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ON SOME PROBLEMS RELATED TO THE EXTENDED 
DOMAIN OF THE FOURIER TRANSFORM 

P. SZEPTYCKI* 

This note could have been written by N. Aronszajn (to whom the 
credit is due for the result in Theorem 1), and it is only proper that it 
should be dedicated to him. 

Our objective here is to prove that the extended domain of the Fourier 
transform as defined in [1], [2] is the largest solid F space of functions 
whose Fourier transforms (in the sense of distributions) are functions. To 
make this statement precise, we have to recall some facts from [1] and [2]. 

If (X, dx) is a <j-finite measure space then W(X) denotes the space of 
all measurable finite a.e. functions on X with the metric topology of 
convergence in measure on all subsets of X of finite measure. If (X, dx), 
(Y, dy) are two <7-finite measure spaces and Ke 9J?(X x F), then the 
integral transformation with the kernel K is a mapping from M(X) into 
3J?(F) defined by Kf(y) = §x K(x, y)f(x) dx. The proper domain of K is 
defined by 9K = {/ e Wl(X): $x\K(x9y)f(x)\ dx < oo a.e.}. K is non-
singular if there isfe &)K such tha t / > 0 a.e. 

The symbol c c will denote the continuous inclusion. 
If A is an F-space, A ac W(X) then K is A-semi-regular (^4-s.r.) if 1) 

A fi Q)K is dense in A, 2) the restriction K\Ari@K is continuous from 
A fi 0*(with the topology of A) into Wl(Y). If K is ,4-s.r. then K can 
be extended to a continuous linear transformation KA: A -* %R(Y) 
(which may no longer be an integral transformation). 

An F-space,4 c W(X) is solid provided fe A,g e Wl(X), \g(x) \ ^ \f(x)\ 
a.e. imply g e A. The class of solid F-subspaces of W(X) we denote by FL. 

The following result is quoted from [1]. 

PROPOSITION 1. If K is a nonsingular integral transformation, then there 
exists an FL-subspace ofW, denoted by @K, with the following properties: 

1) K is @K-s.r.; denote K = K@K, 
2) If A e FL and K is A-s.r. then A <^C@K and KA = K\A. 

Q)K is referred to as the extended domain of K. 
We turn now to the case of the Fourier transform; here X = Y = R1, 

m{X) = aW(Ri) = 3ß, K(X9 y) = g(x, y) = (2%-y2 e-™\ dx is the Lebesgue 
measure and the corresponding integral transform we denote by %. We 
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will consider only the one dimensional case, the results extend without 
essential changes to several dimensions and in suitable formulation 
to Borei measures (see [2]). 

It is obvious that Q)<% = ^ (R 1 ) ; the following proposition from [2] 
describes the extended domain §>%. 

PROPOSITION 2. % = { /G L ^ R 1 ) ; S-œtfè^l/fe)!)2 < °°} with natural 

norm. In particular Q)% is a Banach space. Also %($)<£) <== Lf0C(R1) and 
%\ % -+ LjUR1) fi ^ '(R1) is continuous. 

By " we denote the Fourier transform in ^'(R1) ( m the sense of 
Schwartz distributions), " : ̂ ' (R1) -> ^ '(R1) where ^ '(R1) is the space 
of tempered distributions on R1. 

The main result of this note is 

THEOREM 1. Let f e L\0C(Rl) f] ^ ' (R 1 ) ; then the following properties of 
fare equivalent. 

i) g G 9K, \g\ ^ l/l a.e. implies g G IjJR*), 
i i ) / e % . 

PROOF, ii) => i) is almost immediate. For fe@% = ^ (R 1 ) we have 
5 / = / and, by Proposition 2, this implies that for / G < $̂, 5 / = / G Z|OC. 
Since ^ 5 is solid, / G % , |g| ^ | / | imply g G % and g G LJUR1) D ^'(R1) 
c=Lf0C n ^ ( R 1 ) . 

i) => ii). For any/satisfying i) define Af = {g G $R: |g | ^ a | / | a.e. for 
some a: > 0} and for g eAf 

\\g\\f = i m > > 0; |g| £ a | / | a . e . } . 

It is clear that ^ is a solid vector space of functions and that || 11/ is 
a norm on Af. It is also easy to verify that Af with the norm || \\f is a 
Banach space. 

We also have Af e 9R. 
i) implies that ~ : Af -+ L\oc\ let us show now that this mapping is 

continuous. If {gn} a Af, gn -+ g in Af, gn -> h in Lfoc, then for every 
ç G Cô CR1) we have (gn, <p) -• (A, p) and (gw, 0 = (gw, <j>) ->„_„ (g, <p) = 
(g, <p) by the dominated convergence theorem. It follows that g = h which 
establishes the claim by virtue of the closed graph theorem. 

Denote by A'f the closure of L^R1) fl Af in Af. On L^R1) 0 Af~ 
coincides with Ç and the continuity of " implies that $ is ^4/-s.r. By 
Proposition 1, which is applicable since A'f is solid, we get A'f c ^ 5 . 

If {ÖW}̂ L_OO is any sequence such that an -> 0 as |«| -> oo, ^ is the 
characteristic function of(k, k + 1], then it is easily checked t h a t / ' = 
2 <*k%k f belongs to A'f. By Proposition 2 we can write 

Sf, U?-EH>tt, l/l) <-. 
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the latter being true for every sequence {an} with an -> 0 as \n\ -> OD. This 
implies that & ( B + 1 | / | ) 2 < oo, i.e. / G % . 

