SOME TOTALLY REAL SUBMANIFOLDS IN A QUATERNION PROJECTIVE SPACE

CHORNG SHI HOUH

0 . Introduction. Let $H P m$ be the (real) $4 m$-dimensional quaternion projective space. On totally real submanifolds in $H P^{m}$, [1] has established some fundamental concepts and formulas. In this paper we employ some techniques developed in [2] and [4] and prove the following theorem.

Theorem. Let HP ${ }^{m}$ be the (real) 4m-dimensional quaternion projective space of constant quaternion sectional curvature $c>0$. Let N be an n-dimensional compact totally real minimal submanifold of HPm. If the sectional curvature γ of N satisfies $\gamma \geqq(n-1) c / 4(2 n-1)$, then either N is totally geodesic in $H P^{m}$ or $n=2, m \geqq 4$ and N is the Veronese surface in HP ${ }^{m}$ with positive constant curvature $c / 12$.

1. Preliminaries. Let $H P^{m}$ be a quaternion projective space with real dimension 4 m . On $H P^{m}$ there exists a 3-dimensional vector space V of tensors of type (1.1) with local basis of almost Hermitian structure I, J, K such that
(a) $I J=-J I=K, J K=-K J=I, K I=-I K=J$,

$$
I^{2}=J^{2}=K^{2}=-1
$$

(b)

$$
\begin{aligned}
\tilde{\nabla}_{x} I=r(x) J-q(x) K, & \tilde{\nabla}_{x} J=-r(x) I+p(x) K \\
& \tilde{\nabla}_{x} K=q(x) I-p(x) J
\end{aligned}
$$

for some functions $p(x), q(x), r(x)$ on $H P^{m}$, where $\widetilde{\nabla}$ is the connection on $H^{(}{ }^{m}$.

Let X be a unit vector on $H P^{m}$. Then $X, I X, J X$ and $K X$ form an orthonormal frame. Let $Q(X)$ be the 4 plane spanned by them. For X, Y on $H P^{m}$, if $Q(X)$ and $Q(Y)$ are orthogonal, the plane $\pi(X, Y)$ spanned by X and Y is called a totally real plane. Any 2-plane in some $Q(X)$ is called a quaternion plane. The sectional curvature of a quaternion plane π is called the quaternion sectional curvature of π. The quaternion sectional curvature of $H P^{m}$ is a constant $c>0 . H P^{m}$ is thus called a quaternion-space-form.

Let g be the Riemann metric on $H P^{m}$. Then the curvature tensor \tilde{R} of $H P^{m}$ is given by [3].

Received by the editors on May 26, 1978

$$
\begin{align*}
\tilde{R}(X, Y) Z= & \frac{c}{4}\{g(Y, Z) X-g(X, Z) Y+g(I Y, Z) I X \tag{1.1}\\
& -g(I X, Z) I Y+2 g(X, I Y) I Z+g(J Y, Z) J X \\
& -g(J X, Z) J Y+2 g(X, J Y) J Z+g(K Y, Z) K X \\
& -g(K X, Z) K Y+2 g(X, K Y) K Z\}
\end{align*}
$$

Let N be an n-dimensional Riemannian manifold isometrically immersed in $H P^{m}$. We call N a totally real submanifold of $H P^{m}$ if each tangent 2-plane of N is mapped by the immersion onto a totally real plane in $H P^{m}$.

Let ∇ be the Riemannian connection on N, σ be the second fundamental form of the immersion. $\sigma(X, Y)=\tilde{\nabla}_{X} Y-\nabla_{X} Y$ for $X, Y \in T N$, the tangent space of N. For a normal vector ξ on $N, \tilde{\nabla}_{X} \xi=-A_{\xi} X+D_{X} \xi$, where $-A_{\xi} X$ and $D_{X} \xi$ are tangential and normal components of $\tilde{\nabla}_{X} \xi$.
The mean curvature vector H is defined by $H=$ trace $\sigma / n . N$ is minimal if $H=0$. We define $\bar{\nabla}_{\sigma}$ by

$$
\left(\bar{\nabla}_{X} \sigma\right)(Y, Z)=D_{X}(\sigma(Y, Z))-\sigma\left(\nabla_{X} Y, Z\right)-\sigma\left(Y, \nabla_{X} Z\right), X, Y, Z \in T N .
$$

