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A LIPSCHITZ INVARIANT OF NORMED LINEAR SPACES 
RELATED TO THE ENTROPY NUMBERS1 

C. BESSAGA 

ABSTRACT. An invariant of sigma-compact metric spaces under 
Lipschitz homeomorphisms is defined and used to construct an 
example of a separable infinite-dimensional normed linear space 
which is not Lipschitz homeomorphic to its subspace of codi-
mension one. 

0. A. Pelczynski [10] and independently A. N. Kolmogorov [6] defined 
linear-topological invariants of topological vector spaces based on es­
timates of the rank of growth of cardinalities Ne(K) of minimal £-nets of 
compact subsets K of the space. The Kolmogorov's invariant is called the 
approximative dimension. The author [2, p. 282] has shown that the ap­
proximative dimension is in fact an invariant under uniform homeomorph­
isms of topological vector spaces and extends to an invariant of uniform 
spaces. The approximative dimension of a locally convex space is trivial, 
unless the space is of Schwartz type (cf. [4]). Therefore, in particular, it 
can not be used for distinguishing infinite-dimensional normed linear 
spaces. 

Here we define an invariant of normed linear spaces under Lipschitz 
homeomorphisms which is based on a similar idea. (A Lipschitz homeo-
morphism between metric spaces is a homeomorphism h such that both 
h and h~~l satisfy the Lipschitz condition.) Instead of N£(K) we use a more 
convenient measure of compactness, the entropy number en{K) which is 
the infimum of positive numbers e such that an £-net for K of cardinality 
2n exists, introduced by A. Pietsch [9] in connection with the study of 
operator ideals. Our construction also extends some ideas of Rolewicz 
[11] and Dubinsky [5] and provides an example of an infinite-dimensional 
normed linear space which is not Lipschitz homeomorphic to its closed 
linear subspace of codimension one. (Examples of this kind, but related 
to linear homeomorphisms can be found in [5] and [11]). 

1. Let K be a compact subset of a metric space. The nth entropy number 
en(K) is the infimum of the positive e's such that there exists an £-net for 
K consisting of 2n points of K. Let e(K) be the class of all sequences (an) 
of positive numbers such that lim aJen(K) = 0. For any sigma-compact 
metric space X we let 

xThe results of this paper were presented at the International Conference on Func­
tional Analysis in Leipzig (September 1977). 
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7){x) = n U <An) 
n=l 

with the intersection taken over all countable compact covers (An) for X. 

LEMMA. IfL and K are compacta such that either L cz K or L is an image 
ofK under a Lipschitz map, then e(L) cz e(K). 

PROOF. If L CZ K, we easily check that en(L) ^ 2en(K) for n = 1, 2, .... 
If L = g(K), where g satisfies Lipschitz condition with constant C, then 
obviously en(L) ^ Cen(K) forn = 1,2, .... Thus in both cases e(L) c e(K). 

The following is an immediate consequence of the Lemma. 

PROPOSITION 1. If X and Y are sigma-compact metric spaces and either X 
is a closed subspace of Y or X is an image of Y under a Lipschitz map, then 
7](X) a TJ(Y). In particular, if X and Y are Lipschitz homeomorphic, then 
rj{X) = V(Y). 

Now we are going to prove our main result: 

PROPOSITION 2. If X is a normed linear space generated by a compact 
convex set K, i.e., X = {J™=1 nk, then TJ(X) = e(K). 

PROOF. Since \\nx - ny\\ = n\\x — y\\ for x, y e x, we have e(nK) = 
e(K) for n = 1,2,.... Hence V(X) cz \J?=1 e(nK) = e(K). 

To obtain the other inclusion, assume X = (J^=i An, where all An 

are compact. Regarding K as a (complete) space and applying the Baire 
theorem we conclude that one of the sets K fi An, say K f| AnQ, contains 
a relative open ball B(x0, e) f] K centred at a point x0 e K of radius £. The 
translate K — x0 is compact, and hence bounded. Therefore there exists 
a 5 > Osuch that ô(K — xQ) a B(0, e). Since K is convex, we conclude: 
XQ + d(K — XQ) CZ B(X0, e) f] K cz Ano, and since the norm metric is trans­
lation-invariant and homogeneous, we get 

e(K) = e(x0 + Ö(K - x0)) cz e(Am). 

