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LINEAR SYMPLECTIC STRUCTURES ON BANACH SPACES 
R. C. SWANSON 

ABSTRACT. In recent years, both J. Marsden and A. Weinstein 
have called attention to the practical and theoretical importance of 
symplectic forms on Banach manifolds. In particular, Weintein's 
proof of the Darboux theorem in infinite dimensions reduces the lo­
cal classification of symplectic structures on a Banach manifold to 
the study of linear (i.e., "constant") symplectic forms on a Banach 
space. 

In previous work, the author has proved a version of the Morse 
index theorem for partial differential equations, using a topological 
approach based on symplectic forms in Hilbert space. 

In the present paper, we attempt a more systematic study of the 
linear theory. The work is expository but includes several new re­
sults and examples. We prove in §2, for example, that the pull-back 
action of the general linear group on symplectic forms is stable; i.e., 
the orbits are open sets. 

We define isotropic and lagrangian subspaces and give their ele­
mentary properties. The grassmannian of lagrangian subspaces is giv­
en the structure of a Banach subvariety of the full grassmannian of 
complemented subspaces of a Banach space. We show that under 
the action of the symplectic group, orbits of lagrangian subspaces 
are diffeomorphic to Banach homogeneous spaces of the symplectic 
group. 

Finally, in the special case of a Hilbert space, it is proved that 
the lagrangian grassmannian and, as a consequence, the linear sym­
plectic group are contractible topological spaces. Examples are 
sketched which show that this result is false if either general Banach 
spaces or weak symplectic structures are allowed. 

1. Linear Symplectic Structures. In the following E is a Banach 
space, equipped with a continuous skew-symmetric bilinear form co : E 
X E —* R. Define the "flatted" map cob : E —* E* by setting o)b(e) • / 
= to(e, f). If co& is an isomorphism, then co is (strongly) non-degenerate 
and the pair (E, co) is called a (strong) linear symplectic structure. If it 
happens that <o& is merely injective, then (E, co) is a weak symplectic 
structure. Although equivalent in finite dimensions, the two notions 
differ for the general Banach space case; and, in fact, weak structures 
play a dominant rôle in J. Marsden's formulation [2] of infinite dimen­
sional mechanics. Other possibilities lie between the extremes of weak 
or strong; e.g., Tromba [15] has defined an "almost symplectic" struc-
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ture arising from a weaker norm || \\w defined on E. 
The existence of a linear symplectic structure (E, co) implies not only 

that E is isomorphic to E* but also that E is reflexive, since the iso­
morphism (co^1)* ° cob : E —> E** is simply the natural injection into the 
second dual. 

If F is any Banach space, the product F X F* carries a natural weak 
symplectic form Q defined by 

Q[(e, «), if, ß)] = < « , / > - (ß, e), 

where ( , ) denotes the dual pairing of F and F*. Thus, ß b maps each 
(e, a) to (a, e) in E*, if e is identified with its image in E** under the 
natural injection. It follows that F is reflexive if and only if (E, Q) is a 
strong symplectic structure. Call a symplectic structure (E, co) Darboux 
if E is isomorphic to F X F*, F is reflextive, and co = A*12, where the 
pull-back A*ß(x, y) = ß(Ax, Ay) for all x, y E E, and A is an iso­
morphism A : E —* F x F*. It is not known whether every strong sym­
plectic structure is Darboux. We shall return to Darboux structures in 
§2. In general, any isomorphism A : E 1 —* E2 of Banach spaces with 
symplectic structures (E1? co1) and (E2, co2) such that A*co2 = co1 is 
called symplectic. 

We now confine our attention to the set s/^(E) of all strongly sym­
plectic structures on E. Then s/^(E) is an open subset of La

2(E), the 
continuous alternating forms on E, since the isomorphism E —• E* form 
an open set in the space of continuous linear maps L(E, E*). We as­
sume that E admits at least one symplectic structure. 

If GL(E) denotes the general linear group of E, there is a natural ac­
tion GL(E) X ^ ( E ) - * J / / ? ( E ) via the pullback map (A, co)~* A*co, de­
fined above. Thus, J3^(E) partitions into isometric classes determined by 
GL(E). For a given form co, we may define the orbit map / w : A —* 
A*co. The isotropy subgroup of GL(E) which fixes co is called the sym­
plectic group (at co) which we denote by Sp(E, co). Recall that a group 
action is stable if all the orbits are open sets. 

