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A HOMOTOPY THEORETIC PROOF OF THE 
ADDITIVITY OF THE TRACE 

M. BREUER 

ABSTRACT. Murray and von Neumann gave in [10] an explicit 
definition of the trace function of a finite von Neumann algebra Jt 
in terms of a Riemann-Stieltjes integral. For this definition one only 
needs the spectral theorem for hermitian elements of Jt and the 
(relative) dimension function on the projections of Jt. Although 
such a definition of the trace is very natural, the proof of the 
additivity of the trace is surprisingly long and unnatural. In the 
present paper results on the homotopy theory of unitary group 
% of Jt are used to obtain a new proof of the additivity. 

The periodicity theorem of AT-theory relative to Jt which is 
proved in [5] without using a trace functioncan be used together with 
some standard techniques of homotopy theory to determine the 
stable homotopy of &. We need only the first stable homotopy 
group XiÇaJ) of 2( for the additivity proof. This group is iso
morphic to the index group I{Jt) which is also the range of the 
trace function y when restricted to the hermitian elements of Jt. In 
the factorial case Araki- B. Smith- L. Smith [1] computed %•$$£) 
which turns out to be isomorphic to TL^J). We cannot use the 
method of [1] because it depends on the additivity of the trace func
tion. 

For a positive S e Jt we consider an appropriate sequence (Sk) 
approximating S in the norm such that there is a sequence (nk) of 
integers satisfying exp(2 % inkSk) = I. Then zk(t) = exp(27üinktS), 
0 ^ / ^ 1, h = 1, 2 , . . . , is a sequence of loops in 2( such that 

<p(S) = lim -*- [TkU nk 

where [ ]TO denotes the stable homotopy class. Elementary homo
topy properties of loops in % and simple density arguments toge
ther with the norm continuity of <p then yield the additivity of (p. 
The norm continuity of <p is not proved in this paper, because simple 
proofs of this property of <p can be found in the literature e.g., 
Murray- von Neumann, loc.cit. To avoid topologizing the index 
group and other rather technical difficulties we assumed in the 
second part of this paper that Jt is a factor of type IIj. Then 
I(Jt) = R and the usual topology of R can be taken. 

An interesting question seems to be whether the proof of the 
periodicity theorem of [5] generalizes to A PF*-algebras. If so, the 
method of proving the existence of a trace used in this paper may 
also yield an existence proof of the trace in finite A J^*-algebra Jt 
with values in the index group l(Jt). 
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186 M. BREUER 

1. Review of A^-theory. Let ^ be a properly infinite and semifinite 
von Neumann algebra of operators of the complex Hilbert space H. The 
lattice of all projections of JV is denoted by P(JV), the sublattice of finite 
projections by Pf(Jf). For E9 F in P(Jf) let 

J(E9 F) = {Uejr\E= U*U9 F = UU*}9 

Equip J(E9 F) with the norm topology. 
Let £ be a vector bundle with compact base space X and projection p : 

£ -+ X. Let %x = p~l(x) for xeX. Suppose that the following data are 
given. 

(I) Each £x is a complex Hilbert space. 
(II) There is an open cover {Xt}if=j of X and a family {Ej}ÏŒl in P{J/~) 

and an atlas {<p{, X,}lŒl off such that 

ip-p-\Xt) - X{ x EiiHliel. 

(III) Denote by 99, * the restriction of (p{ to £x for each iel and x e l ; . 
For x e Xt f] Xj define the transition operator gij{x): H -> H by 

&•/*) = 0V,* ° PZ* ° Er 

Then x -* g^(x) is a continuous map of X{ [\ Xj into /(is,-, Ej). 
We call a family of triples {<pi9 Xi9 Ei}^ satisfying these conditions an 

^T-atlas of £. It is now clear how to define the structure of an J^-vector 
bundle. 

