SOME TOTALLY REAL SUBMANIFOLDS IN A QUATERNION PROJECTIVE SPACE

CHORNG SHI HOUH

0. Introduction. Let HP mbe the (real) 4m-dimensional quaternion projective space. On totally real submanifolds in HP^m , [1] has established some fundamental concepts and formulas. In this paper we employ some techniques developed in [2] and [4] and prove the following theorem.

THEOREM. Let HP^m be the (real) 4m-dimensional quaternion projective space of constant quaternion sectional curvature c > 0. Let N be an n-dimensional compact totally real minimal submanifold of HP^m . If the sectional curvature γ of N satisfies $\gamma \ge (n-1)c/4(2n-1)$, then either N is totally geodesic in HP^m or n=2, $m\ge 4$ and N is the Veronese surface in HP^m with positive constant curvature c/12.

1. **Preliminaries.** Let HP^m be a quaternion projective space with real dimension 4m. On HP^m there exists a 3-dimensional vector space V of tensors of type (1.1) with local basis of almost Hermitian structure I, J, K such that

(a)
$$IJ = -JI = K$$
, $JK = -KJ = I$, $KI = -IK = J$, $I^2 = J^2 = K^2 = -1$:

(b)
$$\tilde{\nabla}_x I = r(x)J - q(x)K$$
, $\tilde{\nabla}_x J = -r(x)I + p(x)K$, $\tilde{\nabla}_x K = q(x)I - p(x)J$

for some functions p(x), q(x), r(x) on HP^m , where $\tilde{\nabla}$ is the connection on HP^m .

Let X be a unit vector on HP^m . Then X, IX, JX and KX form an orthonormal frame. Let Q(X) be the 4 plane spanned by them. For X, Y on HP^m , if Q(X) and Q(Y) are orthogonal, the plane $\pi(X,Y)$ spanned by X and Y is called a totally real plane. Any 2-plane in some Q(X) is called a quaternion plane. The sectional curvature of a quaternion plane π is called the quaternion sectional curvature of π . The quaternion sectional curvature of HP^m is a constant c > 0. HP^m is thus called a quaternion-space-form.

Let g be the Riemann metric on HP^m . Then the curvature tensor \tilde{R} of HP^m is given by [3].

510 C. S. HOUH

(1.1)
$$\tilde{R}(X, Y)Z = \frac{c}{4} \left\{ g(Y, Z)X - g(X, Z)Y + g(IY, Z)IX - g(IX, Z)IY + 2g(X, IY)IZ + g(JY, Z)JX - g(JX, Z)JY + 2g(X, JY)JZ + g(KY, Z)KX - g(KX, Z)KY + 2g(X, KY)KZ \right\}$$

Let N be an n-dimensional Riemannian manifold isometrically immersed in HP^m . We call N a totally real submanifold of HP^m if each tangent 2-plane of N is mapped by the immersion onto a totally real plane in HP^m .

Let ∇ be the Riemannian connection on N, σ be the second fundamental form of the immersion. $\sigma(X, Y) = \tilde{\nabla}_X Y - \nabla_X Y$ for $X, Y \in TN$, the tangent space of N. For a normal vector ξ on N, $\tilde{\nabla}_X \xi = -A_{\xi} X + D_X \xi$, where $-A_{\xi} X$ and $D_X \xi$ are tangential and normal components of $\tilde{\nabla}_X \xi$.

The mean curvature vector H is defined by $H = \operatorname{trace} \sigma/n$. N is minimal if H = 0. We define $\nabla \sigma$ by

$$(\overline{\nabla}_X \sigma)(Y, Z) = D_X(\sigma(Y, Z)) - \sigma(\nabla_X Y, Z) - \sigma(Y, \nabla_X Z), X, Y, Z \in TN.$$

Let R be the curvature tensor of N. Then the equation of Gauss is

$$(1.2) \quad g(R(X, Y)Z, W) = g(\tilde{R}(X, Y)Z, W) + g(\sigma(X, W), \sigma(Y, Z))$$
$$-g(\sigma(X, Z), \sigma(Y, W)), X, Y, Z, W \in TN.$$