In the following, the term "split-submersion" is applied to a differen-
tiable map / : M —* N if the exact sequence Ker TJ —* TXM 1*J TXN 
splits for all x E M, where M and N are Banach manifolds. 

THEOREM 1.1. Suppose the Banach space E admits a linear symplectic 
structure. Then the following assertions hold: 

(i) GL(E) acts stably on j3^(E) 
(ii) The projection m : GL(E) —» GL(E)/Sp(E, co) defines a locally 

trivial fibre bundle 
(iii) Each orbit Orb(co) is diffeomorphic to a quotient group 

GL(E)/Sp(E, co). 
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PROOF, (i) We want to show that for every co, the image of the orbit 
map /w : GL(E) —• s?/# (E) contains a neighborhood of co. Note GL(E) 
and ,.c/^(E) are Banach manifolds modeled, respectively, on L(E), the 
space of continuous linear maps on E, and on La

2(E) defined above. If 
the differential D7/w : L(E) —* £a

2(E) is split-surjective, then we may 
conclude by the implicit function theorem for Banach manifolds (Lang 
[10]) that the orbit is open. Thus, we need to show the sequence 

K e r D , / t ì ^ L ( E ) M ! L a 2 ( E ) 
is exact and splits. 

Since fu is quadratic, its differential is easily computed as D//C0(A)(x, 
y) = co(Ax, y) + co(x, Ay), for every A E L(E) and x, y E E. To show 
surjectivity, if a E La

2(E), define B E L(E) such that B = co^1 ° a&? 

Then a(x, y) — o)(Bx, y) — co(x, By), and setting A = (1/2)B, we obtain 
DjfJA) — a. Note that A E Ker D7/w if and only if the induced bi­
linear form ß(x, y) = co(Ax, y) is symmetric. The space of bilinear 
forms splits as L2(E) = La

2(E) © LS
2(E); i.e., into alternating and sym­

metric parts, since E admits a non-degenerate form. The correspond­
ence G : A —* oo(Ax, y), for x, y E E defines an isomorphism of L(E) 
onto L2(E). Therefore, L(E) = G-^L^E)) © G"1(LS

2(E)), and in par­
ticular, Ker D7/w = G-1(LS

2(E)) which establishes the desired splitting. 

(ii) From the proof of (i), we know that Sp(E, co) = /~1(co) is a closed 
subgroup of GL(E) whose tangent space may be identified with Ker 
D7/w, whose elements are called infinitesimally symplectic and which is 
formally the Lie algebra "sp(E, co)" corresponding to the Banach Lie 
group Sp(E), co). 

Now let 7T, /w be as above and suppose F : Orb(co) —* GL(E)/Sp(E, co) 
is the bijective correspondence a —• 7TA, for a = A*co. A standard re­
sult for (Banach) Lie groups (cf. de la Harpe [6]) is that the coset space 
admits a smooth manifold structure which is uniquely determined by 
the requirement that n be a smooth submersion. Moreover, the tangent 
space Tw7[GL(E)/Sp(E, co)] is isomorphic to the quotient space L(E)/Ker 
D7/w, which is, in turn, isomorphic to G_1[La

2(E)] as in the proof of (i). 
Since Ker D/TT equals Ker D7/co, IT is a split-submersion and by the im­
plicit function theorem must be locally trivial. That is, there is a neigh­
borhood V1 of TTI in GL(E)/Sp(E, co), a neighborhood U of I in GL(E), 
and a diffeomorphism h : Vt X V2 —* U such that 77 ° h : V1 X V2 —• 
V1 is the projection map. In particular, we may take V2 to be the fibre 
Sp(E, co). Since we are dealing with a smooth group GL(E), the same 
argument holds in a neighborhood of any element of GL(E). 

(iii) By (i) and (ii), F is a local diffeomorphism, and since it is bijec­
tive, it must be a global diffeomorphism. 
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2. The Lagrangian Grassmannian. Weinstein [16] has treated la­
grangian subspaces of a symplectic Banach space. We shall build on his 
work, below, in order to characterize certain subsets of the grassman­
nian of lagrangian subspaces as specific Banach homogeneous spaces. 

