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EXACT SOLUTION OF COUPLED PAIRS OF DUAL 
TRIGONOMETRIC SERIES 

M. A. HUSSAIN AND S. L. PU 

ABSTRACT. Exact solutions are obtained for coupled dual trigono

metric series that arise in the study of contact problem of a circular 

inclusion as well as a set of symmetric curvilinear cracks. The 

coupled dual series are reduced to coupled integral equations. 

Simple identities of the kernel functions allow us to decouple these 

integral equations into two uncoupled singular integral equations. 

One of these integral equations has a Cauchy type of singularity and 

can be reduced to the air-foil equation. The other has a logarithmic 

singularity and is reduced to two Volterra equations. 

1. Introduction. Dual series equations arise frequently for the solu
tion of mixed boundary value problems in mathematical physics. A 
comprehensive collection of potential problems with their formal solu
tion is given in Sneddon's monograph [1]. 

In this paper we derive coupled dual series for an elasticity problem 
of a circular inclusion, with interface friction, via bipotential Airy-stress 
functions. Consider a circular insert in a two dimensional infinite me
dium under uniform tension as shown in Figure 1. Due to lack of bond 
at interface there will be two distinct sets of regions, namely regions of 
contact and regions of separations. Mathematically, boundary conditions 
lead to coupled dual series. Over the regions of contact, stresses and 
displacements are continuous and over the separated regions stresses 
vanish. In such a problem not only the contact stresses are unknown 
but also the regions of receding contact. 

In this paper we obtain an exact solution of the coupled dual series. 
The analysis is formal. The existence and uniqueness of dual and triple 
series, in a rigorous fashion, have only been recently studied by Kelman 
[2], [3]. There are, at present, no theorems available for coupled dual 
series formally solved in the present paper. 

Employing the usual notation [4], the boundary conditions for the 
problem are: 

(1) ur = u/, ue = ue\ or = a/, rr6 = r'rd for 0 ^ 0 < TJ 

(2) ar = a/ = 0, rre = r're = 0 for rj < 0 ^ 77/2. 

The primed quantities refer to the insert and the angle r\ is the un
known angle of receding contact. The general solution of two dimen-
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sional equations of elasticity is well known [4]. The stresses are given in 
terms of a biharmonic function qp as follows: 

_ 1 9<p 1 32<p _ d2<p 

d ( i *L ) 
\ r dO I ' 

In selecting qp and cp' for the exterior body and the insert we are 
guided by symmetry, single valuedness of the displacements and regu
larity condition at infinity, (i.e., oy — 1): 

cp = A0 log r H r2 -\ r2 cos 20 

00 

+ 2 (Kr~n + Bn r~n+2) C0S n#> 
2,4 , -

<p' = i - D 0 ^ + 2 (Cnr" + Dnr"+2) cos n0, 
^ 2,4,-

where An — Dn, n = 0, 2, • • • are unknown constants. Using ar = a/, 
Tr» = <«> (See W> (2)) w e h a v e : 

Do = Ao + \> c2 = \ + 3A2 + 2B2, D2 = - 2 A 2 - B2 

Cn = (n + l)An + nBn , 
4. JniT 

D n = - n A n - ( n - l ) B n 

On introducing new sets of constants En and Fn for convenience, 

E0=1 + 2A0,E2=^ -6A2-4B2,F2 = j--6A2-2B2, 

En = -rin + l)An - (n - l)(n + 2)Bn 1 
Fn =-n(n + l)An - n(n - l)Bn S ~ 

Boundary conditions (2) give: 

1 

(3A) 

rt
 Eo + 2 En cosnO = 0, T/ < 0 ^ TT/2 

2 2,4, -

2 Fn sin nö = 0, j]<6^ m/2. 
2,4,-
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(a) (b) 

FIGURE 1. 

(a) A symmetric set of curvilinear cracks under uniform tension. 
(b) Contact problems of an inclusion. 

Similarly the displacement conditions of (1) give: 

(3B) 

aE0 + 2 "g 7 (nEn - Fn)
 C0S "* 

2,4, • rr — 1 

= a - 2a cos 20, 0 ^ 0 < ij 

oo 1 

2 ~2 7 (nFn - En) S i n n0 

2,4,- rr — 1 

= 2a sin 20, 0 ^ 0 < -q 

where a, the elastic parameter, is given by 

(4) a 
2(1 _ v) + 2(1 - i/)G/G' 
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(3A-3B) are coupled dual series for the determination of En, Fn and the 
receded contact angle rj. For simplicity we have used special relation 
between the two elastic constants i.e. G/G' = (1 — 2P)/(1 — 2v') in 
(3B). 

In this paper we have given a solution using real variables. The 
problem can be reduced to a Riemann-Hilbert problem, and the solu
tion obtained via complex variables as is done in [11]. 

2. Reduction of Dual Series to Integral Equations. If the insert is 
smooth the above coupled dual series (3) can be uncoupled. The solu
tion to such a problem was first obtained in [5] by complex variables, 
and in [6], by dual series. 