Suppose that {<pi9 Xi9 E{}iGl is an ^-at las of £. If all Et- are finite (resp. 
infinite), we say that £ has finite dimensional (resp. infinite dimensional) 
fibre relative to J{, It is clear how to define isomorphisms of ^T-vector 
bundles (see [5]). Let Vect^(Z) denote the set of all isomorphism classes 
of ^-vector bundles with finite fibre dimension and base space X. Given 
two >"-vector bundles £ and 7] over X, one can always find ^T-atlases of 
the form {Xi9 <pi9 £,•},•<=/ and {Xi9 <ßi9 F,-},-e/ where Et is orthogonal to Ft 

for each / G /. Hence {Xi9 <p{ © (pi9 Et 4- Ff-}f-e/ is an yT-atlas of £ © 77 
defining the structure of an Jf-vector bundle on £ © yj. If the fibres of £, rj 
are finite dimensional, so are the ones of £ © 97. Thus © defines the struc
ture of a commutative monoid on Vect^-pQ. The universal group of this 
monoid is denoted by K^(X). The canonical image of £ e Vect^pO in 
K^(T) is denoted by [£]^. For E e Pf(A~) let 6E,X = X x E(H) be the 
trivial ./T-vector bundle with fibre E(H). If X is a one-point space, say 
{x0}, then Kjr({x0}) is denoted by I(Jr) and called the w^ex group oi Jf. 
The canonical map 

Dim: PfÇV) ^ I(JT) 

defined by 
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Dim E: -•= [0Et {XQ}]^ 

is a formal dimension function. 
Composing Dim with an appropriate embedding of l(Jf) into the centre 

of Jf one obtains von Neumann's relative dimension function (with values 
in the positive elements of the centre). In what follows the formal dimen
sion function is sufficient. Observe that I(J^) = R if and only if Jf is a 
factor of type II. 

In the following let X be locally compact and X+ = X U {4-} be its 
one-point compactification. If a is a complex vector bundle over X+ with 
finite dimensional fibre in the usual sense, and if £ is an ^-vector bundle 
with finite dimensional fibre, then their tensor product a ® £ is an ^V-
vector bundle, whose fibre is again finite dimensional (relative to Jf). This 
gives rise to a pairing 

K{X+) x KJAX+) - KA*+) 

which gives Kr{%+) the structure of a K(X+)-moAxAz. Using this structure 
one can define an external product 

K(X+) x KA(Y+) - KAX+ x Y+\ 

where X, Y are locally compact spaces. As in ^-theory there is a direct 
sum decomposition 

KAX+) = KJf) e KJX+) 

of the abelian group KV{X+). This defines the reduced functor K^. Define 

Kjr(X) := Kjr{X+\ X locally compact. 

Kjr is a functor of the category of locally compact spaces and proper con
tinuous maps. It is easy to see that Kr(X) is a submodule of the K(X+)-
module KAX+). Using standard techniques of ^-theory (see Atiyah [2]) 
it can be shown that the external product induces a pairing 

K(X) x KAY) - KAX x Y), 

where X, Y are again locally compact. 
Let fn be the complex line bundle over S2 = (R2)+ arising from the 

clutching function zn : S1 -> S1. Let 6 G K(S2) be the Bott class which is 
defined by 

6 - Ini - trol
lt is well-known (and quite obvious) that b is contained in the subgroup 
A:(R2) of K(S2). For X locally compact define 

ß: KAX) - KAR2 x X) 
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by j3(l£Lr) := b • K]^ (external product). 

THEOREM 1. For every locally compact space X the map ß is an isomor
phism of the abelian group KA(X) onto K^(R2 x X). 

If Jf is the algebra of all bounded operators of H, then KV(X) = K(X). 
In that case theorem 1 reduces to the periodicity theorem of 7^-theory. 
The general case has been proved in [5]. 

2. The stable homotopy of the unitary group of a finite von Neumann alge
bra. Let n be the two-sided ideal of Jf generated by Pf(Jf). The elements 
of n are called compact. Call r e i " Fredholm if T is regular modulo n. 
3FJf denotes the monoid of Fredholm elements of Jf equipped with the 
norm topology. Let X be locally compact. [X+, 3FJf\ denotes the monoid 
of homotopy classes of continuous maps of X+ into SFJf\ and [X9 tFJf\c 

be the submonoid of all proper maps of X into <FJf mapping + onto the 
unit element / of Jf. As in Atiyah [2, Appendix] or Janich [9] one can 
associate to each [/] G [X+, £FJ/*\ an element index / e K^(X+). 