Assume that N is a totally real submanifold of M. Then for any orthogonal vectors X, Y in TN, $Q(X) \perp Q(Y)$. We thus have $g(X, \varphi Y) = g(\varphi X, Y) = 0$ for φ , φ be I, J or K. (1.1) and (1.2) reduce to

$$(1.1)' \qquad \tilde{R}(X, Y)Z = \frac{c}{4} \{ g(Y, Z)X - g(X, Z)Y \}, X, Y, Z \in TN,$$

and

$$(1.2)' \quad g(R(X, Y)Z, W) = \frac{c}{4} \left\{ g(Y, Z)g(X, W) - g(X, Z)g(Y, W) \right\}$$
$$+ g(\sigma(Y, Z), \sigma(X, W)) - g(\sigma(X, Z), \sigma(Y, W)).$$

Since N is totally real, if dim N = n, then $n \le m$. Let p = 4m - n. We choose a local field of orthonormal frames

$$e_1, ..., e_n, e_{n+1}, ..., e_m; e_{\varphi(1)} = \varphi e_1, ..., e_{\varphi(n)} = \varphi e_n, ..., e_{\varphi(m)} = \varphi e_m;$$

$$\varphi = I, J \text{ or } K.$$

The following range of indices are to be used with φ running through I, J and K.

$$A, B, C, \dots = 1, \dots, m, \varphi(1), \dots, \varphi(m);$$
 $i, j, k, \dots = 1, 2, \dots, n;$ $\alpha, \beta, \gamma, \dots = n + 1, \dots, m, \varphi(1), \dots, \varphi(m);$ $\lambda, \mu, \nu, \dots = n + 1, \dots, m.$

With respect to this frame field let the dual field be

$$\omega^{1}, ..., \omega^{n}, \omega^{n+1}, ..., \omega^{m}, \omega^{\varphi(1)}, ..., \omega^{\varphi(m)}, \varphi = I, J \text{ or } K.$$

Using $g(\varphi e_i, \varphi e_j) = 0$ $(i \neq j)$ and condition (b) we have for $\varphi = I$, J or K,

$$\omega_j^i = \omega_{\varphi(j)}^{\varphi(i)}, \ \omega_j^{\varphi(i)} = \omega_i^{\varphi(j)}, \ \omega_\mu^\lambda = \omega_{\varphi(\mu)}^{\varphi(\lambda)},$$

$$\omega_\mu^{\varphi(\lambda)} = \omega_i^{\varphi(\mu)}, \ \omega_\lambda^i = \omega_{\varphi(\lambda)}^{\varphi(i)}, \ \omega_i^{\varphi(i)} = \omega_i^{\varphi(\lambda)}.$$

If we write $\omega_i^{\alpha} = \sum h_{ij}^{\alpha} \omega^j$, then we have

$$(1.3) h_{ij}^{\alpha} = h_{ji}^{\alpha}, \ h_{ij}^{\alpha} = g(A_{\alpha}e_{i}, \ e_{j}), \ h_{jk}^{\varphi(i)} = h_{ik}^{\varphi(j)} = h_{ij}^{\varphi(k)},$$

where $A_{\alpha} = A_{e_{\alpha}}$. By the equation (1.2)' the sectional curvature K(X, Y) of N for a plane determined by orthonormal vectors X, Y is given by

$$K(X, Y) = g(R(X, Y)Y, X) = \frac{c}{4} + \sum \{g(A_{\alpha}X, X)g(A_{\alpha}Y, Y) - g(A_{\alpha}X, Y)^{2}\}.$$

As an immediate consequence of this relation we have the following characterization of totally real, totally geodesic minimal submanifolds.

PROPOSITION. Let N be an n-dimensional totally real minimal submanifold in HP^m. Then N is totally geodesic if and only if N is of constant curvature K = c/4.

2. **Proof of the theorem.** In [2] the Laplacian of $\|\sigma\|^2$ was calculated for a minimal submanifold in a locally symmetric manifold, i.e., the following formula holds:

(2.1)
$$\frac{1}{2} \Delta \|\sigma\|^2 = \|\overline{\nabla}\sigma\|^2 + \sum \operatorname{tr}(A_{\alpha}A_{\beta} - A_{\beta}A_{\alpha})^2 - \sum (\operatorname{Tr}A_{\alpha}A_{\beta})^2 + \sum (4\tilde{R}_{\alpha\beta ij}h_{jk}^{\alpha}h_{ik}^{\beta} - \tilde{R}_{\alpha k\beta k}h_{ij}^{\alpha}h_{ij}^{\beta} + 2\tilde{R}_{ijkj}h_{il}^{\alpha}h_{kl}^{\alpha} + 2\tilde{R}_{ijkl}h_{il}^{\alpha}h_{jk}^{\alpha}).$$