Let R be the curvature tensor of N. Then the equation of Gauss is

$$
\begin{align*}
g(R(X, Y) Z, W)= & g(\tilde{R}(X, Y) Z, W)+g(\sigma(X, W), \sigma(Y, Z)) \tag{1.2}\\
& -g(\sigma(X, Z), \sigma(Y, W)), X, Y, Z, W \in T N .
\end{align*}
$$

Assume that N is a totally real submanifold of M. Then for any orthogonal vectors X, Y in $T N, Q(X) \perp Q(Y)$. We thus have $g(X, \varphi Y)=$ $g(\psi X, Y)=0$ for φ, ψ be I, J or K. (1.1) and (1.2) reduce to

$$
\begin{equation*}
\tilde{R}(X, Y) Z=\frac{c}{4}\{g(Y, Z) X-g(X, Z) Y\}, X, Y, Z \in T N, \tag{1.1}
\end{equation*}
$$

and

$$
\begin{align*}
g(R(X, Y) Z, W)= & \frac{c}{4}\{g(Y, Z) g(X, W)-g(X, Z) g(Y, W)\} \tag{1.2}\\
& +g(\sigma(Y, Z), \sigma(X, W))-g(\sigma(X, Z), \sigma(Y, W)) .
\end{align*}
$$

Since N is totally real, if $\operatorname{dim} N=n$, then $n \leqq m$. Let $p=4 m-n$. We choose a local field of orthonormal frames

$$
\begin{aligned}
e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{m} ; e_{\varphi(1)} & =\varphi e_{1}, \ldots, e_{\varphi(n)}=\varphi e_{n}, \ldots, e_{\varphi(m)}=\varphi e_{m} \\
\varphi & =I, J \text { or } K .
\end{aligned}
$$

The following range of indices are to be used with φ running through I, J and K.

$$
\begin{array}{lll}
A, B, C, \ldots=1, \ldots, m, \varphi(1), \ldots, \varphi(m) ; & i, j, k, \ldots=1,2, \ldots, n ; \\
\alpha, \beta, \gamma, \ldots=n+1, \ldots, m, \varphi(1), \ldots, \varphi(m) ; & \lambda, \mu, \nu, \ldots=n+1, \ldots, m .
\end{array}
$$

With respect to this frame field let the dual field be

$$
\omega^{1}, \ldots, \omega^{n}, \omega^{n+1}, \ldots, \omega^{m}, \omega^{\varphi(1)}, \ldots, \omega^{\varphi(m)}, \varphi=I, J \text { or } K
$$

Using $g\left(\varphi e_{i}, \psi e_{j}\right)=0(i \neq j)$ and condition (b) we have for $\varphi=I, J$ or K,

$$
\begin{aligned}
& \omega_{j}^{i}=\omega_{\varphi(j)}^{\varphi(i)}, \omega_{j}^{\varphi(i)}=\omega_{i}^{\varphi(j)}, \omega_{\mu}^{\lambda}=\omega_{\varphi(\mu)}^{\varphi(\lambda)} \\
& \omega_{\mu}^{\varphi(\lambda)}=\omega_{\lambda}^{\varphi(\mu)}, \omega_{\lambda}^{i}=\omega_{\varphi(\lambda)}^{\varphi(i)}, \omega_{\lambda}^{\varphi(i)}=\omega_{i}^{\varphi(\lambda)}
\end{aligned}
$$

