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SOME TOTALLY REAL SUBMANIFOLDS IN A
QUATERNION PROJECTIVE SPACE

CHORNG SHI HOUH

0. Introduction. Let HP mbe the (real) 4m-dimensional quaternion pro-
jective space. On totally real submanifolds in HP=, [1] has established
some fundamental concepts and formulas. In this paper we employ some
techniques developed in [2] and [4] and prove the following theorem.

THEOREM. Let HP™ be the (real) 4m-dimensional quaternion projective
space of constant quaternion sectional curvature ¢ > 0. Let N be an
n-dimensional compact totally real minimal submanifold of HP™. If the
sectional curvature y of N satisfies y = (n — 1)c/4(2n — 1), then either
N is totally geodesic in HP™ orn = 2, m = 4 and N is the Veronese surface
in HP™ with positive constant curvature c/12.

1. Preliminaries. Let HP” be a quaternion projective space with real
dimension 4m. On HP™ there exists a 3-dimensional vector space V of
tensors of type (1.1) with local basis of almost Hermitian structure 7, J, K
such that

Q) IJ=—-JI=K,JK=—KJ=1I KI=—IK=J,
I2=J2=K2 = —1;

) V.I=r(x)J - qx)K, VJ= —r(x)I + p(xK,
VK = q()I —p(x)J

for some functions p(x), ¢(x), r(x) on HPm where ¥ is the connection on
HPm,

Let X be a unit vector on HP™. Then X, IX, JX and KX form an or-
thonormal frame. Let Q(X) be the 4 plane spanned by them. For X, Y
on HP=_ if Q(X) and Q(Y) are orthogonal, the plane z(X, Y) spanned by
X and Y is called a rotally real plane. Any 2-plane in some Q(X)is called
a quaternion plane. The sectional curvature of a quaternion plane x is
called the quaternion sectional curvature of m. The quaternion sectional
curvature of HP is a constant ¢ > 0. HP~ is thus called a quaternion-
space-form.

Let g be the Riemann metric on HPm. Then the curvature tensor R of
HPm js given by [3].
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(1.1) R(X,Z = % {g(Y, 2)X — g(X, Z)Y + g(IY, Z)IX

— gUX, 2)IY + 2g(X, IY)IZ + g(JY, Z)JX
—gUX, Z)JY + 2g(X,JY)JZ + g(KY, Z)KX
— g(KX, Z)KY + 2g(X, KY)KZ}

Let N be an n-dimensional Riemannian manifold isometrically im-
mersed in HP». We call N a totally real submanifold of HP if each tangent
2-plane of N is mapped by the immersion onto a totally real plane in HP™,

Let V be the Riemannian connect~ion on N, ¢ be the second fundamental
form of the immersion. ¢(X, Y) =VyY -V xY for X, Y € TN, the tangent
space of N. For a normal vector £ on N, Vy§ = —A4:X + Dy &, where
— A¢X and D¢ are tangential and normal components of V§.

The mean curvature vector H is defined by H = trace g/n. N is minimal
if H = 0. We define Vg by

Vx0) (Y, Z) = Dx(0(Y, Z)) — o(Vx Y, Z) — (Y, VxZ), X, Y, Ze TN.
Let R be the curvature tensor of N. Then the equation of Gauss is
(1.2) gR(X,Y)Z, W) = g(R(X, Y)Z, W) + g(o(X, W), a(Y, 2))
— 8(o(X, Z), a(Y, W), X, Y, Z, We TN.

Assume that N is a totally real submanifold of M. Then for any ortho-
gonal vectors X, Y in TN, Q(X) | Q(Y). We thus have g(X, oY) =
g(¢X,Y) = 0for g, g bel, Jor K. (1.1) and (1.2) reduce to

1.1y  Rx, )z = 'Z’ {g(Y, 2)X — g(X, Z2)Y}, X, Y, Ze TN,
and
(1.2) gRX, Y)Z, W) = % {8(Y, Z)g(X, W) — g(X, Z)g(Y, W)}

+ 8(0(Y, 2), o(X, W) — g(o(X, Z), o(Y, W)).

