asplund [1], every weakly compactly generated 
Banach space has an abundance of smooth points. By the preceding 
theorem, the absolute value of each smooth point is a unit. ^— 

Our next theorem characterizes uniform Gateaux differentiability in 
the L-space X. The following elementary lemma will prove helpful in 
establishing this result. 

LEMMA 2.3. Suppose that Xis an L-space andxjel Then 

\x + y\ + \x - y\ = 2{\x\ V \y\) = 2\x\ + 2(|>>| - |x| A |j |) . 

PROOF. We show that \x\ + \y\ = |x + y\ V \x — y\, which is an 
equivalent form of the first equality. Note that 

|*| + M = (* v - *) + \y\ 
= (x + M) V (-X + \y\) 

= [x + (yv -y)] V [-X + (y V -y)] 

= (* + y) V (x - y) V (-X 4- >>) V ( - X - j ) 
= [(x + >>) V ( - x - j)] V [(x - y) V ( - x + ^)] 
= |x 4- y\ V |x - y\. 

The second equality in the conclusion of the lemma follows since 

\x\ + \y\ = \x\ v \y\ + |*| A \y\. 

REMARK. Since the norm of X is additive on positive elements, 
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||x + y\\ + \\x - y\\ = 21| \x\ V |j>| || 

= 2| |*| + 2|| | , | - \x\ A \y\ ||. 

THEOREM 2.4. Suppose that X is an L-space, K g X, and ft X. Then 
the following three statements are equivalent. 

(1) D(f g) exists uniformly for g e K\ 
(2) D{\f\, \g\) exists uniformly for g e K; 
(3) \nf\ A |g| -»* \g\ uniformly for g e K. 

PROOF. We show that (1) and (3) are equivalent; it then follows im
mediately that (2) and (3) are equivalent because of the absolute values 
which appear in (3). Since 

-\\nf-g\\ + \\r,f\\ 
=s D-(f, g) g D+a g) 
è \\nf + g\\ - \\nf\\ 

for all positive integers n, then D(f g) exists uniformly for ge K if and 
only if 

\\nf+g\\ + | | * / - g | | - 2 | | w / | | - ^ o 

uniformly for g e K. By the preceding lemma, 

ik+sii + \\»f-g\\ -2ikii 
= 21| |g| - \nf\ A |g| ||, 

and the stated equivalences follow. 
REMARK. AS a result of the implication (1) implies (3) in Theorem 2.4, 

it follows that if D(f g) exists uniformly for ge K, then K must be norm 
bounded in the L-space X, This boundedness result will be established 
later for arbitrary Banach spaces. 

As a corollary of Theorem 2.4, we obtain the characterization of weak 
compactness in ba(^) which was mentioned in the introduction. We 
recall that a classical result states that a subset K of ba(^) is conditionally 
weakly compact if and only if K is bounded and uniformly absolutely 
continuous with respect to some measure £ eba(^) , e.g., see Dunford 
and Schwartz [16, IV. 9.12] for a proof when & is an algebra. Consequent
ly, we state the following theorem in terms of differentiability—absolute 
continuity. 

THEOREM 2.5. Let K be a subset of ba(^). Then K is bounded and there 
is an element fi e ba(^) so that v < fi uniformly for ve K if and only if 
there is an element yt e ba(^) so that /)(//, v) exists uniformly for veK. 

PROOF. Suppose that ju e ba(^) and D(/i, v) exists uniformly for veK. 
Hence A îs bounded and 



UNIFORM DIFFERENTIABILITY 539 

I I H - M A | V | | ^ O 

uniformly for v e K. Let e > 0, and choose n such that 

I H - M A H I I < 1 

for all veK. We assert that if \fx\(A) < e/2n, then \v\(A) < e for all 
ye K. Suppose not. Then there exist A e & and ve K such that \/u\(A) < 
e/2n and |v| (A) ^ e. Then 

4-> I H - M A HI 
^ \v\{A) - \nn\ A M04) 
ä £ - I«//! A |v|C4). 

Therefore \nfi\ A |V| 04) ^ e/2, an impossibility since I«/*! (A) < e/2. 
Hence the asserted uniform absolute continuity follows. 

Conversely, suppose K is bounded and v < pi uniformly for ve K. 
Let e > 0 and choose ö > 0 such that if \/u\(A) < 5, then \v\(A) < e/2 
for each y e K. Further, choose a positive integer n so that 

sup{||v||: v&K} --*-
(**) „ > ë_-

Now let 5 e ^ and let ^ g S, A e ^ so that 

|it/(| A |v|(S) > \n/u\(A) + \v\(S\A) - -J. 

Therefore 

(|v| -\n/i\ A |v|X5) = \v\(S) - \nn\ A |v|(S) 

< |v|(S) - lii^K^) - |v|(S\̂ ) + -J 

= \v\(A) - \nn\(A) + A. 

If M (A) < e/2, then 

\V\(A) - \nM\(A) + -J- < £. 

And if \v\(A) ̂  e/2, then |^|(^) ^ 5, and 

|v|(/0 - \nfx\(A) + A < £ 

from (**) above. Thus 
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Il H - M A Mil = € 

for each v e K, and the desired uniformity follows from Theorem 2.4. 