A subspace F of a Banach space E is isotropic, with respect to a sym­
plectic structure (E, co), if for all x, y E F, co(x, y) — 0. Isotropic sub-
spaces are always closed. By Zorn's lemma, maximal (by inclusion) 
isotropic subspaces always exist. Let F° denote the co-annihilator of a 
subspace F, i.e., F* = {e G E|co(e, f) = 0, for all f £ F}. Then, evi­
dently, a subspace F in E is maximal isotropic if and only if F = F°. 
An isotropic subspace F is called lagrangian if it is complemented in E 
by an isotropic subspace, i.e., E — F ® G and G is isotropic. Using the 
non-degeneracy of the form co, it is not hard to show that lagrangian 
subspaces are always maximal isotropic, even when co is only a weak 
form. Weinstein [16] has shown that in Hilbert space maximal isotropic 
subspaces coincide with lagrangian subspaces if co is strongly non-degen­
erate. 

The set of all lagrangian subspaces is called the lagrangian grassman­
nian, which we write as A(E, co). The terminology is due to Arnol'd (cf. 
[1]) in finite dimensions. The next theorem, due to Weinstein [16], re­
lates lagrangian subspaces to Darboux structures. 

THEOREM 2.1. If (E, co) is a symplectic structure and L is a lagr­
angian subspace of E, then there exists a symplectic isomorphism A : E 
—* L X L*, where L x L* is equipped with the canonical symplectic 
structure defined in §1. 

COROLLARY. A(E, CO) ¥= 0 if and only if the structure (E, co) is Dar­
boux. 

PROOF (of theorem). We shall sketch Weinstein's proof. Since L is 
lagrangian, we may set E = L © M, for a lagrangian subspace M. De­
fine a map A : L © M -^ L X L* such that A = idL X TTL, ° (co& | M), 
where 77L* is the projection of E* onto L*, i.e., the restriction map. 
Then A is the desired symplectic isomorphism. 

The proof of the corollary is immediate. Note that Theorem 2.1 im­
plies that a given Darboux symplectic form is determined (up to 
isometry) by its set of isomorphieally distinct lagrangian subspaces. The 
name "Darboux" comes from the fact that Theorem 2.1 yields "Dar­
boux coordinates." 

We now observe that a given symplectic structure may have several 
distinct Darboux decompositions in the sense that E ~ L x L* ~ M 
X M*, but L and M are non-isomorphic lagrangian subspaces (the sym­
bol ^ denotes a Banach space isomorphism). 
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EXAMPLE. Suppose ip is the p-summable sequence space, with dual 
space / * = lq. We may equip Ep = £p X iq with the standard sym­
plectic form Qv. Evidently, Ep ^ Eq although tp and iq are not isomor­
phic unless p = q = 2. The symplectic structure (Ep, Qp) admits at 
least three isomorphism classes of lagrangian subspaces: ip> Êq, or ip X 
/Q. By the latter, we mean a lagrangian subspace L which is isomor­
phic to Ep. To see that such a subspace exists, put L = tp X /,/' 
where ip ' is derived from ip by setting every even entry equal to zero; 
while iQ" consists of sequences whose odd entries are zero. Then L is 
lagrangian and is complemented by ip" X Zg'. There is a plausible con­
jecture associated with this example. 

CONJECTURE. For any symplectic structure (Ep, co) on Ep, each 
lagrangian subspace is isomorphic to Êp9 iq, or lp X /Q. 

REMARK. The conjecture is rendered likely by the fact that the spaces 
/p, 1 = p = co, are all prime Banach spaces, i.e., any complemented 
subspace is isomorphic to lp or to a finite dimensional space. A related 
notion is that of primary Banach spaces. E is primary if whenever E = 
F © G, E ~ F or E ^ G. The function spaces Lp 

[0, 1], 1 < p < co are primary, and we believe the conjecture to hold 
for the symplectic space Lp x LQ. For a discussion of prime and pri­
mary spaces consult [11]. 

In the author's thesis [14], the following is proved. 

PROPOSITION 2.2. A(E, co) is a closed (non-singular) analytic sub-varie­
ty of the full grassmannian on E, ^(E), i.e., the totality of closed com­
plemented subspaces of E. 

For a treatment of analytic Banach varieties, consult Douady [4]. 
Charts for A(E, co) consist of pairs ( r ^ , UG)9 such that for each 
lagrangian subspace G, UG = (F E A(E, <o) | E = F © G} and the 
map TFG : UG —* Q(F) is defined by the rule F —* co(Ax, y). To obtain 
the symmetric bilinear form co(Ax, y), we may express F as the graph 
{(x, Ax) | x G F} for some continuous linear map A : F —* G. The form 
co(Ax, y) is always symmetric if F and G are isotropic subspaces. Thus, 
A(E, co) is locally modeled on the Banach space Q(F) of symmetric 
bilinear forms on F. 

