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0. Introduction. We consider elliptic equations 

(1) Aue=f 

in domains Q£ which consist of a perforated medium, with a "large" 
number of holes or of obstacles of "size" e and which are arranged in a 
periodic manner, also with period a. In (1) u£ is subject to some boundary 
conditions, and we want to study the behaviour of u£ as e -» 0. 

This problem has already been considered by L. Tartar [14], D. Ci-
oranescu [5], and D. Ciroranescu and J. Saint Jean Paullin [6] by energy 
methods; one obtains in this manner the behaviour of u£ as e -> 0, and 
the periodic structure is not used in an essential manner. For situations 
where the "volume" occupied by the holes is "smaller" than in the pre
sent case, cf. V. A. Marcenko and E. Yu. Hruslov [12] and Rauch and 
Taylor [13]. 

In this paper we show that—by using this time the periodic structure 
in an (apparently) essential manner—one can obtain much more, that is, 
under suitable hyopthesis on / , one can obtain an expansion of any order 
in e. We will construct functions w0, uÌ9 u2, ... such that 

u£ - (u0 + eui + ••• £mum) 

is of order em in a Sobolev space on Q£. Actually, in the situations con
sidered here w0 = 0, ux — 0. 

The method used here is a variant of the method of multi-scales as 
used in the book A. Bensoussan, J. L. Lions and G. Papanicolaou [4] 
(and as anticipated by J. Keller) for problems of homogenization arising 
in composite materials (We refer to the book just quoted for bibliographi
cal references, in particular to the work of de Giorgi, Spagnolo and their 
associates, Bakhbalov, Babuska, Murat and Tartar.) The new part here 
is.that in some case, boundary layer terms can be avoided. (The con
struction of boundary layer terms, when they are needed, is a largely 
open question in Composite Materials as well as in Perforated Media.) 
The structure of the expansion in perforated media has been briefly given 
in the lecture [9] of the Author in Poland and in lectures in the Collège de 
France, Fall 1977. 
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The plan of the paper is as follows : 
1. Setting of the problems. 
2. Construction of the asymptotic expansion. 
3. Error estimates. 
4. Obstacles and rapidly varying coefficients (I). 
5. Obstacles and rapidly varying coefficients (II). 
6. Various remarks. 

1. Setting of the problems. We define first in a precise manner the 
domains Q£ which consist of an open set Q a Rn from which we take out a 
"large" number of "small" pieces arranged in a periodic manner. 

Let us set 

Y= fl]0,y% 
J=I 

and let us consider an open set (9 contained in Y\ more precisely 

(1.1) 0 Œ 0 c Y. 

Let S denote the boundary of 0; we suppose that S is divided in two 
pieces 

(1.2) S=SD\JSN 

where the index D refers to Dirichlet and TV to Neumann. 
We define next e (9 and the set 

(1.3) f(eV) 

where f denotes the set of all translations {«s/qjî, ..., ekny^} where the 
k/s are integers. 

If Q is a bounded open set of Rn with boundary T7, we define 

(1.4) Qe = Q\(Q fi ï(e0)). 

We set 

(1.5) S£ = d(z(e(9)) fi Q 

(this is the union of the portions of boundaries contained in Q of all sets 
f(e&) which intersect Q). 

With obvious notations we have 

(1.6) S£ = S£D U SeN. 

The boundary of Q£ contained in Z7 is denoted by r£, so that 

(1.7) dQ£ =r£{j St. 

The basic problem we want to consider can now be stated as follows. 
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We are given a function fin Q (a regularity hypothesis on/wil l be made 
later on), and we consider in Q£ the problem 

(1.8) -Au£ = / i n O „ 

(1.9) u£ = 0 on r£, 

(1.10) u£ = 0 on SeD, 

(l.ii) f^r = 0 on 5 ^ 

(where d/dv denotes the normal derivative to SeN, oriented toward the 
exterior of Q£ to fix ideas and SeN is assumed regular). This problem 
admits a unique solution, at least in the Sobolev space H^(Q£) (We denote 
by Hl(Q) the space of (real valued) functions which are in Iß(Q) together 
with their first order derivatives (in the sense of distributions) and which 
are 0 on T7. This space is also denoted by Wl>\Q) or Pl(Q\ etc. It has been 
studied as the completion of smooth functions for the norm 

f, (JL\2±...±(JL 
QL \ 3*1 / \ dx. 

dx 

by N. Aronszajn and his associates in a series of papers (cf. Biblio
graphy)). We want to study the behaviour of u£ when e -> 0. 