If N is a totally real, minimal submanifold of HP^m , the right side of (2.1) becomes (see [1])

(2.2)
$$\frac{1}{2} \Delta \|\sigma\|^{2} = \|\overline{\nabla}\sigma\|^{2} + \frac{1-a}{2} \sum \operatorname{tr}(A_{\alpha}A_{\beta} - A_{\beta}A_{\alpha})^{2} + a \sum (\operatorname{tr} A_{\alpha}A_{\beta})^{2} - \frac{nac}{4} \|\sigma\|^{2} + \frac{c}{4} \sum_{\varphi,i} \operatorname{tr} A_{\varphi(i)}^{2} + (1+a) \sum (R_{ijkj}h_{il}^{\alpha}h_{kl}^{\alpha} + R_{ijkl}h_{ik}^{\alpha}h_{ik}^{\alpha}),$$

where a may be any real number.

Let $\alpha_1, ..., \alpha_n$ be the eigenvalues of A_{α} . Then we have

$$\sum_{i,j,k,l} (R_{ijkj} h_{il}^{\alpha} h_{kl}^{\alpha} + R_{ijkl} h_{il}^{\alpha} h_{jk}^{\alpha}) = \frac{1}{2} \sum_{i,k} (\alpha_i - \alpha_k)^2 R_{ikik}.$$

Now we assume that the sectional curvature of N is greater than or equal to γ . Then

$$(2.3) \qquad \sum_{i,j,k,l} (R_{ijkj}h_{il}^{\alpha}h_{kl}^{\alpha} + R_{ijkl}h_{il}^{\alpha}h_{jk}^{\alpha}) \geq \frac{1}{2} \sum_{i,k} (\alpha_i - \alpha_k)^2 \gamma.$$

Since N is minimal $\sum_i \alpha_i = 0$. Therefore

$$\sum_{i,k} (\alpha_i - \alpha_k)^2 = 2n \text{ tr } A_\alpha^2.$$

Let us take a so that $a \ge -1$. Then (2.2) yields

(2.4)
$$\frac{1}{2} \Delta \|\sigma\|^{2} \ge \|\overline{\nabla}\sigma\|^{2} + \frac{1-a}{2} \sum \operatorname{tr} (A_{\alpha}A_{\beta} - A_{\beta}A_{\alpha})^{2} + a \sum (\operatorname{tr} A_{\alpha}A_{\beta})^{2} - \frac{nac}{4} \|\sigma\|^{2} + \frac{c}{4} \sum \operatorname{tr} A_{\varphi(i)}^{2} + (1+a)n\gamma \|\sigma\|^{2}.$$

Let $S_{\alpha\beta}=\operatorname{tr}(A_{\alpha}A_{\beta})=\sum h_{ij}^{\alpha}h_{ji}^{\beta}$. Then $(S_{\alpha\beta})$ is a symmetric $p\times p$ matrix and it can be diagonalized for a suitable choice of $\{e_{\alpha}\}$. Thus we may assume that $\operatorname{tr} A_{\alpha}A_{\beta}=0$ for $\alpha\neq\beta$. In [2] there is an algebraic lemma which proved that

$$\operatorname{tr}(A_{\alpha}A_{\beta} - A_{\beta}A_{\alpha})^{2} \geq -2(\operatorname{tr} A_{\alpha}^{2})(\operatorname{tr} A_{\beta}^{2})$$

and the equality holds for nonzero matrices A_{α} and A_{β} if and only if A_{α} and A_{β} can be transformed by an orthogonal matrix simultaneously into scalar multiples of \bar{A} and \bar{B} respectively where

$$\bar{A} = \begin{bmatrix} 0 & 1 & & 0 \\ 1 & 0 & & 0 \\ 0 & & 0 \end{bmatrix}, \quad \bar{B} = \begin{bmatrix} 1 & 0 & & 0 \\ 0 - 1 & & 0 \\ 0 & & 0 \end{bmatrix}.$$

Moreover, if A_1 , A_2 , A_3 are symmetric $n \times n$ matrices such that

$$-\operatorname{tr}(A_a A_b - A_b A_a)^2 = 2(\operatorname{tr} A_a^2) (\operatorname{tr} A_b^2), 1 \le a, b \le 3, a \ne b,$$

then at least one of the matrices must be zero.