Since N is totally real, if dim N = n, thenn < m. Let p = 4m — n. We
choose a local field of orthonormal frames

€15 +v5 €us €ptls o5 €3 €p(1) = POLs <o €)= PCyy w-o5 Eu(m) = Py
po=1Jor K.

The following range of indices are to be used with ¢ running through
I, J and K.

A, B, C, ... =1,...,m,Q), ..., p(m); Ljyk,... =12, ..,n;
aBr,... =n+1,..,moeQ),..,om; Auy,..=n+1,...,m
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With respect to this frame field let the dual field be
wly ..., 0" 0"t L em 0P, L, 0™, = 1, Jor K.
Using g(pe;, ¢e;) = 0 (i # j) and condition (b) we have for ¢ = I, Jor K,
o = ), 3 = ), o} = izl

A = o — Pl 6) = op@
wf = 0%, i = 02, ¥ = ??.

P>
If we write w¥ = X hfw/, then we have
(1.3) h = hg, by = g(Aqes, €)), B = hg) = he®,
where A, = A,. By the equation (1.2)’ the sectional curvature K(X, Y) of
N for a plane determined by orthonormal vectors X, Y is given by
KX, Y) = gR(X, V)Y, X) = ¢ + T {2(4.X, X)g(4,Y, Y)
— g(4.X, Y)?}.

As an immediate consequence of this relation we have the following
characterization of totally real, totally geodesic minimal submanifolds.

PROPOSITION. Let N be an n-dimensional totally real minimal submanifold
in HP™, Then N is totally geodesic if and only if N is of constant curvature
K = c/4.

2. Proof of the theorem. In [2] the Laplacian of ||g||2 was calculated for
a minimal submanifold in a locally symmetric manifold, i.e., the following
formula holds:

2.1) %—A”o”z = ||Vo |2 + X tr(4, 45 — ApA,)? — ] (Tt A Ap)>

+ E(4Raﬁijhfkh?k akﬁkhuhﬁ + 2R1]kjhglhgl + 2Rijklh:'¥lh7k)-

If N is a totally real, minimal submanifold of HP, the right side of (2.1)
becomes (see [1])

2.2) -%—A||a| — A + a Y (tr A Ag)?

- nac lofl? + 4 Ztr Abiy + (1 + a) 23 (R juihshg

+ R:‘jklh?‘zh?k),

where a may be any real number.
Let ay, .., a, be the eigenvalues of 4,. Then we have

Z (Rtjluh hkl + Ruklhzlhjk) = 2 Z(a: - ak) Rtktk

i 7kl
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Now we assume that the sectional curvature of N is greater than or equal
to 7. Then

(2.3) ZEI(R;;k;huhkz + R;juh3h%) = 5 Z(a' — ap?r.
YA A

Since N is minimal }3; o; = 0. Therefore

Z: (a; — ap)? = 2n tr A2

ik

Let us take a so that a = — 1. Then (2.2) yields

(24) é—Ananz > 9ol + 1=

- AﬁAa)z + aZ (trAaAﬂ)Z

nac H “2 + ZtrA o+ A+ a)nrl(a“2

Let S, = tr(4,4g) = X hh%. Then (S,p) is a symmetric p x p matrix
and it can be diagonalized for a suitable choice of {e,}. Thus we may
assume that tr 4,4; = 0 for & # §. In [2] there is an algebraic lemma

which proved that
tr(A Aﬁ - AﬁAa)z = — 2(tr AZ) (tr A )

and the equality holds for nonzero matrices 4, and A, if and only if 4,
and A4 can be transformed by an orthogonal matrix simultaneously into
scalar multiples of 4 and B respectively where

01 1 0
=110 . B=|0-1 0
0 0 0 0

Moreover, if 4y, A,, A3 are symmetric n x n matrices such that
—tr(A4,A4, — A,A)? = 2(tr A2) (tr AD), 1 < a,b <3,a # b,

then at least one of the matrices must be zero.
Now from (2.4) we have

@5  Sdlorz@-1 % 42 (49 + a X (o A2

=1 o2 + - X tr AZy + (1 + @y o2,

for -1 £a=< 1.