We note that a version of Theorem 2.5, with an argument closer in 
spirit to the proofs frequently given for weak compactness in spaces of 
countably additive measures (e.g. Dunford and Schwartz [16], IV.8 and 
IV.9), is contained in Theorem 2.2 of Brooks and Lewis [8], a result which 
gives a characterization of weakly compact operators on spaces of con
tinuous functions. 

REMARK. While the preceding results (especially 2.4 and 2.5) make it 
clear that D(ju, v) exists if and only if D(\ju\, \v\) exists in ba(^) (in fact in 
any L-space), this equivalence is not transparent when merely considering 
the norm in ba(^) and not using the interpretation of differentiability in 
terms of absolute continuity. 

We now present two example of a conditionally weakly compact 
subset Ä: of a Banach space and a smooth point /so that D(f, g) does not 
exist uniformly for ge K. In the first example (which is quite simple), K 
consists of a bounded, pointwise convergent sequence in C[0, 1]. The 
second example, due essentially to Lindenstrauss [23], is more delicate. 
It consists of an equivalent renorming of / 2 and a smooth point x with 
respect to the new norm so that D(x, y) does not exist uniformly for all 
y so that \\y\\ ^ 1. We include the details of this example since they are 
not in [23] and to our knowledge are not otherwise readily available. 
These examples show that condition (*) of the introduction cannot char
acterize weak compactness for arbitrary Banach spaces; in particular (*) 
does not characterize weak compactness for the space Ll(ju, X) of Bochner 
integrable functions—even if X is reflexive (a problem suggested to us 
by Professor D. R. Lewis). For if ju is a probability measure, then X is 
contained isometrically in Lx(ju, X). 

EXAMPLE 2.6. Let X = C[0, 1], and let/(x) = x, 0 ^ x ^ 1. Then / i s 
a smooth point in X\ for if ju is a regular Borei measure of norm 1 on 
[0, 1] for which \fdfi = 1, then /i({l}) = 1. Define the sequence (fk), 
k = 3, 4, ... in C[0, 1] as follows: 

/*(*) = 

0 for 0 < x < 1 - A 
— "~ k 

kx + 2 - k for 1 - -?- < x ^ 1 - 1 

- kx + k for 1 - 4 - ^ * ^ 1. 
k = = k 

Then the sequence (fk) is bounded and pointwise convergent to 0; hence 
(fk) is conditionally weakly compact. Note that D(f, fk) = 0 for each k. 
Next observe that if X is positive, then 

file:///fdfi
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j£±2/ill^L > «l^t^EÏzl - ! _L 

Clearly for X fixed, 1 — 1/&/1 -• 1 as k -• oo, and D(f9fk) does not exist 
uniformly. 

EXAMPLE 2.7. Let || • ||2 denote the usual norm on / 2 , and let (ew) denote 
the usual orthonormal basis for / 2 . For« = 2 ,3 , . . . , set vn — (1 — l/ft^i -f 
e„, and for x e / 2 define ||x|| to be sup„{||.x||2,|(x, v„)|}, where (•, •) denotes 
the usual inner product. Note that || • || is an equivalent norm on / 2 since 
||.x||2 ^ ||x|| g 2||JC||2. We claim that e1 is a smooth point with respect to 
||-II. Lete > 0, z e / 2 , and put 

p0 = j\\z\\2
2 + 4||z| + sup{0, n{zn - e): n = 2, 3, . . . } , 

where zw is the w-th coordinate of z. (Since zw -* 0, this supremum is finite.) 
Suppose that/? > p0. Since 

zi + {TT^T)Z" =(zf + z » ) 1 / 2 ( 1 +
 (IT^T)2)1/2 =4(zf + z")1/2 - 4IIZH 

for « g 2, we have that 

/»o + *i + (T^TT)2» = ° 

for n — 2, 3, ... . Thus 

p + zi + ( T T ^ T K > ° 

for « è 2, and /? + zj > 0. Also, 

P + z\^p - IMI > Po - H ^ "(*» - e), 

and this implies that 

- n(P + zx) < e - zn. 

Therefore we have 

\{pex + z, v„)| = (l - !•)(/> + Zi) + zw 

(*) =P + Z i - ( e ^ ) + zH 

< p + zx + s 

for/? > p0, n ^ 2. Furthermore, 
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\\pei + z|j2 (p + z l} - y e i + z h + (p + zù 

< Zzi 
3 ' 

fP + 4P 

(p + zx^p - ||z|| ^ 3/4 p). And 

-££ < _WI_ < e 
An ~ /> 

Therefore 

and we have that 

2 * 

/*?! + Z\\2 < P + ZX + £, 

/* i + z ^ / ? +2 i + e 

for large values of p from ( # ), the preceding inequality, and the definition 
of || • ||. Thus, for large positive integers n, 

\\nel + z\\ - \\nei\\ ^ zx + e. 

Since e > 0 was arbitrary, it follows that D+(eh z) < zx and (replacing z 
with — z) D+(eh — z) ^ — zj. Combining these inequalities, we see that 

(D+(el9 z)^zx^ -D+fa , - z ) = Z)-(^, z); 

thus I>(^i, z) exists. 
Now we make use of Lemma 2.1 in Chapter 2 of Diestel [11]: If ex is 

Frechet smooth, (x*) e (/2, || • ||)*, ||x*|| = 1, and (x*, ex) -• 1, fAen 
II** — ^H -• 0 in (/2> II * II)*- B u t the norm of each vn as a linear functional 
on (/2, || • ||) is one, (v„, e{) -• 1, and the norm of vM — ex as a continuous 
linear function is at least as large as 1 for n = 2, 3, . . . . Therefore, ex is not 
Frechet smooth. 