Now from (2.4) we have

(2.5)
$$\frac{1}{2} \Delta \|\sigma\|^{2} \ge (a-1) \sum_{\alpha \ne \beta} (\operatorname{tr} A_{\alpha}^{2}) (\operatorname{tr} A_{\beta}^{2}) + a \sum_{\alpha \ne \beta} (\operatorname{tr} A_{\alpha}^{2})^{2}$$
$$- \frac{nac}{4} \|\sigma\|^{2} + \frac{c}{4} \sum_{\alpha \ne \beta} \operatorname{tr} A_{\varphi(i)}^{2} + (1+a)n\gamma \|\sigma\|^{2},$$
 for $-1 \le a \le 1$.

Since

$$\sum_{\alpha \neq \beta} (\operatorname{tr} A_{\alpha}^{2}) (\operatorname{tr} A_{\beta}^{2}) + \sum_{\alpha} (\operatorname{tr} A_{\alpha}^{2})^{2} = (\sum_{\alpha} \operatorname{tr} A_{\alpha}^{2})^{2} = \|\sigma\|^{4}$$

and

$$\sum (\operatorname{tr} A_{\alpha}^{2})^{2} \geq \|\sigma\|^{4}/n,$$

by a straightforward calculation (2.5) yields

$$\frac{1}{2} \Delta \|\sigma\|^{2} \ge \left\{ \frac{1}{n} - (1-a) \right\} \|\sigma\|^{4} + \left\{ (1+a)n\gamma - \frac{nac}{4} \right\} \|\sigma\|^{2} + \frac{c}{4} \sum_{i=1}^{n} \operatorname{tr} A_{\varphi(i)}^{2}.$$

In particular putting a = 1 - 1/n we obtain

(2.6)
$$\frac{1}{2} \Delta \|\sigma\|^2 \ge \left\{ (2n-1)\gamma - \frac{n-1}{4}c \right\} \|\sigma\|^2 + \frac{c}{4} \sum \operatorname{tr} A_{\varphi(i)}^2.$$

Now we assume that the sectional curvature γ of N satisfies $\gamma \ge (n-1) c/4(2n-1)$. The right-hand side of (2.6) is non-negative. Thus by use of Hopf's lemma we obtain $\Delta \|\sigma\|^2 = 0$, and $\sum \operatorname{tr} A_{\varphi(i)}^2 = 0$. All the inequality signs in this section turn into equalities. In particular we have

$$-\operatorname{tr}(A_{\alpha}A_{\beta}-A_{\beta}A_{\alpha})^{2}=2(\operatorname{tr} A_{\alpha}^{2})(\operatorname{tr} A_{\beta}^{2}), \alpha \neq \beta.$$

Thus at most two of the A_{α} 's are non-zero. Without loss of generality we may assume that

(2.7)
$$A_{n+1} = a \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad A_{n+2} = b \begin{pmatrix} 1 & 0 & 0 \\ 0 - 1 & 0 \\ 0 & 0 \end{pmatrix},$$
$$A_{\alpha} = 0 \text{ for } \alpha \neq n+1, n+2.$$

If N is not totally geodesic in HP^m , then $\|\sigma\| \neq 0$ and $\gamma = (n-1)c/4$ (2n-1). We are going to claim that n=2. Assume that n>2. Then for an i>2, by use of (1.2)' and (2.7), we have $K(\pi(e_1, e_i)) = R_{1i1i} = c/4$. Since N is not totally geodesic, we may assume that $A_{n+2} \neq 0$. For $A_{\alpha} = A_{n+2}$, we have $\alpha_1 = b$, $\alpha_2 = -b$, $\alpha_i = 0$ for i>2. Thus $(\alpha_1 - \alpha_i)^2 \neq 0$ for i>2. Therefore from the equality of (2.3) we find

$$R_{1i1i} = \gamma = (n-1)c/4(2n-1) < c/4.$$

This is a contradiction. Hence n = 2.