THEOREM 2. For each locally compact space X the map 

index: [X+, &JT\ -> K^X+) 

is an isomorphism. Under this isomorphism [X, ZFJf\c is mapped onto KV(X) 
If Jf is the algebra <£(H) of all bounded operators of the complex infinite 
dimensional Hilbert space H, theorem 2 reduces to a well-known theorem 
of Atiyah and Jänich (loc. cit.). The general case has been proved in [5]. 

THEOREM 3. The homotopy groups of ^Ar are 

|7(*/T) for n even 

{ 0 for n odd. 

SKETCH OF PROOF. Taking X = Rw, theorem 1 and 2 imply homotopy 
periodicity 

In [5] it has been shown that 

It remains to determine the first homotopy group of <F J/~. For a e 
I{J\r) let 

Gr(a) = {EePjÇV) | Dim E = a}. 

Equip Gr(a) with the norm topology (note that Gr(a) is empty or a con
nected component of Pf{jV)). In [5] it has been shown that Gr(a) is a 
classifying space for ^-vector bundles over compact spaces with fibre 
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dimension a. Moreover Gr(a) is simply connected (See [4]). Hence every 
yT-vector bundle over S1 is trivial. This implies that 3FJf is simply con
nected. 

For any C*-algebra A let <gA denote the group of regular elements of A 
equipped with the norm topology, and &QA be the connected component 
of &A containing the unit element of A, 

Let &{I 4- n) be the subgroup of <gjf consisting of the elements of the 
form I + T where T is compact and 1 not in the spectrum of T. The 
canonical map of Jf onto jV/n induces a map 

which is a homotopy equivalence. In addition K induces a surjective group 
homomorphism 

which is a fibration with typical fibre <g(I 4- n). Using the generalized 
Kuiper theorem for properly infinite von Neumann algebras (see [4] or [7]) 
the exact homotopy sequence of this fibration yields 

THEOREM 4. The homotopy groups of <&{J 4- n) are 

(0 for n even 
nn9(I + n) = \ 

(/(e/T) for n odd. 

Since Jf ç ^(H) is properly infinite and semifinite, there are Hilbert 
spaces L, I2 and a finite von Neumann algebra Ji £ «£?(£) such that 

H — L ® /2 (Hilbert space tensor product) 

and 

JT = Jt ® if(/2) (*F*-tensor product) 

We also can assume that /2 is separable. Let (ew)»=i,2,... t>e a n increasing 
sequence of projections in i?(/2) such that Dim(eK) = 2M and the supremum 
of this sequence is 72, the unit element of S£(/2). Denote the unit element 
of JÏ by 7^. Let £w: ••= 7^ ® en and .Jfw ••= EnJ/*En. Observe that there 
are canonical isomorphisms Jin = M ® j£?(C2M), n = 1, 2, ..., in par
ticular . # ! s ^#. Since £„ is finite, one has ^ w ç n. Embed <gJtn in 
«?(7 4- n) by 

cH(T)= T+(I-En)9Te\ 

Obviously cn <gJtn is contained in cn+i&Jtn+\. Equip 

— lim cM 

with the inductive limit topology. 
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THEOREM 5. ^Ji^ is homotopy equivalent to <g(I + n). Hence 

(0 for n even 

\1(M) for n odd 

Observe that Jt and Jf have the same index group. If Jf is the full operator 
algebra J?(H), then n is the two-sided ideal of compact operators in the 
usual sense. In that case theorem 5 reduces to a result of Breuer-Cordes 
[6] and Palais [11]. The proofs of [6] and [11] do not translate verbally, 
because in the general case (Jj£=i Jim is not dense in n. 