If we write $\omega_{i}^{\alpha}=\sum h_{i j}^{\alpha} \omega^{j}$, then we have

$$
\begin{equation*}
h_{i j}^{\alpha}=h_{j i}^{\alpha}, h_{i j}^{\alpha}=g\left(A_{\alpha} e_{i}, e_{j}\right), h_{j k}^{\varphi(i)}=h_{i k}^{\varphi(j)}=h_{i j}^{\varphi(k)} \tag{1.3}
\end{equation*}
$$

where $A_{\alpha}=A_{e_{\alpha}}$. By the equation (1.2)' the sectional curvature $K(X, Y)$ of N for a plane determined by orthonormal vectors X, Y is given by

$$
\begin{aligned}
K(X, Y)=g(R(X, Y) Y, X)=\frac{c}{4} & +\sum\left\{g\left(A_{\alpha} X, X\right) g\left(A_{\alpha} Y, Y\right)\right. \\
& \left.-g\left(A_{\alpha} X, Y\right)^{2}\right\}
\end{aligned}
$$

As an immediate consequence of this relation we have the following characterization of totally real, totally geodesic minimal submanifolds.

Proposition. Let N be an n-dimensional totally real minimal submanifold in $H P^{m}$. Then N is totally geodesic if and only if N is of constant curvature $K=c / 4$.
2. Proof of the theorem. In [2] the Laplacian of $\|\sigma\|^{2}$ was calculated for a minimal submanifold in a locally symmetric manifold, i.e., the following formula holds:

$$
\begin{align*}
& \frac{1}{2} \Delta\|\sigma\|^{2}=\|\bar{\nabla} \sigma\|^{2}+\sum \operatorname{tr}\left(A_{\alpha} A_{\beta}-A_{\beta} A_{\alpha}\right)^{2}-\sum\left(\operatorname{Tr} A_{\alpha} A_{\beta}\right)^{2} \tag{2.1}\\
& \quad+\sum\left(4 \tilde{R}_{\alpha \beta i j} h_{j k}^{\alpha} h_{i k}^{\beta}-\tilde{R}_{\alpha k \beta k} h_{i j}^{\alpha} h_{i j}^{\beta}+2 \tilde{R}_{i j k j} h_{i l}^{\alpha} h_{k l}^{\alpha}+2 \widetilde{R}_{i j k l} h_{i l}^{\alpha} h_{j k}^{\alpha}\right)
\end{align*}
$$

If N is a totally real, minimal submanifold of $H P^{m}$, the right side of (2.1) becomes (see [1])

$$
\begin{align*}
\frac{1}{2} \Delta\|\sigma\|^{2}= & \|\bar{\nabla} \sigma\|^{2}+\frac{1-a}{2} \sum \operatorname{tr}\left(A_{\alpha} A_{\beta}-A_{\beta} A_{\alpha}\right)^{2}+a \sum\left(\operatorname{tr} A_{\alpha} A_{\beta}\right)^{2} \tag{2.2}\\
& -\frac{n a c}{4}\|\sigma\|^{2}+\frac{c}{4} \sum_{\varphi, i} \operatorname{tr} A_{\varphi(i)}^{2}+(1+a) \sum\left(R_{i j k j} h_{i l}^{\alpha} h_{k l}^{\alpha}\right. \\
& \left.+R_{i j k l} h_{i l}^{\alpha} h_{j k}^{\alpha}\right)
\end{align*}
$$

where a may be any real number.
Let $\alpha_{1}, \ldots, \alpha_{n}$ be the eigenvalues of A_{α}. Then we have

$$
\sum_{i, j, k, l}\left(R_{i j k j} h_{i l}^{\alpha} h_{k l}^{\alpha}+R_{i j k l} h_{i l}^{\alpha} h_{j k}^{\alpha}\right)=\frac{1}{2} \sum_{i, k}\left(\alpha_{i}-\alpha_{k}\right)^{2} R_{i k i k}
$$

Now we assume that the sectional curvature of N is greater than or equal to γ. Then

$$
\begin{equation*}
\sum_{i, j, k, l}\left(R_{i j k j} h_{i l}^{\alpha} h_{k l}^{\alpha}+R_{i j k l} h_{i i}^{\alpha} h_{j k}^{\alpha}\right) \geqq \frac{1}{2} \sum_{i, k}\left(\alpha_{i}-\alpha_{k}\right)^{2} \gamma . \tag{2.3}
\end{equation*}
$$