2. Construction of the asymptotic expansion. We are going to look for 
u£ in the form (this is a formal expansion for the time being, and such 
expansions (with technical differences) have been systematically used in 
A. Bensoussan, J. L. Lions and G. Papanicolaou [4]) 

(2.1) u£ = w0 + eux + ••• , 

where 

(2.2) Uj = uj(x, y), y = x/e, 

and where the functions Uj have the following properties: 

Uj(x, y) is defined for x G Q, y e Y — (9\ 

Uj(x, y) is Y-periodic, that is, Uj(x, y) admits the period 

y°k in the variable yk, k = 1, . . . ,«; 

Uj(x, y) — 0 for x e ß, y e SD. 

We.remark that condition (1.10) will be satisfied by virtue of the structure 
of the functions Uj, provided the series converges. 

We now make a formal identification. Let us consider (1.8) first. The 
operator d/dxk applied to a function w;(x, x/e) becomes 
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dyk dxk ' 

so that 

(2.4) A = £- 2 4 + 2s-lAxy 4- £°4 

where, using the summation convention, 

Then (1.8) is equivalent to 

(2.6) - Ay u0 = 0, 

(2.7) - AyUX - 2Axyu0 = 0, 

(2.8) - Ayu2 - 2âxyux - Axu0 = f, 

etc. 
We now consider (1.11). We denote by Vj(y) the y'th component of 

y. Then 

(2.9) I - r> >,(>') ̂  + v/,) -^ = e- -^ + „/„) £ . 
It follows that (1.11) is equivalent to 

(2.10) ^ = 0,yeSN, 

(2.11) *fc+v,%L=o,yeSN, 

(2.12) \tofr+VjtoL-o,yeSN, 

etc. For fixed x e Q, UQ(X, y) should satisfy in Y — (9 the equation (2,6), 
with boundary conditions (2.10) and uQ(x,y) = 0 for y e SD and uQ being 
Y periodic. It follows that u0 = 0. Then (2.7), (2.11) and ux(x, y) = 0 for 
y e SD and Y periodic imply that ux = 0. 
It follows that conditions on u2 reduce to 

- Ayu2 = f(x) in Y - 0, 

(2.13) u2(x, y) = 0fovye SD, ^ g y = 0 for y e SNi 

u2 is Y-periodic. 

In (2.13), x is a parameter. Therefore, let us introduce w = w(y) as the 
solution of 
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-Jw(y) = 1 in Y - (P, 

(2.14) w = 0on SD, J ^ = 0 on SN, 
ov(y) 

w is F-periodic. 

Then 

(2.15) w2 = u2(x9 y) = w(y)f(x). 

Let us proceed with the computation. The equation "following" (2.8) is 

(2.16) -âyuz - 2Axyu2 = 0, 

i.e., assuming / smooth, 

with the conditions 

u$(x9 y) = 0 for y e SD> 

(2J8) M) = -Vi(yMy)!iÎOTy&SN' 
u3 is Y-periodic. 

Here again x is a parameter. We define w*(y) as the solution of 

- J y W = 2 | ^ i n F - (P, y dy{ 

(2.19) W = 0 on Sö , - g g y = - V . O M J ; ) on SN, 

w* is y-periodic. 

Then 

(2.20) U3 = Wi(y)lL(x). 

One easily obtains the general structure of um, m ̂  3 : 

wm = w{P)(y)DPf(x) (where the summation is extended 

to all p, \p\ = m - 2), w<*> e #MT - 0). 

In (2.22) the w(^ can be recursively defined. 
In the next section we shall justify the above construction. 

3. Error estimates. We prove now the following Theorem. 
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THEOREM 3.1. Let the functions u2, u3, ...be defined by (2.15), (2.20), 
Then u£ being the solution o/(1.8), ..., (1.11), and assuming that 

(3.1) feQ){Q) = space of functions with compact support in Q, 

one has 

(3.2) \\u£ - (eht2 + ••• + emum)\\HHût) g Ce™ 

where C does not depend on e. 

REMARK 3.1. Hypothesis (3.1) can be weakened (cf. Remark 3.3 below). 

REMARK 3.2. Since um = um(x, y) = um(x, x/e), one has 

\\emum\\HHÜ£) = 0(e«-i) 

so that the term emum is indeed needed in (3.2). 

REMARK 3.3. If we assume tha t / e Cm~2(Q) and that 

(3.3) D«f= 0 on/7for \p\ ^ m - 2, 

then due to the structure of the formula (2.21), one has 

(3.4) uj(x, y) = 0 for x e r. 