Since \sum tr $A_{\varphi(i)}^2 = 0$, we have m > 2 and K = c/12. By (2.7) we have

$$\omega_1^{n+1} = a\omega^2, \ \omega_2^{n+1} = a\omega^1, \ \omega_1^{n+2} = b\omega^1, \ \omega_2^{n+2}$$

= $-b\omega^2, \ \omega_i^{\alpha} = 0, \ \alpha = 3, \dots, 4m, \ i = 1, 2.$

Since all the inequalities become equalities in this section when K = c/12, n = 2, we have

$$\|\nabla\sigma\|^2 = \sum (h_{ijk}^\alpha)^2 = 0$$

where h_{ijk}^{α} are given by

$$\sum h_{ijk}^{\alpha} \, \omega^k = dh_{ij}^{\alpha} - \sum h_{ik}^{\alpha} \, \omega_j^k - \sum h_{kj}^{\alpha} \, \omega_i^k + \sum h_{ij}^{\beta} \, \omega_{\beta}^{\alpha}.$$

 $h_{ijk}^{\alpha} = 0$ yields

$$(2.8) dh_{ij}^{\alpha} = \sum h_{ik}^{\alpha} \omega_j^k + \sum h_{ki}^{\alpha} \omega_i^k - \sum h_{ij}^{\beta} \omega_{\beta}^{\alpha}.$$

In (2.8) setting $\alpha=3$, i=1 and j=2, we have a= const., setting $\alpha=4$, i=j=1, we have b= const. Setting $\alpha=3$, i=j=1 in (2.8), we have $\omega_4^3=(-2a/b)\omega_2^1$. Setting $\alpha\geq 5$, i=1, j=2 in (2.8), we obtain $\omega_4^\alpha=0$, $\alpha\geq 5$. Setting $\alpha\geq 5$, i=j=1 in (2.8), we obtain $\omega_4^\alpha=0$, $\alpha\geq 4$. Since \sum (tr A_α^2)² = $\|\sigma\|^4/2$, we have $a^2=b^2=c/12$. Replacing e_3 by $-e_3$ and e_4 by $-e_4$, if necessary, we may assume that $-a=b=\sqrt{c}/2\sqrt{3}$. The connection form (ω_A^B) of HP^m restricted to N is given by

(2.9)
$$\begin{pmatrix} 0 & \omega_{2}^{1} & b\omega^{2} & -b\omega^{1} & 0 & \cdots & 0 \\ \omega_{1}^{2} & 0 & b\omega^{1} & b\omega^{2} & 0 & \cdots & 0 \\ -b\omega^{2} & -b\omega^{1} & 0 & 2\omega_{2}^{1} & 0 & \cdots & 0 \\ b\omega^{1} & -b\omega^{2} & -2\omega_{2}^{1} & 0 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 \end{pmatrix}, b = \sqrt{c}/2\sqrt{3}.$$

From (2.9) we conclude that $m \ge 4$. Otherwise, m = 3 implies from (1.3) that

$$-b\omega^2 = \omega_2^4 = \omega_2^{3+1} = \omega_1^{3+2} = \omega_1^5 = 0,$$

which is not true.

The square length of the second fundamental from of N in HP^4 is

$$\|\sigma\|^2 = 2(a^2 + b^2) = c/3.$$

On the other hand, the real 4-dimensional projective space RP^4 with constant curvature c/4 is canonically immersed in HP^4 and, further, in HP^m as a totally real, totally geodesic submanifold. In [2] it was proved that the Veronese surface is the only compact minimal immersion in RP^4 (and further canonically in HP^4 and in HP^m) with $\|\sigma\|^2 = c/3$. This immersion of the Veronese surface in HP^m has the connection form (2.9) which was proved in [2]. Hence our N is locally a Veronese surface.

REFERENCES

- 1. B-Y. Chen and C.S. Houh, Totally real submanifolds of a quaternion projective space, Ann. di. Mat. (IV), 120 (1979), 185-199.
- 2. S.S. Chern, M.P. Do Carmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. of Chicago, 1968), Springer, New York, 1970, 59-75.
- 3. S. Ishihara, Quaternion Kaehlerian manifolds, J. Differential Geometry, 9 (1974), 483-500.
- 4. K. Ogiue, Positively curved totally real minimal submanifolds immersed in a complex projective space, Proc. Amer. Math. Soc. 56 (1976), 264–266.

DEPARTMENT OF MATHEMATICS, WAYNE STATE UNIVERSITY, DETROIT, MI 48202.