Since N is minimal $\Sigma_{i} \alpha_{i}=0$. Therefore

$$
\sum_{i, k}\left(\alpha_{i}-\alpha_{k}\right)^{2}=2 n \operatorname{tr} A_{\alpha}^{2} .
$$

Let us take a so that $a \geqq-1$. Then (2.2) yields

$$
\begin{align*}
\frac{1}{2} \Delta\|\sigma\|^{2} \geqq & \left\|\bar{\nabla}_{\sigma}\right\|^{2}+\frac{1-a}{2} \sum \operatorname{tr}\left(A_{\alpha} A_{\beta}-A_{\beta} A_{\alpha}\right)^{2}+a \sum\left(\operatorname{tr} A_{\alpha} A_{\beta}\right)^{2} \tag{2.4}\\
& -\frac{n a c}{4}\|\sigma\|^{2}+\frac{c}{4} \sum \operatorname{tr} A_{\varphi(i)}^{2}+(1+a) n \gamma\|\sigma\|^{2}
\end{align*}
$$

Let $S_{\alpha \beta}=\operatorname{tr}\left(A_{\alpha} A_{\beta}\right)=\sum h_{i j}^{\alpha} h_{j i}^{\beta}$. Then $\left(S_{\alpha \beta}\right)$ is a symmetric $p \times p$ matrix and it can be diagonalized for a suitable choice of $\left\{e_{\alpha}\right\}$. Thus we may assume that $\operatorname{tr} A_{\alpha} A_{\beta}=0$ for $\alpha \neq \beta$. In [2] there is an algebraic lemma which proved that

$$
\operatorname{tr}\left(A_{\alpha} A_{\beta}-A_{\beta} A_{\alpha}\right)^{2} \geqq-2\left(\operatorname{tr} A_{\alpha}^{2}\right)\left(\operatorname{tr} A_{\beta}^{2}\right)
$$

and the equality holds for nonzero matrices A_{α} and A_{β} if and only if A_{α} and A_{β} can be transformed by an orthogonal matrix simultaneously into scalar multiples of \bar{A} and \bar{B} respectively where

$$
\bar{A}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & \\
0 & 0
\end{array}\right], \quad \bar{B}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0-1 & 0 \\
0 & 0
\end{array}\right] .
$$

Moreover, if A_{1}, A_{2}, A_{3} are symmetric $n \times n$ matrices such that

$$
-\operatorname{tr}\left(A_{a} A_{b}-A_{b} A_{a}\right)^{2}=2\left(\operatorname{tr} A_{a}^{2}\right)\left(\operatorname{tr} A_{b}^{2}\right), 1 \leqq a, b \leqq 3, a \neq b,
$$

then at least one of the matrices must be zero.
Now from (2.4) we have

$$
\begin{align*}
& \frac{1}{2} \Delta\|\sigma\|^{2} \geqq(a-1) \sum_{\alpha \neq \beta}\left(\operatorname{tr} A_{\alpha}^{2}\right)\left(\operatorname{tr} A_{\beta}^{2}\right)+a \sum\left(\operatorname{tr} A_{\alpha}^{2}\right)^{2} \tag{2.5}\\
& \quad-\frac{n a c}{4}\|\sigma\|^{2}+\frac{c}{4} \sum \operatorname{tr} A_{\varphi(i)}^{2}+(1+a) n_{\gamma}\|\sigma\|^{2}, \\
& \\
& \text { for }-1 \leqq a \leqq 1 .
\end{align*}
$$

Since

$$
\sum_{\alpha \neq \beta}\left(\operatorname{tr} A_{\alpha}^{2}\right)\left(\operatorname{tr} A_{\beta}^{2}\right)+\sum_{\alpha}\left(\operatorname{tr} A_{\alpha}^{2}\right)^{2}=\left(\sum_{\alpha} \operatorname{tr} A_{\alpha}^{2}\right)^{2}=\|\sigma\|^{4}
$$

and

$$
\sum\left(\operatorname{tr} A_{\alpha}^{2}\right)^{2} \geqq\|\sigma\|^{4} / n
$$

by a straightforward calculation (2.5) yields

$$
\begin{aligned}
\frac{1}{2} \Delta\|\sigma\|^{2} \geqq\left\{\frac{1}{n}-(1-a)\right\}\|\sigma\|^{4} & +\left\{(1+a) n \gamma-\frac{n a c}{4}\right\}\|\sigma\|^{2} \\
& +\frac{c}{4} \sum \operatorname{tr} A_{\varphi(i)}^{2} .
\end{aligned}
$$