The symplectic group Sp(E, co) acts on the variety A(E, co) by send­
ing a subspace to its image under a symplectic automorphism. To veri­
fy this fact, note that symplectic maps preserve isotropic subspaces and 
for A invertible, E = F © G if and only if AF © AG = E. Denote 
the orbit of L E A(E, co) under Sp(E, co) as AL(E, co). Now assume that 
the form co is fixed and Darboux; i.e., lagrangian subspaces exist. Here­
after, we shall omit all inessential references to co. 
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THEOREM 2.3. With the induced structure from A(E), the orbit AL(E) 
is a smooth (even analytic) manifold modeled on Q(L). 

PROOF. It is enough to know that for every lagrangian subspace L' E 
AL(E) such that E = U © M, i.e., U E UM, it follows that UM is con­
tained in AL(E). That suffices since by Proposition 1, charts of A(E) are 
compatible, the overlap maps are non-singular, and every chart maps 
into an isomorphic copy of the Banach space Q(L). 

We shall show that AL(E) contains all lagrangian subspaces which are 
isomorphic to L, and hence must also contain the chart domain UM. 
Suppose there is an isomorphism B : L —> U. Then C = (JB*)-1 : L* —• 
(L')* is an isomorphism, and we may conclude that the map A = B x 
C : L X L* —• L' X (L')* is an isomorphism. A is symplectic with re­
spect to the canonical structures on its domain and range. This follows 
from the fact that for any pair (x, y) E L x L* 

<A(<|>, 0), A(0, x)> = (C<t>, Bx) = (<j>, x), 

where ( , ) denotes the dual pairing of E and E*. However, by Theo­
rem 1, there are symplectic maps At : E —»L X L* and A2 : E —*U X 
(L')*. Therefore, since A1\L = idL and A2 | U = idL,, the map S = 
A^1AA1 : E —» E is a symplectic automorphism such that S\L — B. 

Now let aL : Sp(E) —» AL(E) denotes the orbit map A —• A(L). Sup­
pose GL denotes the closed subgroup of Sp(E) which stabilizes L. If 
IT : Sp(E) —» Sp(E)/GL is the natural projection, then there is a bijection 
O : AL(E) -^ Sp(E)/GL such that O ° aL = IT. Again, Sp(E)/GL may be 
given the structure arising from the assertion that TT is a (split) sub­
mersion. We now give the analog of Theorem 1.1 for the above group 
action. 

THEOREM 2.4. Let au TT, and $ be as above, then 
(i) aL is a split-submersion onto AL(E) 

(ii) 0 is a diffeomorphism. 

COROLLARY. The map TT (or equivalently aL) defines a smooth fibre 
bundle structure. 

PROOF (of theorem), (i) Assume E = L © m; then it is clear that 
every symplectic map A lying in some neighborhood of the identity on 
E is such that E = A(L) © M. That is, A(L) lies in the chart UM. 
Hence, in a chart we may represent A(L) as the graph of a linear map 
B : L —*M, such that the form co(Bx, y) for x, y E L, is symmetric. If TTL 

and TTM are the coordinate projections on E it is clear that 
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A | L = 7TLA | L e BTTLA I L 

= TTLA | L © B T T ^ I L. 

Thus, if / : L —• E denotes inclusion, we know 

BmLA\ = TT^/ , or B = ( T T ^ / X ^ A / ) - 1 . 

Now, as a manifold, the symplectic group is modeled on sp(E), the 
space of infinitesimally symplectic operators. The exponential map is a 
chart which sends a neighborhood of zero in sp(E) onto a neighborhood 
of the identity in Sp(E). We may assume that the latter neighborhood is 
mapped into UM by aL. Thus, locally aL is given by the correspondence 
a ~-• B(a) — (TTM exp(ö)/)(7rL exp(a)/)"1. The differential at zero is easily 
computed (leibniz* rule) to be D0B(a) — iTj/ip Hence, the tangent map 
TjCLL : spÇE) —* Q(L) has the form a —> ^(TTJ/IX, y). But since L and M 
are lagrangian and co is symplectic, we know that co^^xy, ) = co(ax, y) 
for all x, y in L. 