Since
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Zﬂ(tr A2) (tr A3) + 3] (tr A2 = (3] tr A2 = |o|*
a® a a

and

20 (tr 422 2 ||o[|*/n,
by a straightforward calculation (2.5) yields

FAlolz 2{L-a = ol +{a + anr — "4} o

+ — Z} tr A2 ;.

In particular puttinga = 1 — 1/n we obtain

@6 4ol z{@n - vy - 2 el lofr + § T 4.

Now we assume that the sectional curvature y of N satisfies y =
(n — 1) ¢/4(2n — 1). The right-hand side of (2.6) is non-negative. Thus by
use of Hopf’s lemma we obtain 4|¢|? =0, and }]tr A, = 0. All the in-
equality signs in this section turn into equalities. In particular we have

—tr(A,A4g — Agd,)? = 2tr A2) (tr A%, a # B.

Thus at most two of the 4,’s are non-zero. Without loss of generality we
may assume that

01 Lo
Apr=all 0 V), A,.=>bl0-1 ,
2.7 0 O 0 0

A, =0fora #n + 1I,n + 2.

If N is not totally geodesic in HPm=, then |lg|| # 0 and y = (n — 1)c/4
(2n — 1). We are going to claim that n = 2. Assume that n > 2. Then for
an i > 2, by use of (1.2)" and (2.7), we have K(z(e;, €;)) = Ry;1; = /4.
Since N is not totally geodesic, we may assume that 4,5, # 0. For 4, =
A,i2, Wwe have ) = b, az = — b, a; = 0 for i > 2. Thus (a; — ;)2 # 0
for i > 2. Therefore from the equality of (2.3) we find

Ry =7=@m—= Dc/4@2n — 1) < c/4.
This is a contradiction. Hence n = 2.

Since ¥ tr A2, = 0,wehavem > 2and K = ¢/12..
By (2.7) we have

WPt = aw?, Wt = awl, W = bol, Wit
= —bu? wf=0,a=3,..,4mi=12.
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Since all the inequalities become equalities in this section when K =
¢/12,n = 2, we have

[9o[} = X 2 = 0
where hZ;, are given by
22 g b = dhgy — 3 hg, o — X hg; of + 30 o
hgy, = 0 yields

2.8) dhf; = 33 hg, b + Yhi; b — 3 hE; o

In (2.8) settinga = 3,i = 1 andj = 2, we have a = const., settinga = 4,
i =j=1, we have b = const. Setting « = 3, i = j = 1 in (2.8), we have
wi = (— 2a/b)w}. Setting ¢« =5, i=1, j =2 in (2.8), we obtain
wf=0,az 5. Settinga = 5,7 = j = 1in (2.8), we obtain 0§ = 0, « = 4.

Since X (tr A2)2 = |g||4/2, we have a®? = b% = ¢/12. Replacing e;
by —e; and e, by —ey, if necessary, we may assume that —a = b =
v/ ¢ | 24/3. The connection form (w%) of HP™ restricted to N is given
by

0 w3 bw? —bw! 0 --- 0
w? 0 bw! baw? 0 --- 0
2.9 —bw? —buw! 0 203 0 - 0 || b= 4/c/24/3.
bw! —bw? — 2w} 0--0
0 0 0o

From (2.9) we conclude that m = 4. Otherwise, m = 3 implies from (1.3)
that

3+1 3+2

— bo? = 0w} = 03! = }? = w} =0,

which is not true.
The square length of the second fundamental from of N in HP4is

o]z = 2(az + b2) = ¢/3.

On the other hand, the real 4-dimensional projective space RP* with
constant curvature c/4 is canonically immersed in HP#4 and, further, in
HP™ as a totally real, totally geodesic submanifold. In [2] it was proved
that the Veronese surface is the only compact minimal immersion in RP*
(and further canonically in HP* and in HP™) with |¢|2 = ¢/3. This im-
mersion of the Veronese surface in HP™ has the connection form (2.9)
which was proved in [2]. Hence our N is locally a Veronese surface.
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