If we do not assume (3.3), then (3.2) is not correct, since u£ = 0 on re 

and s2u2 4- ••• + emum is not zero on re. In such a case, one would need 
boundary layer correctors; the structure of these correctors is not known 
to the author. Of course (3.1) is unnecessarily strong; the estimate (3.2) is 
valid if one assumes that 

(3.5) fe Cm+1(Q), DPf = 0 on T for every /?, \p\ ^ m - 1. 

PROOF OF THEOREM 3.1. Let us introduce 

(3.6) <pe = ue - (e2u2 + ••• + ekuk) 

where k will be chosen later (and we shall then make precise the hypotheses 
on/which are sufficient to insure the validity of the argument). We have 

(3.7) -J<p£ = e'-ige 

where 

(3.8) g£ = [ 4 A _ ! + 2Axyuk] + eAxuk. 

We assume that 

(3.9) fe Ck{Q\ DPf = 0 on ^for every p, \p\ ^ k - 2. 

By virtue of (3.9) and of (2.21), we have 
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(3.10) <pe = 0onre, 

since u£ = 0 on SeD9 and by construction of the wy we have 

(3.11) <p£ = 0onS£D. 

On S£7V we have 

(3.12) | W / , £ , * . - - v ^ ) - ^ . 

Multiplying (3.7) by p£ and using Green's formula, we obtain 

(3.13) f \\7(ps\2dx = f ekhE(pEdS£ + e*-i f gepe£&. 
J<V ' Js£^ Jtf£ 

Let us verify that 

(3.14) 

and 

(3.15) 

ll&llW.) ^ C 

\\h£\\ms£N) S Ce~2 

Here and in what follows, the C's denote various constants. 
Indeed by virtue of (3.9) and of (2.21), we have 

\g.(x, y)\ûC Z l l ^ ' W I + I V,w<»O0l] 
(3.16) lpi=k~2 

+ C £ \w<P\y)\. 
\p\=k-3 

But given a function 0 e Hl(Y — (9), we have 

f [<D\xle) + | Vy0|2(*/e)] JJC g C 

which, together with (3.16), implies (3.14). Similarly, 

\k(x,y)\ SC Z \w<P\y)\ 
\p\-k-2 

and, given 0 e Hl{Y — 0), we have 

f 0\xje) dS£N £ Ce'1. 
JseN 

Hence (3.15) follows. It follows from (3.13), (3.14), (3.15) that 

(3.17) f |Vp f |*<fc g C e " ||^£||L2(Ö£) + Ce*-™ \\<p£\\mseN). 

But one can show (cf. D. Cioranescu [5], D. Cioranescu and J. Saint Jean 
Paulin [6]) that 

file:///p/-k-2
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(3.18) f y?dx£ c[ \V(p\*dx 

for every <p e Hl(Qs) such that cp = 0 on SeD (j re and with C independent 
of e. Let us check that 

(3.19) f q?dx S ° f [<p2 + | Vp|2] dx 
Js£N e jQE

r 

for all functions <p as in (3.18). Indeed if we introduce functions Cj(y) e 
C\Y) such that Cj(y) = Vj(y) on S and Cj = 0 near the "boundary" of Y 
(considered as a parallelotope in Rn)(we need here that S be a C1 variety), 
and if we extend c, by periodicity, then 

Le*x,e) -t, ^ d x = l f d s < N - 7 L £ H W £ ) Ä 

so that (3.19) follows. 
Using (3.18) and (3.19), the estimate (3.17) gives 

and again using (3.18), we have 

(3.20) Wtfico.) ^ C ^ _ 1 -

We now choose k = m + 1. Then the hypothesis (3.9) becomes (3.5). We 

have 

ue - (e2u2 + ... + £wwm) = <p£ + em+1 ww+i 

so that using (3.20), 

(3.21) ||w£- (e2u2 + . . . + ^MJH^CO.) g Ce- + ^ + 1 ||ww+i|Äi(0.). 

But 

|p| = m — 1, 

so that 

I si 

-g^7 "m+l(*, J) 

and therefore ||wm+1||//i(Ö£) ^ C/e so that (3.21) implies (3.2), and the 
proof is completed. 

4. Obstacles and rapidly varying coefficients (I). We consider now an 

l * l = m - l £ l * l = m - l 

3 w ^ 
9>V 

(y)\ 
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extension of the above situations. The geometrical data are the same but 
in Q£ instead of considering the operator — A we consider the operator 

(4.1) *=-MaiÀxl£)ik 
where 

a0{y) G L-(Rn), aiy is F-periodic, 

at Ay) &£/ = <*£&>a > ° a - e - i n y-

We consider the problem 

(4.3) A*ue = finQ£i 

(4.4) u£ = 0onr£, 

(4.5) u£ = 0 on SsD, 

(4.6) -<£<-• = 0 on SeN. 

in (4.6) ^ : ^ / ^ W - ^ , * = */* 

Physically, problem (4.3) ... (4.6) corresponds to a composite material 
with a periodic structure (the period being e Y) and which is perforated (the 
"holes" or "obstacles" being C0£) with the same periodic structure. We 
want to study the asymptotic behavior of u£ as e -> 0. 