Because a G sp(E) if and only if the form co(ax, y) is symmetric on 
E, the map Tj<xL is surjective. By Theorem 2.1, we may identify E with L 
X L*, and, consequently, elements of sp(E) may be written in the block 
form 

L - a * J ' 
where a : L —* L is continuous linear, and the maps b : L* —> L and 
c : L —• L* determine symmetric bilinear forms on, respectively, L* and 
L. (Recall that L is reflexive.) 

Thus, sp(E), which we identify with T/Sp(E), splits canonically as 

The kernel of T^^ consists precisely of operators of the type of the 
first summand on the right, and Q(L) is isomorphic to the space of op­
erators c : L —* L* which are symmetric. 

(ii) We may identify the tangent space T^7[Sp(E)/GL] with the space 
Q(L), since TjGL is isomorphic to the kernel of T/aL. With this identi­
fication, the differential of IT is, like that of aL, given by Tpr(a) = to(ax, 
y). Hence, in suitably chosen coordinates the map O is a local diffeo-
morphism. Since $ is bijective, it must be a global diffeomorphism. 

The corollary is immediate from the implicit function theorem for 
Banach manifolds (see the proof of Theorem 1 in §1). 

By Theorem 2.4> we may regard AL(E) as a Banach homogeneous 
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space of the symplectic group; i.e., AL(E) = Sp(E)/GL. The character­
ization may be made completely explicit by representing the isotropy 
group in a particularly simple form given in the next proposition. We 
omit the proof, as it is straight forward and parallels the finite dimen­
sional case (e.g., [5]). A complete treatment is given in [14]. 

PROPOSITION 2.5. Suppose L G A(E) and E is identified with L x L*. 
Elements of GL may be expressed in block form as 

[A AB! 
Lo (A*)-1-! 

where A : L —+ L is invertible, and B : L* —» L determines a symmetric 
bilinear form on L*. 

COROLLARY. The group GL is diffeomorphic (and isomorphic) to the 
product GL(L) X Q(L*), where GL(L) is the linear group of L and 
Q(L*) is the totality of symmetric forms on L*. 

In the next section, we shall apply this corollary to obtain homotopy 
results for the symplectic group. 

3. The Topology of the Symplectic Group. In this section, our goal is 
to relate the topologies of the symplectic group and the lagrangian 
grassmannian. For the special case in which the underlying space E is a 
Hilbert space, we prove that both Sp(E) and A(E) are contractible top­
ological spaces. 

We first require a strong lemma from homotopy theory in infinite di­
mensions. 

LEMMA 3.1 (R. Palais [13]). Let X and Y denote metrizable manifolds; 
i.e., paracompact manifolds modeled on locally convex topological vector 
spaces which are metrizable. Then the following hold: 

(i) If f : X —*Y is a continuous map inducing isomorphisms f* : 7rn(X) 
—* 7Tn(Y) for all n = 0, then f is a homotopy equivalence. 

(ii) 7Tn(X) — 0 for all n if and only if X is contractible. 

COROLLARY. 1. Suppose K is a closed subgroup of a metrizable Banach 
group G, such that the projection m : G —* G/K defines a (locally trivial) 
fibre bundle. Then 

(i) if K is contractible, IT is a homotopy equivalence. 
(ii) if any two among the triple (K, G, G/K) are contractible mani­

folds, the same holds for the third. 

PROOF (of corollary). Since G —* G/K is a fibering, we have the follow­
ing infinite exact homotopy sequence: 
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valid for n g 0 (cf. Hu [7]). 
For a contractible space every homotopy group vanishes. The corol­

lary now follows from Lemma 3.1. 

COROLLARY 2. Suppose a reflexive Babach space L has a contractible 
general linear group. Then if E is the symplectic space L x L*9 the or­
bit map <xL : Sp(E) —-»• AL(E) is a homotopy equivalence. 

PROOF. From §2, the isotropy subgroup GL is isomorphic to GL(L) X 
Q(L*), and, therefore, is contractible. Since AL(E) is diffeomorphic to 
the homogeneous space Sp(E)/GL, it follows from Corollary 1 that aL is 
a homotopy equivalence. 

REMARKS. The linear group is contractible for an astonishing variety of 
Banach function spaces (cf. Mityagin [12]) including the Sobolev and 
Holder spaces. 