We remark that the converse implication is also false in general. Speci
fically, if x is a Banach space such that X* is separable (e.g., c0), then by 
the Kadec-Klee renorming theorem [11, Chapter 4], X has an equivalent 
Frechet differentiable norm. Consequently, if c0 is thus renormed and yt is 
a probability measure, then c0 (equivalently renormed) is isometrically 
contained in Ll(ju, c0). Therefore, if S is the unit ball in c0 and x is a point 
of norm one in c0, then D(x, y) exists uniformly for j e 5 , but S is not 
conditionally weakly compact. 

Another question now arises. Although (2.5) was a characterization of 
weak compactness in spaces of measures, the theorem literally investigates 
the connection between uniform Gateaux differentiability of the norm and 
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uniform absolute continuity. Therefore, if fabv(^, X) is the Banach space 
of all X-valued finitely additive measures on <% endowed with the total 
variation norm, one might ask (and we do) if boundedness and uniform 
absolute continuity is equivalent to uniform differentiability of the norm. 
One half of this question has already been answered negatively by exam
ples 2.6 and 2.7. More specifically, if (S, 2, ju) is a probability measure 
space and (fk) is the sequence of continuous functions defined in 2.6, then 
the measures in Ll(fi9 C[0, 1]) associated with (fk) are (ju -fk), where 
fi -fk (A) = ju(A)fk, A e 2, Hence /wfk < ju -/uniformly in k, where/(x) 
= x, 0 g x g 1, but D(fji • / fi -fk) does not exist uniformly. 

Before exploring the converse of this implication, we point out that some 
positive results are known in this area for pairs of measures. For example, 
in Theorem 3.2 of [3] it is shown that if X is a smooth space with the 
Radon-Nikodym property and / i , v e cabv^, X), where 2 is a <j-algebra, 
then D(fi, v) exists if v < ju. And in [3] it is shown that if Z is an arbitrary 
Banach space, 2 is an algebra of sets, and ju, v e fabv(2T, X), then v < juif 
D(ju9 v) exists. 

We remark that the smootheness assumption in the result mentioned 
above is essential. For if x and y belong to the Banach space X, \\x\\ = \\y\\ 
= 1, and D(x, y) does not exist, then ju • y < ju • x, where <% is a ring of 
sets and ju is a non-zero member of ba(^). But 

W/i-x + tfi-yW - Wft-xW = M H / ||JC + ty\\ - Hxll \ 

and consequently D(jux, ju-y) does not exist. 
We conclude our discussion of the question raised above with the fol

lowing result. As above, Jifis a Banach space and & is a ring of sets. 

THEOREM 2.8. If ju e fabv(^, X), K g fabv(^, X), and D(ju, v) exists 
uniformly for ve K, then v < ju uniformly for ve K. 

PROOF. In order to establish the uniform absolute continuity of K with 
respect to ju, it clearly suffices to establish the uniform absolute continuity 
of \K\ = {\v\ : v e K) with respect to \ju\. 

And, in view of Theorem 2.5, it will suffice to show that D(\ju\, \v\) exists 
uniformly for ve K, where \v\ is the total variation of v. Therefore, as was 
observed in the proof of Theorem 2.4, it will suffice to show that 

iim||»H + HII + ll«W-HII-2|hHII=o 
n 

uniformly for ve K. And, since 

lim|/i/z + v|| + \\n/Lt - v\\ - 2\\nfi\\ = 0 
n 

uniformly for v e K (this is the uniformity asserted in the hypothesis), the 
theorem will follow if we show that 
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li + v\\ + l*-vlìM + \v\\\ + M-\v\l 
for £, 7j e fabv (0t, X). 

Let e > 0, let A e &, and let (A$=1 be a partition of A into pairwise 
disjoint members of & such that 

Z\\Z(M\ + \\v(M\ 
+ £||e|(4) - M(^)| + ^ 

> Mel + kill + M - Ml-
Then for each i let {A{j) be a finite ^-partition of ^ such that 

ÇÇIIfrMI +11 .̂7)1 
+ 2|Ç||€W|| - ll^.7)||| + e 

> iik + kin + ni«i - nu-
Now fix / and note that 

£||^,7)|| + 11 )̂11 + |£||eu7)|l - 11̂ )111 

equals 2Ly| |^,7) | | or 2L y | | ^ , 7 ) | | . 
But 

max{2Ç||Ê(^)||,2Ç||^,,)||} 

è à(Ç + v)M + 2||œ - v)M> 
i ! 

i = 1,2, ... .Thus, 

Ile + v\\ + le - vi + ^ Ç Ell« + ^ l l + |(e - 7)̂ 11 + « 

^ LL|«^y)|| + «Wll + S|S|€(^y)|| 

-\\vàM\\ + e>m + \v\\\ + m-\v\i 
Since e was arbitrary, 

ïe + 9l + lle-9«^lll«l + HII + lll€|-WI. 
and the theorem is proved. 