Asymptotic expansion. We use for u£ the same "ansatz" than in (2.1), 
(2.2), (2.3). We now have 

A' = e~'iAl + r M 2 + eM3, 

(4.7) 

and 

(4.» 
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We obtain by identification 

A^Q = 0 in Y - (9, 
(4.9) 

u0 is 7-periodic 

u0 = 0 on SD,-^- = 0 on SN, 
OVAX 

so that 

u0 = 0 

and, in the same manner, ux = 0. Then 

A "2 = f, 

( 4 J ° ) W 2 = 0 o n ^ ^ = 0 o n ^ , 
OVAI 

u2 is ^-periodic. 

This is the analogue of (2.13), with —Jy replaced by Ax. We introduce 
w(y) as the solution of 

Axw = 1 in Y - (9, 

(4.11) w = 0 on SD, ~ = 0 on SN, 

w is 7-periodic 

and we obtain 

(4.12) u2{x9 y) = w(y)f(x). 

We proceed as in §2 and we find (2.21) for the general structure of 
um(x, y), where the W{P} are computed as in §2 but using AÌ9 A2, A3 in
stead of — Jy, — 2Axy, —dx. The error estimates are unchanged. 

5. Obstacles and rapidly varying coefficients (II). We consider now a 
situation somewhat analogous to that of §4, but where the coefficients 
atJ have a "much smaller" period than the period of the holes. Let us set 
Z = ri/=i ] 0, Zy [ and let us consider functions a{j{z), a0(z) such that 

atJ(z), a0(z) e L°°(Rn), a{j and a0 are Z-periodic, 

<*ij(z)££j = a&&> ao(z) = a>a > ° a - e - i n z-

We set now 

x 

and we consider the problem 
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(5.3) Aeu£ = / i n ö£(where Q£ is defined as in §1), 

(5.4) w£ = 0on re, 

(5.5) ut = 0 on S. 

(We suppose that SD — 5; if SN is of positive measure on S, there are 
some technical difficulties that we want to avoid here.) We want to study 
the asymptotic behavior of u£ as e -* 0. 

Asymptotic expansion. We look for ue in the form 

(5.6) ue = u0(x, y, z) + eui(x, y,z)+—,y = x/e, z = x/e2, 

where 

Wy(x, y, z) is defined for x e Û, y e Y — (9, z e Z, 

(5.7) Uj is y-periodic in y, Z-periodic in z, 

Wy(x, y, z) = 0 if x e û, z e Z and j ; G S. 

With these notations, we find that 

A' = 

Ax = 

A2 = 

A3 = 

A t = 

A5 = 

e~*Al + e 

-k(-
-k(« -u-

~3A2 + e-

< < ) • 

*>£) 
*>£) 

9 (n d \ 

dy,'\°'dxj) 

-U-' fcc, ) + 

2A3 + 

9 
9j,-

9 
9̂ , 

& ( • 

«<>(*)• 

£ - M 4 + e°A5. 

( ^ J T ) ' 

Aû'y 9 ^ ) ~ 33^ 

" dyj)' 

• ( «<7 
9 

:)• 

We use (5.6) and (5.8) in (5.3). We find that 

AiUQ = 0 

which, since w0 should be Z periodic, implies that 

(5.9) w0 = u0(x, y). 

The term in e~z gives 

><!«! 4- A2u0 = 0, 

i.e., 
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(5.10) Axux =daiLdu^. 
dzi dyj 

We introduce yj(z) by 

(5.11) Atf = - 9a*7 , xJ i s ^-periodic 
ozi 

(which defines yj up to an additive constant). Then the general solution of 
(5.10) is 

(5.12) Ml= -xW-j^ + Uxiy). 

The term in e~2 gives 

(5.13) A\u<i + A2Ui 4- Azu0 = 0 

which admits a Z-periodic solution iff 

(5.14) j z (^ 2 wi + ^3i/0)rfz = 0. 