PROOF OF THEOREM 5. More exactly we show that the inclusion map 
c : tfJï^ -> &(I 4- n) is a homotopy equivalence. Since the inductive limit 
topology is finer than the norm topology, c is continuous. To show that c 
induces a surjective map %n{^Jl^) -> izn(^(I + n)) for each n it suffices 
to show that each continuous map / of a compact space X into <g{I + n) 
is homotopic to a map of X into ^{Jt^. Given such a map / there is a 
sequence (Fw)m=lf2|... in Pf(JT) satisfying 

Fm g Fm+h supFw = /, Dim Fm = Dim Em for m = 1,2,... 

and 

Hm || f(x) -f(x)FJ = 0, lim ||/(x) - Fmf(x)\\ = 0 

uniformly on X. Then there is a unitary element U of Jf such that 
U*EmU = Fm for all m. Since the unitary group of Jf is connected, there 
is a continuous path Ut, 1 ^ t ^ 1, in the unitary group of Jf such 
that Ux = U and U0 = I. Define / = UffUt9 0 ^ t ^ 1. Then / satis
fies/^) c &(I+ n)and 

lim ||/i(x) -Mx)EJ = 0, lim \\fix) - Emf{x)\\ = 0 

uniformly on X. For m sufficiently large the segment 

fl+t(x) = (1 - 0 / i W + tEmfx{x)Em9 i e l , 0 ^ ^ 1 

lies completely in <g(I + n). Hence / , 0 ^ / ^ 2, is a homotopy in 
&(I + n) connecting/ = / 0 with the map/ 2 of X into ^( . /O.—To show 
that c induces an injective map %n(^Ji^) -> %n(^(l 4- n)) for all n let / 
g be two continuous maps of X into ^Ji^. We have to show that i f / 
g are homotopic within <g(I -h n) they are homotopic within ^Jl^. Let 
Y = X x [0, 1] and h: Y -+ &(I + n) be such that h(x, 0) = f(x), h(x9 1) = 
g(x) for all x e X. Since Z is compact and ^Jl^ is a strict inductive limit, 
there is an n such t h a t / g map Xinto c„&(J/„). Choose a sequence(Gk) 
in P/(yT) satisfying 

Gi = £„, Dim G* = Dim Enk, Gm ^ Gm+1, sup G* = / 

file:////fix
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and 

limllAOO - h(y)Gk\\ = 0, lim||A(jO - Gkh{y)\\ = 0 

uniformly on Y. Let V be a unitary element of the reduced algebra 
(/ - En)j^{I - En) such that V\Enk - EH)V = Gk-Gx. Then W = V + En 

is unitary in Jf such that W*En W — En, and consequently W*f{x) W = 
f(x), W*g(x)W = g(x) for all x e X. Define 

£ (» := ^*/j( y) W for all j e 7 , 

Then h is still a homotopy between / and g. It follows from the con
struction of h that 

\\m\\h(y) - h(y)EJ = 0, limllftOO - Emh(y)\\ = 0 

uniformly on 7. Choosing m sufficiently large h(y) •= Emh(y)Em is a 
homotopy between/and g within cm&(J/m) <= ^{J/^). 

Let 2( be the group/unitary elements of.//; %n be the group of unitary 
elements in c^Ji^ Let U(n) be the group of unitary (n, /7)-matrices. Then 
there is a canonical isomorphism 

94 = » ® £/(2»). 

The inclusion cn&Jtn ^ cn+\^Jfn+i induces an inclusion VLn Ç 2(w+i which 
is compatible with the usual inclusion U(m) ç £/(ra + A) via the above 
tensor product decomposition taking m = k = 2n). The polar decomposi
tion lemma implies that the subgroup 

?L = lim «B 

equipped with the inductive limit topology is homotopy equivalent to 
yjln- Hence we have 

THEOREM 6. The homotopy groups o/SJ«, are 

{ 0 for n even 

ff„ou H 
( I(J/) for n odd 

In the following we identify the unitary group 5( of M with the subgroup 
%i of 9L, omitting the map c. I f / is a map of some space into 2(, then 
[/] resp. [f]^ denotes the homotopy class of / as a map into 9( resp. 51^. 