Equations (3A) essentially are derived from vanishing of the normal 
and the shearing stresses in the separated region TJ < 0 = TT/2. Assume 
o(0) and riß) to be the unknown normal and shearing stresses over the 
region 0 = 0 < 17, we have: 

o(0) = ±-E0 + 2 En cosnO, 0 ^ 6 < i? 
2 2,4, -

(5) 
T(0) = 2 Fn

 s in n#> ° = ° < V-
2,4,-

Using Fourier inversion formulas, we have from (3A) and (5): 

4 ÇT) 
En = — J 0 o(t) cos nt dt 

Fn = — X <t) sin ntdt, 

n = 0, 2, 4, •••. 

Substituting from (6) into (3B) and changing the order of integration 
and summation, a pair of coupled integral equations are obtained: 

(7) 

(8) 

£V oQKtf, t) dt - jj r(t)K2(0, t) dt 

= -^a(l - E0 - 2 cos20), 0 ^ 0 < ij 

X" T(t)K4(0, t)dt - f0
V a(t)K3(9, t)dt 

= -%sin20 , 0 ^ 0 <T), 
Zi 
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where Kv K2, K3 and K4 are the kernel functions given by: 

QO 

n (9) 

(10) 

*!(«,*)= 2 
2,4 , - *» - 1 

cos nö cos nt 

K 2 ( M = 2 
2,4, - ft — 1 

cos nö sin n£ 

( i i ) 
W ) = 2 | . . ^ sin n# cos nf 

(12) K 4 (M)= 2 
2 ,4 , - n 2 - 1 

sin nö sin nf 

These infinite series can be summed exactly. Using, for example, equa
tions (549) and (550) of [7], we get 

^ cos rax 1 , 
2J —; = — COS X l o g 

o,2,- ra + 1 2 

^ , cos rax 1 , 
Z ; = — cos x log 

0,2,- ra — 1 2 

4- x cot—-
1 2 

X 

cot—-
1 2 

TT 

IT 
sinx 1, 

These results are used to sum the series in (9). Finally we have 

T. in ,x 1 1 / „ , , I cos 0 + cos t 
K^O, t) = - — + — I cos 0 cos £ log ' 

A] 4 \ cos 0 — cos £ 
(13) 

Similarly 

+ sin 0 sin t log 
sin# 

sino 

+ sinf | \ 

— sin t I / 

K2(ft 

(14) 
• • " - T ( 

cos 0 sin £ log 

(15) 

+ sin 0 cos £ log 

K3(0, t) — — ( sin 0 cos t log 

4- cos 0 sin £ log 

cos 0 + cos t 

COS 0 — COS t 

sin 0 — sin i sin £ \ 

sin t I / sin 0 + sin i 

cos 0 + cos t 

cos 0 — cos t 

in 0 — sin t I \ 

in 0 + sin £ I / 
sin 

sin 
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(16) 

K4(0, t) = — I cos 0 cos t log 

+ sin 0 sin t log 

sin 0 + sin t 
sin 0 — sin t 

cos 0 H- cos 
cos 0 — cos il) 

3. Identities of Kernel Functions and Decoupling. It can be verified, 
using (13) through (16) that 

(17) — • S i n 2 * 

(18) 

(19) 

(20) 

dKi(9' *) _ _ K (0 t). 
dd 3K ' ' 2(cos20-cos2f) 

£ Kjfx, t) dx = K3(8, t) 

dK2(6, t) 
90 

= - K4(0, t) 

f0*K2(x,t)dx = K4(e,t)- i - l o g 
sin (6 + t) 
sin (9 - t) 

These identities are necessary to decouple the integral equations (7) and 
(8). Differentiating equation (7) with respect to 0 and subtracting (8) 
and using (17) and (19) we obtain 

(21) s a(t) dt 
cos 20 — cos 2f 

= Tra, 0 ^ 0 < 77. 

Integrating equation (7) from 0 to 0 and adding (8) and using (18) and 
(20) we get 

So «*)!<* 
(22) 

sin (0 + t) 
dt 

sin (0 - t) 

= 77fl(l - E0)6 + Tra sin 20, 0 ^ 0 < TJ. 

As can be seen, (21) involves a Cauchy kernel and should be understood 
as the Cauchy principal value, while (22) involves a logarithmic sin
gularity at 0 — t. 