If the underlying Banach space E is not only symplectic but "Hilber-
table," we shall see that some pleasant consequences arise. 

A complex-symplectic structurre on a Banach space E is a pair (/, co) 
such that co G J2^(E) and / : E -* E is symplectic; i.e., /*co = co, with 
the property that P = — /. From the definition it follows that the 
form g(x, y) — — co(/x, y) is non-degenerate and symmetric. If for some 
choice of (/, co), g(x, y) happens to be positive definite, then E is Hil-
bertable and the equivalent norm topology induced by g gives E the 
structure of a complete Hilbert space. If E is isomorphic to a Hilbert 
space, then it can be shown (Chernoff and Marsden [2]) that for any 
symplectic form co, E admits a complex-symplectic structure (/, co) such 
that 

( i ) g t e y) = - <*>(/*> y) 

(2) h(x, y) = g(x, y) + ico(x, y) 

and g is a complete real inner product structure, while h defines a 
complete hermitian or complex inner product on E. (Note that any Hil­
bert space H admits a symplectic (and Darboux) structure, as there are 
isomorphisms H~HxH~Hv H*.) 

Now let us suppose that 2rif denotes a fixed complex Hilbert space 
with a pair (/, co), satisfying (1) and (2). We may form the lagrangian 
grassmannian A(2f). Weinstein [16] has shown that in Hilbert space all 
maximal isotropic subspaces are lagrangian, i.e., admit isotropic com­
plements. 

PROPOSITION 3.2. If H is a lagrangian subspace of 3^, then JH is 
lagrangian and 3^ = H ® JH. 
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PROOF. Since / is symplectic, JH is lagrangian. The latter assertion 
follows, since JH = H-1, the orthogonal complement of H via the real 
inner product g(x, y) defined in (1). 

The decomposition H © JH splits 2#* into "real and imaginary" la­
grangian subspaces. Suppose now that °i/ — fy^f) denotes the unitary 
group on 5^\ which consists of isometries of h — g + ice. Fixing some 
lagrangian subspace H, let â — 0(H) denote the real orthogonal group 
on H which is comprised of isometries of the real inner product g, re­
stricted to H X H. Identifying H © JH with H X H, there is a natural 
injection â —* °k, defined in block matrix form as 

A~* [ A ° 1 . 
LO A J 

Suppose GLJp^) is the subgroup of GL(^), consisting of the auto­
morphisms which commute with /; that is, GLj^f) is the "complex lin­
ear group." 

PROPOSITION 3.3. <ty = GLJ&T) H Sp(5T). 

PROOF. From the decomposition h = g -h ito, any isometry of h is 
also an isometry of both g and co. Hence, fy C Sp(3f). If A is an 
isometry of g, then 

g(x, y) = - o)(Jx, y) = - œ(JAx, Ay) 

= - uiA^JAx, y) for all x, y G 2^'. 
Hence, / = A^JA. 

PROPOSITION 3.4. If GH is the isotropy group of symplectic maps 
which fix H, then identifying 0 as a subgroup of6}/, 

â = GLpP) H GH. 

PROOF. From Proposition 2.4, operators in GH have the block form 

A BA 1 
0 A J 

Note that in the identification of H* with JH, via the Darboux decom­
position of 2f as H X H*, (A*)-1 is identified with A. Elements of 
GLJßf) have the usual form 

\A
 c i 

L - C A J 
By intersecting these two groups, we obtain, canonically, 

Lo A J 
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which must be unitary and, therefore, is orthogonal. 

The next result gives another characterization of the lagrangian grass-
mannian A(3f) as a homogeneous space—this time by restricting the 
orbit map aH on Sp(5f) to the unitary subgroup. 

THEOREM 3.5. A(%0) is diffeomorphic to the Banach homogeneous 
space °?/ /0, and the natural projection IT \°i/ —» °i/10 (or equivalently 
aH \°i/ —* A(^0)) defines a smooth fibre bundle. 

PROOF. We first show^ acts transitively on A(5^) with the isotropy 
subgroup 0. If H1 and H2 are lagrangian, suppose the linear map A 
carries an orthonormal basis of H1 onto an orthonormal basis for H2. 
Then A may be extended to map JH1 onto JH2 by multiplying basis ele­
ments by /. By Proposition 3.3, A is a unitary operator on %0. 