In particular putting $a=1-1 / n$ we obtain

$$
\begin{equation*}
\frac{1}{2} \Delta\|\sigma\|^{2} \geqq\left\{(2 n-1) \gamma-\frac{n-1}{4} c\right\}\|\sigma\|^{2}+\frac{c}{4} \sum \operatorname{tr} A_{\varphi(i)}^{2} \tag{2.6}
\end{equation*}
$$

Now we assume that the sectional curvature γ of N satisfies $\gamma \geqq$ $(n-1) c / 4(2 n-1)$. The right-hand side of (2.6) is non-negative. Thus by use of Hopf's lemma we obtain $\Delta\|\sigma\|^{2}=0$, and $\sum \operatorname{tr} A_{\varphi(i)}^{2}=0$. All the inequality signs in this section turn into equalities. In particular we have

$$
-\operatorname{tr}\left(A_{\alpha} A_{\beta}-A_{\beta} A_{\alpha}\right)^{2}=2\left(\operatorname{tr} A_{\alpha}^{2}\right)\left(\operatorname{tr} A_{\beta}^{2}\right), \alpha \neq \beta
$$

Thus at most two of the A_{α} 's are non-zero. Without loss of generality we may assume that

$$
\begin{align*}
A_{n+1} & =a\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & \\
0 & 0
\end{array}\right), \quad A_{n+2}=b\left(\begin{array}{ccc}
1 & 0 & 0 \\
0-1 & 0 \\
0 & 0
\end{array}\right) \tag{2.7}\\
A_{\alpha} & =0 \text { for } \alpha \neq n+1, n+2
\end{align*}
$$

If N is not totally geodesic in $H P^{m}$, then $\|\sigma\| \neq 0$ and $\gamma=(n-1) c / 4$ $(2 n-1)$. We are going to claim that $n=2$. Assume that $n>2$. Then for an $i>2$, by use of (1.2)' and (2.7), we have $K\left(\pi\left(e_{1}, e_{i}\right)\right)=R_{1 i 1 i}=c / 4$. Since N is not totally geodesic, we may assume that $A_{n+2} \neq 0$. For $A_{\alpha}=$ A_{n+2}, we have $\alpha_{1}=b, \alpha_{2}=-b, \alpha_{i}=0$ for $i>2$. Thus $\left(\alpha_{1}-\alpha_{i}\right)^{2} \neq 0$ for $i>2$. Therefore from the equality of (2.3) we find

$$
R_{1 i 1 i}=\gamma=(n-1) c / 4(2 n-1)<c / 4
$$

This is a contradiction. Hence $n=2$.
Since $\sum \operatorname{tr} A_{\varphi(i)}^{2}=0$, we have $m>2$ and $K=c / 12$.
By (2.7) we have

$$
\begin{aligned}
\omega_{1}^{n+1} & =a \omega^{2}, \omega_{2}^{n+1}=a \omega^{1}, \omega_{1}^{n+2}=b \omega^{1}, \omega_{2}^{n+2} \\
& =-b \omega^{2}, \omega_{i}^{\alpha}=0, \alpha=3, \ldots, 4 m, i=1,2
\end{aligned}
$$

Since all the inequalities become equalities in this section when $K=$ $c / 12, n=2$, we have

$$
\|\bar{\nabla} \sigma\|^{2}=\sum\left(h_{i j k}^{\alpha}\right)^{2}=0
$$

where $h_{i j k}^{\alpha}$ are given by

$$
\sum h_{i j k}^{\alpha} \omega^{k}=d h_{i j}^{\alpha}-\sum h_{i k}^{\alpha} \omega_{j}^{k}-\sum h_{k j}^{\alpha} \omega_{i}^{k}+\sum h_{i j}^{\beta} \omega_{\beta}^{\alpha} .
$$