3. Definition of the trace in terms of homotopy classes of loops. Hence
forth we assume that M is a factor of type II^ Choose an isomophism of 
the index group I(J/) onto R by mapping the unit element of M onto 
1 G R. Using this isomophism we write I(J/) = R. Let Jih resp. M+ 
denote the set of hermitian resp. positive elements of J(. One possible 
definition of the trace function 
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<p : Jth -> R 

is as follows. Let S e Jth and 

S= [x dEx 

be its spectral representation. Then 

(p(S) = f Xd(Dim Ex)9 

where the integral is a Riemann—Stieltjes integral. The advantage of 
this definition is that one does not need to give an existence proof; the 
disadvantage is that the proof of the additivity is difficult. We give a 
homotopy theoretic interpretation of <p in order to obtain a more natural 
proof of the additivity. 

For S e Jtk and n e Z define the path 

Tn,s'[0, 1 ] - « 

by 

TntS(t) = exp(2?r int S), 0 S t S 1, 

Instead of z\tS we write r5. If the spectrum of nS is contained in Z, then 
T„)S is a loop attached at the unit element / of II. The following theorem 
gives a homotopy theoretic interpretation of the dimension function. 

THEOREM 7. Let E, F be projections in J/. Then Dim E = Dim F if and 
only if the loops zE and zF and homotopic in %. 

PROOF. Suppose that Dim E = Dim F. Then there is a U e 8( such that 
U*EU = F. Since 2( is connected, there is a continuous path US9 0 ^ 
s £ 1, such that U0 = I and Ux = U. Define Gs = U*EUS. Then rG,, 
0 ^ s ^ 1, is a continuous deformation of ZE into zF within 2( such that 
zGs(0) = /. To prove the converse it suffices to show that [zE] = 0 implies 
Dim E = 0. Let f M be the ^T-vector bundle with fibre L and base space 
S2 arising from the map zn,E'> S1 -> 2Ï via the clutching construction. Since 

exp^TrintE) = (exp(2;rint))is + (I-E) 

one easily sees that 

£M = r»®£(£)®e 7 - -s f S 2 

Hence 

K-iLr - KoLr = 6 * E>im£, 
where 6 is the Bott class defined in 1. Since [zn>E] = n • [zE] = 0, one has 
[£J^, = 0. Hence 6 • Dim E = 0 which implies Dim E = 0 
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COROLLARY 1. Dim E = Dim F if and only if the loops zE and zF are 
homo topic in 9L. 

PROOF. If Dim E = Dim F, then [zE] = [?F] according to Proposition 1. 
Then also [TE]OO = [T>L because each homotopy in 8( is a homotopy in 
2^ . Suppose conversely that [zE]oo = ITFL- Then zE and zF are homotopic 
in some %n. It follows from Proposition 1 that E and F have the same 
dimension relative to Jtn. This means that E, F are equivalent projections 
in Jtn. Then E, F are also equivalent in every reduced subalgebra con
taining E and F. Since Jt is a reduced subalgebra of Jtn it follows that 
E, Fare equivalent in Jt, hence Dim E = Dim F. 

COROLLARY 2. Suppose that EF = 0. Then 

[TE+FIOO = Moo + [*>]«,. 

Hence there is an isomorphism of I(Jt) onto ^ ( S O mapping Dim F 
ö«fo [zE\oo- We may therefore write I(Jt) = TTI(9L) = R> in particular 
Dim/ = [r/]«, = 1. 

PROOF. Using the addition theorem of the exponential function one 
obtains 

[TE+FL = [TE'TFL = [TEL + Meo 

Using this and the universal property of the index group I(Jt) = K({x0}) 
one obtains a homomorphism of I(Jt) into ^(SL). Corollary 1 implies 
that this homomorphism is injective. It is also surjective because ^(SL) 
is isomorphic to R by theorem 6. It is obvious that Dim / i s mapped onto 
Moo-

COROLLARY ?>.LetSeJth be of the form 

S = qxEx + ••• -I- qmEm 

where E\, ..., Em are pairwise orthogonal projections of Ji and q\, ..., #w 

are rational numbers with smallest common denominator c. Then 

V(S) = — h i . 