We conclude this section with a proposition which shows that uniform 
differentiability does imply boundedness for arbitrary Banach spaces; the 
reader may want to compare the argument with the proof of implication 
(1) implies (3) in Theorem 2.4. 

PROPOSITION 2.9. Suppose that X is a Banach space, K £ X, xe X, and 
D(x, y) exists uniformly for y e K. Then K is bounded. 
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PROOF. Choose ö > 0 so that if y e Kand 0 < \t\ <; ô, then 

II* + ty\\ - 11*11 - D{x, y)\ < 1. 

PuW = -d. Then 

for each yeK. But if t = 5, then 

II* + ôy\\ - II* V-H- g 1 + £>(*, j ) g 1 + 1 + 5 

and 

| |* + ôy\\ ^ 2d + 2||JC||. 

Therefore 

l l ^ l ^ 25 + 3||JC|| 

for all yeK, and it follows that K is bounded. 

3. Vitali-Hahn-Saks Theorem. In this section we give a proof of the 
classical Vitali-Hahn-Saks Theorem using the relationships between dif
ferentiability of the norm in spaces of measures and absolute continuity 
established in (2.5). Then we discuss the Vitali-Hahn-Saks Theorem due 
to Brooks and Jewett [7]. 

Although we have seen examples of a smooth point x and a weakly 
compact set K such that D(x9 y) does not exist uniformly for y e K, we are 
able to obtain the following result. 

LEMMA 3.1. If K is a conditionally compact subset of the Banach space X 
andx is a smooth point, then D(x, y) exists uniformly for yeK. 

PROOF. Suppose that K is conditionally compact, x is a smooth point, 
and D(x, y) does not exist uniformly for yeK Then there exist e > 0, a 
sequence (xn) ü K, and a sequence tn of numbers such that tn -• 0 and 

D(x, xn)\ > e 

for each n. Without loss of generality, we may (and shall) assume that 
xn -• y. Therefore D(x, xn) -> D(x, y), and 

* 
tn 

for sufficiently large n. But since 

II* + tnxn\\ - \\x\\ 

- D(x,y)\ > 
3e 

II* + tny\\ - N l 
• 0 , 
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then 

'•rt-**L-D(x,yy, > T 
for sufficiently large n, and we have the desired contradiction. 

As a corollary to the lemma, we demonstrate a new proof of the clas
sical Vitali-Hahn-Saks theorem. Since the Banach space version of the 
theorem reduces easily to the scalar case, we state and prove the theorem 
for real valued measures. Before proceeding to this proof, however, we 
point out that if (//„) is a sequence of countably additive measures on the 
cr-ring ^ , 0 ^ ju G ca(^), and ^„ < /i for each n, but (/un) is not uniformly 
absolutely continuous with respect to //, then one can produce an e > 0, 
a disjoint sequence (At) from ^ , and a subsequence (fint) of (fin) so that 
\[in.(At)\ > e for each i. For if we do not have uniform absolute continu
ity, then there is a d > 0, a sequence (Bn) E ^ , and a subsequence (f/n) 
of (/un) such that fi(Bn) -• 0 and \//n(Bn)\ > 5 for each n. Let n^ = 1 and 
choose n2 sufficiently large that |//X4)| < e/4 f° r Ae&, A ü Bnr Then 
choose «3 sufficiently large that 1/^04)1 < e/8 and |/4>04)| < e/4 for 
Ae &, A ü #W3. Continue this process inductively. If we define An. to be 
Bnt\(\JJ>{Bnj) and set then \/uni(Ani)\ ^ 5/2 and (^w.) is a 
disjoint sequence. 

THEOREM 3.2. Suppose that @t is a a-ring, (jun) E ca(^), (//w(/4)) CWJ-

v erge s for each A G ̂ , a« J /I w a non-negative {possibly infinite) countably 
additive measure on <% such that jun < X for each n. Then jun < À uniformly 
in n. 

PROOF. Let 

IAI(-) 
M = H-t (1 + ll/U)2»' 

Since /̂  < A, it clearly will suffice to show that [in < /j, uniformly in n. 
Suppose this is not the case. Then by the observation preceding this the
orem, there is an e > 0, a subsequence (//„.) of (jun) and a disjoint sequence 
(A;) of elements from <% such that \[ini{At)\ > «s, / = 1, 2, ... . We now 
consider the sequence {xj g Z1, *,- = (*,•*)> where xik = fini(Ak), and the 
point x = (xÄ) G z1, where x^ = ju(Ak). The point x = (xk) is a smooth 
point in z1 since x^ > 0 for each k, and the sequence (xn) is weakly con
vergent in z1 since (/̂ M) is set-wise convergent. Thus the sequence (xn) is 
conditionally weakly compact in z1 and hence conditionally compact in 
z1 (because weak and norm convergence of sequences coincide in z1). By 
Lemma 3.1, D(x, xn) exists uniformly, and by Theorem 2.5 xn < x uni
formly in n. Therefore xH ->*' 0, and we have a contradiction. The theorem 
follows. 
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We next state a result whose importance and relationship to the Vitali-
Hahn-Saks ( = VHS) Theorem will set the tone for the remainder of this 
section. 

THEOREM 3.3. Suppose that & is a ring of sets, K is a uniformly exhaustive 
subset ofb&(&)9 andO ^ X is a finitely additive {possibly infinite) measure 
on <% such that fx < X for each fie K. Then fi < À uniformly for /ue K. 