$h_{i j k}^{\alpha}=0$ yields

$$
\begin{equation*}
d h_{i j}^{\alpha}=\sum h_{i k}^{\alpha} \omega_{j}^{k}+\sum h_{k j}^{\alpha} \omega_{i}^{k}-\sum h_{i j}^{\beta} \omega_{\beta}^{\alpha} . \tag{2.8}
\end{equation*}
$$

In (2.8) setting $\alpha=3, i=1$ and $j=2$, we have $a=$ const., setting $\alpha=4$, $i=j=1$, we have $b=$ const. Setting $\alpha=3, i=j=1$ in (2.8), we have $\omega_{4}^{3}=(-2 a / b) \omega_{2}^{1}$. Setting $\alpha \geqq 5, i=1, j=2$ in (2.8), we obtain $\omega_{3}^{\alpha}=0, \alpha \geqq 5$. Setting $\alpha \geqq 5, i=j=1$ in (2.8), we obtain $\omega_{4}^{\alpha}=0, \alpha \geqq 4$.

Since $\sum\left(\operatorname{tr} A_{\alpha}^{2}\right)^{2}=\|\sigma\|^{4} / 2$, we have $a^{2}=b^{2}=c / 12$. Replacing e_{3} by $-e_{3}$ and e_{4} by $-e_{4}$, if necessary, we may assume that $-a=b=$ $\sqrt{c} / 2 \sqrt{3}$. The connection form $\left(\omega_{A}^{B}\right)$ of $H P^{m}$ restricted to N is given by

$$
\left(\begin{array}{rrrrrrr}
0 & \omega_{2}^{1} & b \omega^{2} & -b \omega^{1} & 0 & \cdots & 0 \tag{2.9}\\
\omega_{1}^{2} & 0 & b \omega^{1} & b \omega^{2} & 0 & \cdots & 0 \\
-b \omega^{2} & -b \omega^{1} & 0 & 2 \omega_{2}^{1} & 0 & \cdots & 0 \\
b \omega^{1} & -b \omega^{2} & -2 \omega_{2}^{1} & 0 & 0 & \cdots & 0 \\
0 & & \cdots & 0 & & 0
\end{array}\right), b=\sqrt{c} / 2 \sqrt{3} .
$$

From (2.9) we conclude that $m \geqq 4$. Otherwise, $m=3$ implies from (1.3) that

$$
-b \omega^{2}=\omega_{2}^{4}=\omega_{2}^{3+1}=\omega_{1}^{3+2}=\omega_{1}^{5}=0
$$

which is not true.
The square length of the second fundamental from of N in $H P^{4}$ is

$$
\|\sigma\|^{2}=2\left(a^{2}+b^{2}\right)=c / 3
$$

On the other hand, the real 4-dimensional projective space $R P^{4}$ with constant curvature $c / 4$ is canonically immersed in $H P^{4}$ and, further, in $H P^{m}$ as a totally real, totally geodesic submanifold. In [2] it was proved that the Veronese surface is the only compact minimal immersion in $R P^{4}$ (and further canonically in $H P^{4}$ and in $H P^{m}$) with $\|\sigma\|^{2}=c / 3$. This immersion of the Veronese surface in $H P^{m}$ has the connection form (2.9) which was proved in [2]. Hence our N is locally a Veronese surface.

References

1. B-Y. Chen and C.S. Houh, Totally real submanifolds of a quaternion projective space, Ann. di. Mat. (IV), 120 (1979), 185-199.
2. S.S. Chern, M.P. Do Carmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. of Chicago, 1968), Springer, New York, 1970, 59-75.
3. S. Ishihara, Quaternion Kaehlerian manifolds, J. Differential Geometry, 9 (1974), 483-500.
4. K. Ogiue, Positively curved totally real minimal submanifolds immersed in a complex projective space, Proc. Amer. Math. Soc. 56 (1976), 264-266.

Department of Mathematics, Wayne State University, Detroit, MI 48202.