PROOF. Using the addition theorem of the exponential function this is 
proved in a manner similar to the proof of corollary 2. 

COROLLARY 4. Let S e Jth and let Abe a commutative W*-subalgebra of 
Jt containing S. Let (Sk)k=it2t... be a sequence in Ah c Jth such that Sk = 
fluJEju + •*• + 9ktmk

 EKmk, where £*>y, y = 1, ..., m* are pairwise ortho
gonal projections in A for each k, and where ^>y, j — 1, 2 , . . . are rational 
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numbers with smallest common denominator ck9 k = 1, 2, ... . Suppose 
that lim||S - Sh\\ = 0. Then 

Ä—oo C^ 

PROOF. This follows easily from corollary 3 and the continuity of the 
restriction of ç to Ah. 

4. Proof of the additivity of (p. Define the following subspaces of J{+ 
resp. J(+ x Jt+ 

g = {5/Se^r+and || exp (2^/5') - I|| < 2}, 

77 = {(5, T)/S, r a n d S + Tare elements of <f}. 

For each 5 G ê define 

<fs = {T/TG M+ and 5+Te ê) 

and 

^ 5 = {TI(S,T)eII}. 

LEMMA 1. The set S is open and dense in J{+ in the norm topology. 

PROOF. This is a straightforward application of functional calculus. The 
details are as follows. Let 9T0 = {U e 2f/||£/ - /| | < 2}. Then ê is the 
inverse image of $l0 under the map T »-> exp(2?nT), TeJ/+. Since ?(0 is 
open in S( and exp is continuous, <f is open in J/+. Let J G J/+ and 
||exp(27T/T) - 7|| = 2. We have to show that for each ô > 0 there is a 
Tôeê satisfying \\T — Td\\ < 5. Let A be a commutative J^*-subalgebra 
of .//containing T. We identify y4 with the algebra of all continuous com-
plexvalued functions on the maximal ideal space Q of A via the Gelfand 
isomorphism. The norm of A is then the sup-norm of functions on Q. 
Since Q is compact and completely disconnected, there are a finite open 
cover Ni, ..., Nm of Q and functions/b . . . , / m £^L such that the following 
holds 
\)N{ fi Nj = _ 0 f o r / # y , 
2) |exp (2;r V - 1 y;<û))) - 11 < 2 for a; G TV,-, 
3)f;(co) = Oforco<£A^and 
4) iy;<û>) - T(Û))| < 5 fora) e Nt: 
Then T •= fi 4- ••• + /m satisfies the required conditions. 

Lemma 2 J^s /s ö/?e« ÛTZO? dmye /« Jl+ in the norm topology. 

PROOF. It is easy to see that $s is open and dense in Jt+. One has 
j ^ s = g p gs. Hence tFs is open and dense in Jt+. 
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DEFINITION. For each S e ê let Qs be the unique hermitian element of 
J( satisfying 

IIÖsll < l/2andexp(2?n*Ö5) = exp (liziS). 
For each S e £ let as be the closed loop 

fexp {AnitS) for 0 ^ t £ 1/2 
osi*) = 

[exp (4TT/(1 - t)Qs) for 1/2 ^ f ^ 1. 

LEMMA4. För eac/z 5e<f öwe/705 

fol- = (p(S) - <p(Qsl 

PROOF. Using the spectral theorem we choose a sequence (Sk) satisfying 
the hypotheses of corollary 4 of theorem 7. Since S is open and S e ê we 
may also assume Sk e #. Let Qk •= QSk and define 

cok(t) = exp (2%ickQk\ 0 ^ f ^ 1 

Then cok(l) = exp^/c^g*) = exp(27ncA) = /, so that œk is a loop at 
I. One easily verifies the following homotopy formula 

Since lim||5 - Sk\\ = 0, one has [<js] = [aSk] for /: sufficiently large. 
Hence 

folco = ^ fofcsjoo - — M o o -

Using corollary 3 of theorem 7 one obtains 

foL = <P(S*) - p(ß,). 