Versions of this theorem were established independently by L. Drew-
nowski [14] and by James K. Brooks [6] in a paper in which (3.3) was used 
to significantly improve the classical Vitali Convergence Theorem. 

However, as noted earlier, we feel that the scope of (3.3) has not been 
fully realized—even by the authors who established the result. For ex
ample, on p. 167 of [6], Professor Brooks states that the proof of the ab
stract version of the VHS Theorem due to Brooks and Jewett is more 
delicate than the proof of (3.3) and requires, in addition, a generalization 
of the Phillips Lemma. (Indeed, the proof of (3.3) in [6] is simpler than the 
difficult and ingenious proof of the VHS Theorem in [7].) In fact, we shall 
show that the VHS Theorem without a strong boundedness assumption 
follows rather easily from (3.3) and the classical Phillips Lemma. And in 
[14] Professor Drewnowski uses (3.3) to establish the equivalence of two 
theorems (3.5 and 3.6) originally established in Brooks and Jewett [7]. 
We feel that (3.3) may be a deeper result than either of these two results. 

Two technical aspects of the Brooks-Drewnowski Theorem (3.3) seem 
noteworthy: (1) & is not assumed to be a <7-ring; (2) K is not assumed to 
be norm-bounded. Perhaps the fact that the uniform absolute continuity 
conclusion can be obtained without the assumption that <% is a cr-ring is 
somewhat surprising because one can construct counter-examples to the 
Vitali-Hahn-Saks Theorem when 0t is a ring. Furthermore, the relaxation 
of the boundedness assumption on K means that standard weak compact
ness techniques usually applied in discussions of ba(^) are not likely to be 
very beneficial. 

Rather than presenting a proof of (3.3) as stated, we shall adapt Drew-
nowski's argument and give an L-space interpretation of the result. If 
fi and v are non-negative members of ba(^), then we define P^v) to be 
lim„ nfi A v; if v is arbitrary, we define PM(v) to be PM(v+) — Pß{v~). The 
function Pp is a bounded linear projection on ba(^); let 0 = {P^: 
M ̂  0}. The reader may consult Kakutani [20] for a discussion of some of 
the properties of the operator PM. We note that if fx\ ^ ju2, then Pn — P 
e 0\ specifically, PM2 - P^ = Pz, where z = fi2 - P^ifa)- Further, two 
projections PM1 and P^ are said to be disjoint iïP^P^ PnPn = PwAiU?) 
is zero, and a subset K of ba(^) is said to be uniformly additive if 
||P,(w)|| -• 0 uniformly for ue K whenever (P,) is a pairwise disjoint se
quence from 0. Also, a subset K of ba(^) is said to be (^-continuous rela-
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tive to an element jue ba(^) if Pt(k) -• 0 for each ke K whenever (P,-) 
is a sequence from 0 such that Pj(ju) -> 0. (The proof of the equivalence 
of uniform additivity and uniform exhaustiveness is technical and will be 
postponed until the concluding section of the paper. A close look at the 
definition of 0-continuity will convince the reader that it implies absolute 
continuity; since this implication is the one required in the VHS Theorem, 
we omit the proof that these two notions are equivalent.) We remark 
that the preceding definition and the following result may be stated in 
terms of an abstract L-space; however, to maintain more immediate 
contact with (3.3), we have chosen to state them in ba(^). 

THEOREM 3.3L. If K is a uniformly additive subset o/ba(^) , /j, e ba(^), 
and K is (9-continuous with respect to ju, then K is uniformly (9-continuous 
with respect to ju. 

PROOF. Suppose that ju e ba(^), AT is a uniformly additive subset of 
ba(^), and K is ^-continuous but not uniformly (^-continuous with re
spect to /u. Hence there is a sequence (£,-) of positive members of ba(^), an 
e > 0, and a sequence (v,-) from K such that 

(a) 2| |P^)| | < <x> 
and 

(b) ||i>f,(v,-)|| > 2e 

for each /. Let nx be a positive integer so that if n ^ nÌ9 then 

for each ue K. (Since the preceding difference of projections is an element 
of (9, the assumption that no such n± exists leads to the construction of a 
disjoint sequence from (9 which produces a contradiction of the uniform 
additivity of K.) Let zx = V2k£*;then 

IKA£>*)| | > 2e - \ 

for k ^ nv Let ax = zx A £B1, O2 = zx A £„1+i,... • Let «2(>wi) be a 
positive integer so that if n ^ n2, then 

for each « e £ Then there is a sequence (j-n) from ^ so that 

\\p*HMv%i*k) (Tn)\\ > 2£ - -j - -j 

for n ^ n2. 
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Continue inductively to manufacture a sequence (rÄ) of positive meas
ures and a sequence (ç^) from K such that 

( 0 Tk+l = Tk f° r e a c n >̂ 

(2) \\PTk(<f>k)\\ >e for each *, 

and 

(3) KOOll-o. 
The third property follows from (a) above, i.e. 

II W l ^ È Il Wll-
k—l 

Now use (3) and the fact that K is 0-continuous relative to ju to select 
subsequences (Pv )and (ç^.) such that 

11^*, - ^*,+1x<MI > I -
But (,Pr;fe — Ptk ) is a disjoint sequence of projections from 0. Thus we 
have contradicted the uniform additivity of A'; the theorem follows. 