Since °i/C\ GH = GLJßf H GH = 0, where GH is the stabilizer 
subgroup of the symplectic group, 0 must be the isotropy subgroup of 
the unitary group. Since Ai^0) is diffeomorphic to Sp(^) /G i / , which is 
in turn diffeomorphic to °Ï/I0 - °k D Sp(2^)f% C\ GH, the corre­
spondence A(H) — -* 7T(A) is the desired diffeomorphism (see Theorem 
2.3). Note that % is a closed smooth subgroup of Sp(E). 

To conclude that 77 is a locally trivial fibering, we show that it is a 
split submersion. The tangent space Tft/ consists of skew-hermitian op­
erators on y0', while Tj0 is the vector space of skew-symmetric oper­
ators on H. But the space of skew-hermitian operators splits canonically 
into symmetric and skew-symmetric parts, according to the well-known 
decomposition (in block form on H X H): 

\A il TO B ] e f A ol 
L - B A J L - B OJ LO A J 

In terms of the tangent map T77r, this splitting corresponds to 

Tf/y = Ker 7 > © Im 7>. 
The splitting obtains at every element of ^ , since left multiplication is 
a diffeomorphism on (%. That 77 is locally trivial now follows from the 
implicit function theorem. 

We come now to the principal result of this section. 

THEOREM 3.6. Suppose (E, co) is a Hilbertable symplectic structure. 
Then all of the following topological spaces are contractible: 

(i) A(E) (ii) G„ (iii) Sp(E) (iv) s/AE). 

PROOF, (i) This is a corollary of the last theorem, for, by a well-
known result of Kuiper [9], the unitary and orthogonal groups are con­
tractible spaces and we may apply Lemma 3.1 (Corollary 1). 
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(ii) From §2, GH is diffeomorphic to GL(H) X Q(H). Q(H) is linear 
and hence contractible. The linear group GL(H) is contractible, since H 
is a Hilbert space, and GL(H) is diffeomorphic to fy X SP, where SP is 
the contractible cone of positive operators. (This is simply the polar de­
composition theorem.) 

(iii) Since A(3^) is diffeomorphic to Sp(E)/G/f, by (i) and (ii) and 
Lemma 3.1 (Corollary 1), the assertion follows. 

(iv) Recall that £/#(E) denotes the totality of (strongly) non-degener­
ate alternating forms on E. From §1, orbits under pull-back by the gen­
eral linear group are diffeomorphic to the homogeneous space 
GL(E)/Sp(E). Hence, each orbit is contractible. However, it is easy to 
show that any two symplectic forms are isometric. Let Î2X and Q2 be 
symplectic forms associated with Darboux decompositions H1 X H1* 
and H2 x H2*. Let A : Hx —» H2 be an isomorphism. Then the iso­
morphism B = A X (A*)-1 : Hx X Hx* —» H2 X H2* is easily shown to 
be symplectic; i.e., B*Q2 = Q r 

REMARKS. The contractibility of the symplectic group is a sort of 
companion result to Kuiper's proof [9] of the contractibility of the uni­
tary group. The result has repercussions for the non-linear Banach sym­
plectic theory. For example, one can conclude that the tangent bundle 
of a symplectic Banach manifold M modeled on a Hilbertable space E 
is trivial, and in fact isomorphic to E X Sp(E) (see Husemoller [8]). 
Consequently, the cotangent bundle T*M is trivial, and, hence the prin­
cipal part of the natural two-form £2 on T*M is described by a smooth 
map fì : T*M -> ja^(E) (Lang [10], p. 108). 

It might be queried whether some form of Theorem 3.6 holds in the 
general Banach case. That this is far from the case is clear from a num­
ber of examples. The stabilizer group GL is not even connected, if L = 
lv X iq and E = L x L*9 since there is an elegant proof (Douady [3]), 
using die continuity of the Fredholm index, that the linear group of /p 

X lr is disconnected whenever p ¥= r. A variation of Douady's proof 
has been constructed by the author to show that the symplectic group 
Sp(/p X 1Q) is disconnected. If one allows weak symplectic forms, the 
symplectic group is not connected, even in Hilbert space. A proof can 
be constructed using Douady's method applied to the space H1 X L2, 
where L2 consists of square integrable functions on [0, 1], and H1 de­
notes the Sobolev space of absolutely continuous functions in L2. The 
space H1 X L2 arises as the phase space in some infinite dimensional 
Hamiltonian systems (Chernoff and Marsden [2]). 
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