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A LIPSCHITZ INVARIANT OF NORMED LINEAR SPACES
RELATED TO THE ENTROPY NUMBERS!

C. BESSAGA

ABSTRACT. An invariant of sigma-compact metric spaces under
Lipschitz homeomorphisms is defined and used to construct an
example of a separable infinite-dimensional normed linear space
which is not Lipschitz homeomorphic to its subspace of codi-
mension one.

0. A. Pelczynski [10] and independently A. N. Kolmogorov [6] defined
linear-topological invariants of topological vector spaces based on es-
timates of the rank of growth of cardinalities N.(K) of minimal e-nets of
compact subsets K of the space. The Kolmogorov’s invariant is called the
approximative dimension. The author [2, p. 282] has shown that the ap-
proximative dimension is in fact an invariant under uniform homeomorph-
isms of topological vector spaces and extends to an invariant of uniform
spaces. The approximative dimension of a locally convex space is trivial,
unless the space is of Schwartz type (cf. [4]). Therefore, in particular, it
can not be used for distinguishing infinite-dimensional normed linear
spaces.

Here we define an invariant of normed linear spaces under Lipschitz
homeomorphisms which is based on a similar idea. (A Lipschitz homeo-
morphism between metric spaces is a homeomorphism 4 such that both
h and A1 satisfy the Lipschitz condition.) Instead of N,(K) we use a more
convenient measure of compactness, the entropy number ¢,(K) which is
the infimum of positive numbers ¢ such that an e-net for K of cardinality
27 exists, introduced by A. Pietsch [9] in connection with the study of
operator ideals. Our construction also extends some ideas of Rolewicz
[11] and Dubinsky [5] and provides an example of an infinite-dimensional
normed linear space which is not Lipschitz homeomorphic to its closed
linear subspace of codimension one. (Examples of this kind, but related
to linear homeomorphisms can be found in [5] and [11]).

1. Let K be a compact subset of a metric space. The nth entropy number
e,(K)1is the infimum of the positive ¢’s such that there exists an e-net for
K consisting of 27 points of K. Let e(K) be the class of all sequences (a,)
of positive numbers such that lim a,/e,(K) = 0. For any sigma-compact
metric space X we let

'The results of this paper were presented at the International Conference on Func-
tional Analysis in Leipzig (September 1977).
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(X) = ) Qe(A,»

with the intersection taken over all countable compact covers (4,) for X.

LEMMA. If L and K are compacta such that either L = K or L is an image
of K under a Lipschitz map, then e(L) < e(K).

Proor. If L = K, we easily check that e,(L) < 2¢,(K)forn = 1,2, ....
If L = g(K)., where g satisfies Lipschitz condition with constant C, then
obviously e,(L) = Ce,(K)forn = 1,2, .... Thus in both cases e(L) = e(K).

The following is an immediate consequence of the Lemma.

PROPOSITION 1. If X and Y are sigma-compact metric spaces and either X
is a closed subspace of Y or X is an image of Y under a Lipschitz map, then
p(X) < 9(Y). In particular, if X and Y are Lipschitz homeomorphic, then
n(X) = n(Y).

Now we are going to prove our main result:

PROPOSITION 2. If X is a normed linear space generated by a compact
convex set K, i.e., X = | )y nk, then n(X) = e(K).

PrROOF. Since ||nx — ny| = n|lx — y| for x, y e x, we have e(nK) =
e(K)forn = 1,2, .... Hence y(X) < | J;2; e(nK) = e(K).

To obtain the other inclusion, assume X = ()2, A4,, where all 4,
are compact. Regarding K as a (complete) space and applying the Baire
theorem we conclude that one of the sets K () 4,, say K (] 4,,, contains
a relative open ball B(xy, ¢) (] K centred at a point x; € K of radius ¢. The
translate K — x; is compact, and hence bounded. Therefore there exists
a ¢ > Osuch that §(K — x;) = B(0, ¢). Since K is convex, we conclude:
Xo + 0(K — xo) < B(xy, ) (1 K c A,,, and since the norm metric is trans-
lation-invariant and homogeneous, we get

e(K) = e(xg + 0(K — xq)) < e(4,,).
Hence | J,e(4,) = e(K) for each compact cover (4,) of X. Therefore 7(X)
= 1 Uz e(4,) > e(X).

COROLLARY. There exists an infinite-dimensional normed linear space X
which is not Lipschitz homeomorphic to its closed linear subspace of codi-
mension one.

PROOF. Let X be the space of real sequences x = (x,),—, for which
sup,=o |2%'x,| < oo, equipped with the norm

1) x|l = sup [ X,
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and let Xy = {x € X: xo = 0}. Obviously X is generated by the compact
convex set

A={xeX:|x,|] £2%forn=0,1,2,..}

and X is generated by 4y = 4 ) X,.

Given a k= 1, let Y, = {xe X: x, =0 for i = k}, ¢ = 1/2%. Let
V1, ..., Vi, be the relative closed balls (=cubes) of radius ¢ in 4y | ¥,
which constitute the cubical division of 4y n Y,, i.e., their interiors are
pair-wise disjoint and ( J;¥; = 4y (| ¥,. We compute

N, = (22h/221)(22k/222) (zzk/zzk) — (22k)k/2)<21+-~+2k)

— 2k2"/22"+1*2 = Q(k—22+2,

Since for each j = k, the jth coordinate of any point of A4, has absolute
value £ 2%, we conclude that for every ¢ > ¢, the centers of the balls
V1, -.., Py, constitute an e-net for 4y. Hence

e-pamiado) = 277

Now suppose that {z;, ..., z,} = 4 (N = 2% 22+2) is an e-net for A.
Then the closed cubes W, = {xe X:x—z,<e} N Y,(n=1,2, ..., N)
cover the set A (| Y,. Therefore the sum of their k-dimensional volumes is
greater than or equal to the volume of 4 ) Y,, i.e.,

202242k > (2272 (2-272) ... (2-2727)

or
2 k—2)2k42 ok b 2—(20+~--+2k—1),
whence
¢ = 2@-D/kp-2*
This gives
e-nyorio(A) = 22Nk 272,
Hence

lim sup e,(A)fe,(4p) Z lim 23D/ = oo,
n — k

Therefore p(X) = e(A) # e(4g) = 7(Xp); X and X, are not Lipschitz
homeomorphic.
REMARK. It can easily be shown that there exists a family of cardinality

continuum of compact cubes in the space /,, which are differentiated by
the invariant e(-). Hence the normed linear spaces generated by those
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cubes (in the /,, norm) constitute a family of cardinality continuum of
separable normed linear spaces which are distinct with respect to Lipschitz
homeomorphisms. However all these spaces are homeomorphic to each
other (see [2, p. 274]).

2. Open problems. The questions below concern normed linear spaces
generated by compact convex sets.

A. Give an example of a pair of spaces X, Y such that »(X) = »(Y) but
X and Y are not Lipschitz homeomorphic.

B. Assume that »(X) = 5(Y). Do there exist compact convex sets K, L
generating X and Y, respectively, such that K is Lipschitz homeomorphic
toL?

C. Assume that X and Y are Lipschitz homeomorphic. Does this imply
that X and Y are linearly homeomorphic?

In connection with the last problem one should try to find whether the
classical Rademacher theorem on almost everywhere differentiability
of Lipschitz maps extends to sigma-compact normed linear spaces. Let
us mention that some extensions of the Rademacher theorem to infinite
dimensions, but assuming the completeness of the spaces, have been
obtained by Mankiewicz [7], [8] and Aronszajn [1].
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