We replace in (5.14) ux by its value (5.12) and we use (5.9); we obtain 

(5.15) stfuo = 0 for xeQ, yeY - <P, 

where 

(5.16) ^"~*'W' 

The operator J?/ is the homogenized operator corresponding to the e2 Z-
periodic structure; it is an elliptic operator (cf. A. Bensoussan, J. L. 
Lions and G. Papanicolaou [4] and the bibliography therein). Therefore 
as a function of y, uQ should satisfy (5.15) together with the boundary 
conditions 

u0 = 0 on S, UQ is ^-periodic. 

Therefore 

"0 = 0 

and (5.12) reduces to ux = ü^x, y) Then (5.13) reduces to 

A\U2 + A2üi = 0, 

so that 
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(5.17) u2 = -*>(*) | ^ - +ü2(x,y). 

The term in e~x gives 

(5.18) Axu3 + A2u2 + A3ux = 0, 

which admits a Z-periodic solution iff 

J (A2u2 + A3u{)dz = 0; 

hence 

J3/Ö! = 0 

and we conclude as for u0 that ux = 0. Therefore u2 = ü2(x, y) and (5.18) 
gives 

(5.19) u3 = - z/(z) | | + ö3(*, J)-

The term in £° gives 

(5.20) îW4 + A2u3 + ^3^2 = / 

and (5.20) admits a Z-periodic solution w4 iff 

1 
I ZI J (̂ 2W3 + 3̂«2> dz = / , 

i.e., 

(5.21) s/ü2 = / , i e û , j / G 7 - f t 

with w2 subject to 

(5.22) u2 is F-periodic, w2 = 0 on 5". 

We introduce w(y) by 

,4w = 1 in Y - (9, 
(5.23) 

w is F-periodic, w = 0 on S. 

Then 

(5.24) u2 = w2(*, J) = w<J>)/(*). 

Then (5.19) gives 

(5.25) u3 = - z/(z) | ^ - (^)/(x) + fi3(x, y), 
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where w3 is to be defined. For that one solves (5.20) in w4 and one considers 
the term in e1 

(5.26) AiUs + A2u± -f A3u3 + AAu2 = 0; 

equation (5.26) admits a Z-periodic solution w5 iff 

1 (A2u± + Azuz + AM) dz = 0, 

which gives an elliptic equation 

(5.27) J3/W3 = given function of x and y in Y — (9. 

The boundary condition u3(x, y, z) = 0 on S gives 

Ux,y)= % > ( z ) | ^ ( j ) / ( . v ) o n 5 

which is in general impossible to satisfy. Therefore in order to obtain 
higher order expansions, boundary layer terms "near" S£ are necessary; 
but the construction of these terms is an open question. 

In order to define w3 one can take for instance 

«3 = 0 for y G S 

and one continues the computation in this way. 
We can prove the following 

THEOREM 5.1. We suppose that 

(5.28) fe O(Ö), DPf = 0 on T for every \ p\ ^ 4. 

Then, assuming S smooth, 

(5.29) II«, - t?w{y)f{x)\\L-(aù è Ce\ 

where w and sé are defined by (5.23) and (5.16). 

PROOF. We introduce 

(5.30) <pe = u£ - (e2u2 + ••• + ehik) 

and we shall choose below k ^ 6 (so that (5.28) is sufficient to have all 
terms well defined). We obtain 

(5.31) A*<pt = ek^g£, 

g£ = A2uk + A3uk_x + AtUk-2 + A&k-z 

(5.32) + e(A3uk + A^uk^ + A5uk_2) + e\A^uk + ^5w*_i) 

+ e3A5uk, 
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(5.33) <p£ = 0 on r£, 

and 

(5.34) <p£ = -(e3«3 + — + ekuk) on Se. 

In (5.33) we have used the structure of w (̂as a combination of Dtf). Since 
we assume S smooth and since jtf is elliptic with constant coefficients, all 
functions w(y), ..., wW(y) are smooth so that, if we choose k = 3, 

MVe|L~(o.) = 0(e3), 

|| Pe 11^00.) = °(^3) ' 
so (5.29) follows. 

6. Various remarks. 

REMARK 6.1. The above methods are quite general for elliptic problems. 
For the case of higher order equations with singular perturbations, we 
refer to B. Desgraupes [7]. The case of elliptic systems can lead to some 
new difficulties. For the case of Stokes system, we refer to J. L. Lions 
[10]. 

REMARK 6.2. Some of the results of this paper can be obtained by prob
abilistic arguments; cf. A. Bensoussan [4]. 

REMARK 6.3. Similar methods apply to problems of evolution. Cf. J.L. 
Lions [11]. 

REMARK 6.4. Spectral problems for domains with holes (or obstacles) 
are studied in Kesavan and Vaninathan [8] and in the thesis of Vanin-
athan [15]. 
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