Hence \Jne(An) ZD e(K) for each compact cover (An) of X. Therefore 7](X) 
= n [)?=ie(AH)z>e(X). 

COROLLARY. There exists an infinite-dimensional normed linear space X 
which is not Lipschitz homeomorphic to its closed linear subspace of codi-
mension one. 

PROOF. Let X be the space of real sequences x = (x„)n=0 for which 
supw:>0122nxn | < oo, equipped with the norm 

(1) ||x|| = s u p | x j , 
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and let X0 = {x e X: x0 = 0}. Obviously X is generated by the compact 
convex set 

A = {xeX:\xn\ è 2-2nfovn = 0,1,2,.. .} 

and XQ is generated by A0 = A f] X0. 
Given a k ^ 1, let Yk = {x e X: xt• = 0 for i ^ k}, ek = 1/22*. Let 

Vi9 ..., V^Ä be the relative closed balls ( = cubes) of radius ek in AQ f] Yk 

which constitute the cubical division of A0 n Y*, i.e., their interiors are 
pair-wise disjoint and {JjVj = A0 f] Yk. We compute 

Nk = (22V221)(22V222) ... (22722Ä) = (22*) */2) (2l+"+2*> 

_ 2k2k/22k+1~2 — 2<^k~Z)2k+2 

Since for each / ^ /;, the yth coordinate of any point of A0 has absolute 
value ^ 2~2*, we conclude that for every e > ek the centers of the balls 
Vu •••> ^Nk constitute an e-net for AQ. Hence 

^-2)2*+20*o) ^ 2-2*. 

Now suppose that {zu ..., zn} a A (N = 2(*~2)2*+2) is an £-net for A. 
Then the closed cubes Wn = {x e X: x - zn ^ e} (] Yk (n = Ì, 2, ..., N) 
cover the set y4 f] Yk. Therefore the sum of their ^-dimensional volumes is 
greater than or equal to the volume of A f] Yk9 i.e., 

2(*-2)2*+2(2e)* ^ (2-2-20)(2-2-21) ..-. (2-2-2*-1) 

or 

2(^-2)2^+2 £k > 2-(20+-+2*-1) 

whence 

e ^ 2(2*~1)/Ä2-2\ 

This gives 

ew2n£A) è 2<2*-»'*-2-2\ 

Hence 

lim sup e^A)/e^A0) ^ lim 2<*-1>/* = oo. 

Therefore 9j/(X) = e(^) ^ K^o) = y(Xo)'> X a^d Z0 are not Lipschitz 
homeomorphic. 

REMARK. It can easily be shown that there exists a family of cardinality 
continuum of compact cubes in the space /^ which are differentiated by 
the invariant e(-). Hence the normed linear spaces generated by those 
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cubes (in the /^ norm) constitute a family of cardinality continuum of 
separable normed linear spaces which are distinct with respect to Lipschitz 
homeomorphisms. However all these spaces are homeomorphic to each 
other (see [2, p. 274]). 

2. Open problems. The questions below concern normed linear spaces 
generated by compact convex sets. 

A. Give an example of a pair of spaces X, F such that 7]{X) = 7]{Y) but 
X and Y are not Lipschitz homeomorphic. 

B. Assume that TJ(X) = rj(Y). Do there exist compact convex sets K9 L 
generating X and Y, respectively, such that K is Lipschitz homeomorphic 
toL ? 

C. Assume that X and Y are Lipschitz homeomorphic. Does this imply 
that jfand Fare linearly homeomorphic? 

In connection with the last problem one should try to find whether the 
classical Rademacher theorem on almost everywhere differentiability 
of Lipschitz maps extends to sigma-compact normed linear spaces. Let 
us mention that some extensions of the Rademacher theorem to infinite 
dimensions, but assuming the completeness of the spaces, have been 
obtained by Mankiewicz [7], [8] and Aronszajn [1]. 
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