We now state the classical Phillips Lemma [27], [9, p. 36], a result which 
we use in the proof of the next theorem. The relationship between the 
Phillips Lemma and uniform exhaustivity results will be discussed sub
sequently. 

LEMMA 3.4 (PHILLIPS). If &> is the class of all subsets of the natural num
bers and (/u„) is a sequence in ba(^) such that jun(A) !+ 0 for each A e 0>, 
then S Ä e j /^({&}) IU 0 uniformly for J G ^ . 

As we have remarked, the following result (in its present generality) is 
due to Brooks and Jewett [7]. However, these authors assumed that the 
measures vn in the statement of the theorem are exhaustive. Also, Diestel 
and Uhi [12] give a very comprehensive account of this theorem. But in 
[12] the control measure v in the following statement is assumed to be 
bounded, hence exhaustive. Therefore exhaustivity is also present (im-
plicity) in the Vitali-Hahn-Saks Theorem of [12]. Other authors have also 
overlooked the fact that the VHS Theorem may be obtained without 
strong boundedness, e.g. Faires [17] and Oberle [25]. 

THEOREM 3.5 (VITALI-HAHN-SAKS). Suppose that & is a o-ring and X is a 
Banach space. If v is a non-negative {perhaps infinite) finitely additive 
measure on 3$ and (vn) is a sequence from ba(^, X) so that\vn{Ä)) converges 
in Xfor each Ae <M and vn < v for each n, then vn < v uniformly in n. 

PROOF. We consider first the case when vn{A) -> 0 for each A. Let (x*) 
be a sequence from the unit ball of X*. Then we claim that (x%vn) must be 
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uniformly exhaustive. For suppose not. Then we may assume without 
loss of generality that e > 0, (An) is a disjoint sequence from ^ , and 
x*vn{An) > e. For J e ^ , put 

M )̂ = *ïMlM); 

then fjin(A) -> 0 for each J G ^ . Hence 

lim £#.({*}) = 0 

uniformly for J e ^ . But this is impossible since 

#»({*}) = X*Vn(An) > ^ 

for each n, and we have verified the claim. Now suppose that (yn) fails to 
be uniformly absolutely continuous with respect to v. Then there is an 
e > 0, a sequence (At) in ^ such that v(A{) -> 0, and a subsequence (vw.) 
of (V„) so that 

KM-) II >£ 

for each /. Let xf e X*, ||xf || ^ 1, be chosen such that 

(1) x?ì>ni(Ai) > e. 

However, (x*vw.) must be uniformly exhaustive by the claim above, and 
x*vni < v for each /. Therefore by (3.3), xfvni < v uniformly in /, and we 
contradict (1). 

We now consider the general case in which we merely assume that 
(vn(A)) converges for each A. Again, we deny the uniform absolute con
tinuity. Then, using the termwise absolute continuity, we may assume that 
e > 0, (An) g M, v{An) -> 0, \\vH(An)\\ > e for each n, and 11^(^)11 < e/2 
for k > n. Let £M = vw+1 - yw, n = 1, 2, .... Therefore £„04) -> 0 for 
each A, and £w < v uniformly in n by the preceding paragraph. But this 
is impossible because v(An) -> 0 and ||(vn+i — vn)(An+1)\\ > e/2 for each 
n. The theorem follows. 

We note that the preceding proof shows that an application of the Phil
lips Lemma yields the following result. 

THEOREM 3.6 (BROOKS and JEWETT [7]). If & is a a-ring and {vn) is a 
sequence of X-valued exhaustive set functions such that lim vn{Ä) exists for 
each A e ^ , then (vw) is uniformly exhaustive. 

We shall follow Drewnowski [15] and refer to this result as the Brooks-
Jewett Theorem. In Diestel and Uhi [12], this theorem is termed the Vitali-
Hahn-Saks-Nikodym Theorem and is discussed in detail. In the following 
paragraphs, we demonstrate that the Brooks-Jewett Theorem implies the 



UNIFORM DIFFERENTIABILITY 551 

Phillips Lemma. The interested reader might compare this implication 
with those established in Drewnowski [15]. 

Suppose then that (/un) is a sequence from ba(^) such that (in(A) -• 0 
for each A e gP. Then we claim that 

k^A 

for each A e 0>. For suppose not. Then we may (and shall) assume that 
e > 0, A e 0>, and 

£ |/U{/c})| > 2e 

for each n. Then clearly A must be infinite. Let (Nt) be a strictly increasing 
sequence of positive integers, and let (jjtn) be a subsequence of (fin) so that 

ArejnUV,--i+l,Ar,-] 

for each /. Choose Btr g J fl [W,--i + 1, A^] such that |/^.(J5,-)| > e/2. 
But this contradicts the Brooks-Jewett Theorem, and the claim follows. 