Using the norm continuity of cp on commutative PF*-subalgebras of 
Ji and the relations lim||5 - Sk\\ = 0, lim||g - Qk\\ = 0 one obtains 
lemma 3 from the last formula by taking the limit as k -• 00. 

LEMMA 4. fbr all pairs (S, T) e J7o/ie to ! 

p(S + 7 0 - <p(S) - <p(T) = <p(Qs + QT) - cp(Qs) - <p(QT). 

PROOF. Since S, T do not necessarily commute, we use the generalized 
addition theorem of the exponential function which is as follows (see 
Bourbaki [3, Chap. Ill §6 Prop. 8]) 

lim exp2ici(S + T) - ((exp - ^ S ) ( e x p ^ T)J = 0. 

Since S + Te ê this formula implies that there is an n0 such that n > n0 

implies 
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|H?s)(«'?r))'-' 
Let Pn be the unique element of Jih satisfying \\Pn\\ < 1/2 and 

((exp ^ - s ) ( e x p M r ) ) " = exp(2OT7>„). 

Define 

exp(47T/'(l - t)Pn) 
PsA*) = S 

f o r - ^ ^ f g 1 

and 

v«(0 =< 

for 0 ^ ^ -j Qxp(47citPn) 

[ ( e x p ( ^ ( l - O ß s ) c x p ( ^ ( l - Oßr))" for y g f £ 1, 

Then 

[ps.TÌ = Iff sì + far] - b J . 

On the other hand, for «0 sufficiently large and n ^ n0 one has 

[fls.r] = fos+r]-

Using lemma 3 one obtains from the last two relations 

( + ) (p(S +T)- cp(S) - p ( D = (p(Qs+T) - <p(Qs) - (P(QT) - Woo. 

The generalized addition theorem of the exponential function implies 

lim | | ß s + r - Pn\\ = 0, 

hence 

vM) '•= Hm vn(t) 

exists for each t in the norm topology. It follows that v^ = lim vn also 
uniformly in t. One has 

v.(0 = 
(exç(AmtQs+T) 

lexp(4wi(l - t) (ßs + Or))-

Lemma 3 implies that 

- [ v j . = p(ôs + or ) - p(ös+r)-
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For sufficiently large n one has 

[Voo]oo = b j o o . 

Together with ( + ) the last two relations imply lemma 4. 

LEMMA 5. Let S satisfy the hypotheses of corollary 3 of theorem 7. Then for 
each Te \\c. ^cS one has 

<p(S + T) = <p(S) + cp(T). 

PROOF. One has txp{2%icS) = / so that QcS = 0. For cTe^cS one has 
(cS, cT) e II. Hence lemma 4 implies 

<p(S + T) - cp(S) - <p(T) = l-(ç(cS + cT) - <p(cS) - <p(cT)) 

= y (<p(0 + QcS) - <p(0) - <p(QcT)) 

= 0, 

THEOREM 8. For each pair (S, T) of positive elements of Ji one has 

<p(S + T) = <p(S) + <p(T). 

PROOr. Let S e Mi-. Choose a sequence (Sk) satisfying the hypotheses 
of corollary 4 of theorem 7. By lemma 2 all sets <Fk '•- (^lck)^CkSk are 
open dense in J(+ in the norm topology. Hence their intersection 

oo 

is norm dense in J(+ by the Baire category theorem. By lemma 5 one has 
for each k and each T0 e <F 

<p(Sk + T0) = <p(Sk) + <p(T0). 

Since lim||5 — Sk\\ = 0 and (p is norm continuous, this implies 

cp(s + r0) = <p(s) + ^(r0) 
for all r 0 G ^". Together with the continuity of <p and the density of & 
this relation implies theorem 8. 
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