REMARK. The construction of spaces Af goes back to Orlicz (oral 
communication by Iwo Labuda). 

It is of interest to replace the space L\oc in i) by F-subspaces V ac Lf^R1) 
and consider the following version of condition i) of Theorem 1 : 

ii ')Ifge3R, |g| ^ l / l a.e. then g e K 
We denote by V$ the (vector) space of all functions/satisfying ii'). 

THEOREM 2. Let Vbean F-space, V czcL^0C(R}) Ç] ^'(R1), with translation 
invariant metric \\ \\v (which may be assumed to be bounded). Then: 

a) | | / | |$ sup = {Hglly: \g\ ^ 1/1} is a translation invariant metric on V%, 
b) V% with the metric || ||$- is an FL space, 

d) In the case when V is a Banach space with the norm || ||y, Il II y *s a 

norm and V% with the norm || ||$ is a Banach space 

PROOF, a) The only item which is not obvious is the triangle inequal­
ity. It is clear that | | / + g||$ <; || | / | + \g\ ||$ and it suffices to consider 
the case when / g ^ 0. If | h | ^ / + g then h = h' + h" where 
*' = ( / + g)'lfK h" = ( / + gyigh, if / + g > 0, h'= h" = 0 for 
/ + g = 0, and |A'| g / |A"| £ g. It follows that \\h\\v ^ \\h'\\v + \\h"\\v 

S Il/Il? + 11*11*. 
b) It is clear that the space V% is solid; to verify that is complete let 

{/n}JS=i c ^ b e a Cauchy sequence. By choosing a subsequence we may 
assume that S ^ ||/w+i — /„||p < oo; we can also assume that / = 0. 
Define / = £ |/,+i — / J and let iR be the characteristic function of 
[-R, JR]. By the definition of the metric || ||$ the series S ( Z Ä I / I + I ~ /«IT 
is convergent in V, and since V ac Lfoc, it is also convergent in 9JÎ. This 
implies that the series 

00 /*/? 

E 1 |/»+i(*) - fn(x)\ cos jcyrfy 
1 J -# 

is convergent for almost every v in ( — 7c/2R, TC/2R), and t h u s / G L/^R1). 
(This part of the argument is taken from (1, Th. 9.3]). If g G SR, |g| g / 
a.e., then the functions gn(x) = g(x)\fn+1(x) - fn(x)\f{x)-1 when/(x) # 0, 
gn(x) = 0 if/(x) = 0, satisfy |g„| <;\fn+l-fn\ and hence Eï°ll&illr < °°; 
in particular £ï°gw is convergent in Fand thus in Lf^R1). Obviously 
Hên — g> H \gn\ — \gU both series convergent pointwise a.e. If follows 
that for every (p e Q°(Ri), (g, <p) = £(gM, <p) = £(gw, <p) = (£gw, <p) and 
g = £î°gw e K (again we have used the hypothesis that V c , L|0C(R1) f| 
^ '(R1) and the dominated convergence theorem). We conclude that 
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fe V%\ if f = Z(fn+i -fn) then \f\ ^ / a n d fe V%. It is now a routine 
matter to verify that/„ -> fin V%asn -> oo. 

c) follows from Theorem 1. 
d) The only point to check is that | | / | |$ < oo for every / e V%. To this 

effect consider again the space Af as defined in the proof of Theorem 1. 
ii') implies that " : Af -> V and by closed graph theorem the mapping is 
continuous (here we use the hypothesis that V acL\QC(Rl) f] ^'(R1)). 
The set {g: \g\ ^ | / | a.e.} coincides with the unit ball inAf and by the 
continuity of " , \\g\\v is bounded on this set. 

K. Bichteller conjectured that in the case when V = Z/^R1), 2 ^ p ^ 
oo, K5 = LP\R}) where (1//?) + (l/pf) = 1. 

For q = 2 the conjecture is obviously true; it is also true for q = oo. 
For the following argument we are indebted to W. F. Donoghue Jr. 

Suppose tha t /eLg?; without loss of generality we can assume that 
/ è 0. Let <p e ^(R1) be such that cp ^ 0, 0 ^ 0, p ^ 0 and <p(- x) = 
<p(x). Then with e > 0 we can write 

j^flexX/ï*) dx = - i J R I ^ ( J / £ ) / ( J ) ^ ^ \ \ f t \ j ^ / e ) ^ 

= (2?r)V2^(0)|/||„. 

Letting £->0we conclude, using Fatou's lemma, that J R i / ^ (27r1/2||/ IL 
as announced. 

However, for 2 < # < oo the problem remains open. 
The problems of the same nature can be raised for other integral trans­

formations, e.g., those connected with Fourier series. In this case X = 
[0, 2%\ Y = Z, K(x, y) = (1/2TT) en*y and 

(Kf)(y) = ^§2* fWe~ixy dx,y = 0,±l,±29 

or 

X = Z, Y = [0, 2;r], *(JC, J/) = **> 

and 

(*/)O0 = H f(x)eixy. 

In the first case Q)K = BK = Ll(0, 2%), and in the second @K = lx(Z), 
®K = /2(Z). 

For a subspace Kof W{Y) one can define VK= {fe 3R(Z) ; Kfe V} 
and try to characterize VK directly. As in the case of % the problem seems 
to be open except for obvious extreme cases. 
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