Now suppose the uniformity statement in the conclusion of the Phillips 
Lemma fails for (ju„). Then, without loss of generality, we suppose that 
e > 0 and (An) is a sequence of sets from &> so that 

Lft(W) > e 

for each n. By the preceding paragraph, we know that there is an integer 
j such that 

H|MW)| < e 
k^Ai 

for / ^ y. For convenience, suppose one such y is 2. Then 

4 

Again, using the preceding claim, we may suppose that 

E W*}) |> | 
k^A2\Ai 

for / > 3. Hence 

2 |M{*})| < 
k^A2 

L M{k})\*e-{--T 
k^A3\Ai{JA2 I 4 ö 

Continue in this fashion inductively, i.e., we suppose that 

keA„\(_U At) 

MW) 2" 
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Now A\, A2\à\, • •> 4A(U"=ì 4)> ... is. a disjoint sequence of sets from 
^ . For each «, choose 

so that 

; E 4 A ( \ M ) 

^ ) | = L #.({*}) 
kmBH 

e 
4 

Since (i?w) is necessarily disjoint, we contradict the fact that (pn) is uni
formly exhaustive. Consequently, the Brooks-Jewett Theorem does imply 
the Phillips Lemma. 

As we remarked, authors have recently studied various relationships 
that exist between the Brooks-Jewett Theorem and the VHS Theorem 
(as well as the Nikodym Theorem and the Nikodym Boundedness Theo
rem). Specifically, we note the papers of Faires [17], Labuda [21], and 
Drewnowski [14], [15]. In [15] Drewnowski gives the following characteri
zation of exhaustive set functions. 

THEOREM 3.7. If & is a a-ring, X is a Banach space, and p is a finitely 
additive X-valued set function defined on &, then p is exhaustive if and only 
if each disjoint sequence has a subsequence so that p is countably additive on 
the a-algebra generated by the subsequence. 

We note that Bob Huff [19] has given a proof of the Brooks-Jewett 
Theorem based on (3.7). In fact, one may combine (3.7) with the techni
ques used in the proof of (3.2) to obtain a short argument for the Brooks-
Jewett Theorem. We omit the details and proceed to yet another charac
terization of exhaustive measures (a characterization based on (3.7) and 
a result of Diestel [10]). If C is a collection of subsets of a set S, then a(C) 
is the tf-ring generated by C. 

THEOREM 3.8. Suppose that <% is a a-ring, X is a Banach space, and p. 
is a bounded, finitely additive X-valued measure defined on <%. Then p is 
exhaustive if and only if each disjoint sequence (An) from & has a subse
quence (Ant) so that p(a(Ani)) is separable. 

PROOF. Suppose p is exhaustive and (An) is a disjoint sequence from &. 
Use Drewnowski's Theorem to extract a subsequence An. = Bi9 i = 1,2, 
..., so that p is countably additive on <7({i?J^i). Since p is countably 
additive when restricted to a({B{]), we know that p(Ct) I 0 whenever 
Q I 0 , e.g., see Gould [13]. Let S be the rational span of {p(Bt): i = 
1, 2, ... }, let e > 0, and let Be <7({£j). Then 

B n (JJ **) 1 0 
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as n -+ oo ; hence 

fi(B n (U *.)) i o-

Choose N such that 

fi(B fi (U Bt)) < e 
i>n 

for each n ^ N. Recalling that (/?,-) is a disjoint sequence and consequent
ly, for each /, B Ç] Bt is Bt or 0 , then 

^ n (LM))e£ 
and 

\\AB) - fi(Bf]( (J*,))|| < *• 
**=i 

The converse follows immediately from the theorem of Diestel [10] 
which asserts that a bounded measure on a a-ring with separable range is 
exhaustive. 

4. Concluding Remarks. We conclude this paper with some remarks and 
a question which we feel are pertinent to the material discussed above. 

First, we note that if one uses the fundamental theorem of Kakutani 
[20] which represents the arbitrary L-space X as an L^/^-space, then 
Corollary 2.2 characterizes those L-spaces with units. For if X is an 
L-space with unit ju, then x A nu -+ x for each x gt 0. Hence X is the 
closed linear span of the order interval [0, u]. And the interval [0, u] is 
weakly compact by (2.5) since D(u, x) exists uniformly for x e [0, w]. In 
fact, 

\\nu H- *|| + \\nu — x\\ —2\\nu\\ = 0 

for each n and each x e [0, u]. 
Our question involves the nature of smooth points in the space 

fasv (ß, B(E, F)) consisting of all finitely additive set functions with 
finite semivariation defined on the ring & with values in the space of con
tinuous linear transformation ( = operators) from the Banach space E 
to the Banach space F. An element of m e fasv(^, B(E, F)) is endowed 
with the following norm : \\m\\ = sup{ | |£w(^)*«l l : (^/ ) i s a finite disjoint 
collection of members of & and ||AV|| ^ 1 for each /} . The space 
fasv(^, B(E, F)) arises naturally when one studies the representation of 
operators on spaces of continuous Banach-valued functions, e.g., see 
Dinculeanu [13], especially §19. We remark that while the semivariation 
norm differs from both the supremum and the total variation norms in 
general, if F = real numbers then the semivariation and total variation 
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norms agree. (Again we note that Dinculeanu [13] is an excellent source 
of information about spaces of measures endowed with this norm.) 

Given the relationships established earlier between differentiability of 
the norm in spaces of measures and absolute continuity, as well as an 
awareness of the space fasv(^, B(E, F)\ it seems that one would naturally 
be interested in investigating necessary and sufficient conditions for the 
existence of D(ju, y) for / i ,ve fasv(^, B(E, F)). This problem seems some
what intractable. We reproduce an example (from [3]) which points out 
some of the difficulties. 

Lex X be two-dimensional Hilbert space, and let 2 be an algebra of 
sets such that ba(2*) contains disjoint positive members jui and JLL2 of unit 
norm. The norm in ba(2', X) is calculated with respect to the operators 
from the real numbers to X. Then (0, fi2) is not absolutely continuous with 
respect to (/u\, 0), yet D((/uh 0), (0, /^2)) exists because 

||Gui,0) + / (0 , / f c ) | « ( l+*2) l ' 2 . 

On the other hand, 

and 

£"(0"b M (fli, i"i)) = 0. 
We now turn to the equivalence of uniform additivity and uniform 

exhaustiveness mentioned in the discussion preceding Theorem 3.3L. 
Suppose K is a uniformly additive subset of ba(^) which fails to be uni
formly exhaustive. Then there is a disjoint sequence (A{) from ^ , a se
quence 0^) from K, and an e > 0 such that \jut-\(Ai) > s for all i. Let y,-
denote the restriction of \/it-\ to A{. Then (PVt) is a disjoint sequence of 
projection operators, and 11̂ .(̂ )11 _Û 0 uniformly for ut K. But 

IKU)|| = UM-) > e> 
and we have a contradiction. 

Conversely, we suppose that K is a uniformly exhaustive subset of ba(^) 
which fails to be uniformly additive. Therefore there is an e > 0, a dis
joint sequence (P,) in 0, and a sequence (/*,•) from K such that ||/>,-(̂ f-)ll < £ 
for each /. Let y,- = |P,-(//,-)|; since the projections were disjoint, it follows 
that Vi A Vy = 0 if / 7* y. The desired contradiction will be obtained when 
we establish the following lemma. The reader may notice some similarity 
between this lemma and discussion immediately preceding (3.2). (For 
technical reasons involving the Stone isomorphism [16, Chapter 1], we 
assume that 2 is an algebra; minor modifications amy be made if 2 is a 
ring.) 
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LEMMA 4.1. If e > 0 and (jun) is a disjoint sequence of positive members 
ofba(2) such that \\/in\\ > e for all n, then there is a 5 > 0, a disjoint 
sequence (A^from 2, and a subsequence (juni) of(ftn) so that fini{At) > dfor 
alii. 

PROOF. Suppose that (//„) and e are as in the hypothesis. By passing to 
the Stone algebra 2\, taking the countably additive extension of each 
measure to the a-algebra 22 generated by the Stone algebra, and then 
restricting to the Baire sub-tf-algebra J* of 22> we may (and shall) assume 
that (jun) is a disjoint sequence of positive measures on the Baire <7-algebra 
of a totally disconnected compact Hausdorff space S and that ||//J| > e 
for each n. Since the measures are countably additive and âS is a cr-algebra, 
we produce a disjoint sequence (An) from 3& so that ftn is concentrated on 
An9 n — 1, 2, . . . . Let F be a closed set contained in At so that [x\{F) > e 
and ( C ^ x be an increasing sequence of closed sets lying in Ak such that 
ßk(Ci) -+' ßki^kX A: = 2, 3, .... (Recall that Baire measures are regular.) 
For k ^ 2 and i ^ 1, let/? be a continuous function on S so that 0 S f\ ^ 
l , /}(/0 = 0, and/*(C*) = 1 (Tietze Extension Theorem). Define g*to be 
2if9/2f; thengÄ(F) = 0 and gk([jt-Cf) = 0. Now put g = S*g*/2*, and let 
Z(g) be the zero set of g. Since g is continuous, Z(g) is a closed G§ subset 
of S; also, jut(Z(g)) = 0 for / > 1. Let (£/„), « = 0, 1, ..., be a decreasing 
sequence of clopen sets (UQ = S) so that f] Un = Z(g). (Such a sequence 
may be found since S has a base of clopen sets.) 

We next consider the following statement: 

(*) There is a positive integer n so that for infinitely 
many i, /ut(S\Un) > 3$/4. 

Suppose (*) is false. Then there is a positive integer nx so that if / ^ nh 

then (ii(Ui) > e/4. Choose kx > 1 such that 

^Ux\Ukl) > -J, 

Then pick n2 > nx so that if i ^ n2, then 

MS\ukl) ^ | . 

Thus 

^ 2 ( ^ ) > -j* 

and we choose k2 > kx such that 

Continue inductively to manufacture sequences (Ukt\Uk.+J and (//w.+1) 
so that 
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for all /. We now use the Stone isomorphism on the sequence (Uk\Uk ) 
of clopen sets to obtain the desired sequences in 2. 

Now suppose (*) is true. Let nx be the first positive integer so that 

T = {/: fii(S\Uni) > | - } 

is finite. Let kx = l,andlet&2 = inf(r). 

ftk2(S\Uni) > | , 

and each of Uni and S\Uni is clopen. We then repeat the preceding con
struction with respect to the measures (//,-), i e T, the ^-algebra 0ß f] 
[S\£/W1], and (*) with 3s/4 replaced by 5e/8. Continuing this process, we 
obtain the desired conclusion. 

We would like to thank Professors Wayne C. Bell and R. Daniel Maul-
din for some very helpful conversations during the final preparations of 
this paper. We would also like to thank the referee for his questions 
about Example 2.7; trying to answer these questions caused us to clear 
up a cloudy argument. 
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