4. Solutions of Integral Equations (21) and (22). Let cos2£ = 1 + si-, 
cos 20 = 1 + sx, where s is a constant, selected in such a way, that 
when t = 0 and t = t] we have £ = 0 and £ = 1, (s = — 2 sin2 TJ) re
spectively. Equation (21) is reduced to the airfoil equation: 

(23) X' d£ = 2<na, 0 ^ x ̂  1 
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where H(£) == o(t(£))/{sin 2t(Ç)}. The solution of this integral equation, 
given by Peters [8], is: 

H(t\ _ £_ l _ l A 
w " TT V « ( i - € ) ^ 2 V T « 

f1 d\ rx 2TOX1/2 

JE (A - Qi/2 Jo (A __ x )1 /2 ^ 

and after transforming to the original variables, 
/iN / c \ 2 sin2™ cos £ 

a(t) = ( — + a ) 
\ 77 / (COS^f — COS^TJ)17^ 

(24) 
— 4a cos t(cos2t — COS2TJ)1/2 

where c is a constant which cannot be determined from (21) alone; this 
can be seen by substituting the solution back into the air-foil equation 
(23). This constant c has to be determined from the coupled integral 
equation (7) or (8) as done in the next section. This is due to non-
uniqueness of solution of integral equation with a Cauchy kernel. 

The integral equation with the logarithmic singularity can be solved 
by an ingenious device first used by Williams [9] or see [1, p. 155]). 
We first replace the kernel of (22) by 

log 

(25) 

sin (0 + t) 

— 4 cos S cos t 

sin (0 - t) 

Cmm(t,ß) tan v dv 

(cos 2v - cos 2f)1/2(cos 2v - cos 20)1/2 

After changing the order of integration, the Fredholm integral equation 
(22) is reduced to two Volterra equations of the Abel type: 

( 2 6) P ^vG{v)dv 1 o^fXr, 
y ' J o ( C O S 2 Ü - C O S 2 0 ) 1 / 2 4 JK ' ' 

(27) f ' cos tr(t)dt O^v^e 
V ; Jv ( c o s 2 ü - cos2t)1/2 K ' 

where f(0) stands for the right hand side of (22). The solutions of these 
integral equations are given, for instance, [1, p. 41], by 

,.-. „ . , 1 d Cv f(w) sin w dw 
28 G(v) tan v = — — J. , J\ ' n x1/_ 

v ' v -n dv J0 (cos 2w - cos 2u)1/2 

(29) T(*)COS* = - 4 1 I 
G(w) sin 2w dw 

1/2 dt Jt (cos 2t — cos 2w) 
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With f(w) = w and f(w) = sin 2w in (28) we obtain G(v) = 1/2 y/2 
and G(v) = (l/\/2~) COS2Ü respectively. Substituting these values for G 
in (29), we have the corresponding solutions of (29): 

T^t) = V2~ sin t (cos 2t - cos2ry)-1/2, 

2A/2~ 
T2(t) - — i — sin £(cos 2f - cos 2TJ)1/2 

77 

\/2~ 
+ -̂ — (1 + cos 2rj)sin t(cos 2t - cos2r])~1/2. 

77 

The solution of (22) for T is simply a superposition of r1 and T2: 

T(£) = 77ö(l — £0)
TlW + 77a T2(t) 

where E0 is found by substituting from (24) into (6), 

£0 = — I o(t) dt = —c sin2i]. 
77 , y U 77 

Thus the final solution of the integral equation (22) is 

a sin £(77 — Ac sin2Tj + 2 cos2,rç) T(*) 

(31) 

(COS2* — COS2T))1/2 

(30) 
-f 4a sin t(cos2t — COS2TJ)1/2. 

Substituting into equations (6) from (24) and (30), we find Fourier 
coefficients for m = n/2 = 1, 2, • • • 

£2m = ( -J +« ) 2 sin2r,(Pm + P ^ ) 

- f l [ c o s 2 , ( - l 1 P m _ 1 - ^ P m ) 

F2m = (* _ 4csin2r, + 2 cos2T/)a(Pm_1 - P J 

+ û [cos2 , ( -L_P m _ 1 + - L _ P m ) 

~ \ ^Ti p—1 + ^ ~ i p ™ / J 
where Pm = Pm(cos 2rj), Pni_1 = Pm_1(cos 2-q) are Legendre polynomials. 
Thus we have obtained the solution for the coupled dual series (3). 

(32) 
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There are yet two parameters, c and contact angle TJ, to be determined. 
However if TJ were the prescribed angle and if the insert and the exte
rior medium are both of the same material (i.e., G = G' v = v\ 
a — 1/4) then physically the problem reduces to a curvilinear crack-
problem as shown in Figure lb. This is also apparent from the nature 
of the singularity in the normal (o(t)) and shear (r(t)) stress given in 
equation (24) and (30) respectively. In the field of fracture mechanics 
thè coefficients of such singularities are called K7 mode and Kn mode 
stress intensity factors. For such a problem we have 

Kj = ( h a J y/2 cos TJ sin2Tj 

Kn = a sin TJ (2 cos TJ)~1/2(77 — 4c sin2Tj + 2 COS2TJ). 

5. Determination of Constant c and the Contact Angle TJ. Using equa
tions (7), (9), (10) and letting 0 = 0, for simplicity of the computations 
we have 

n aW 2 -5 cos ntdt 
2,4," ft — 1 

J'» 00 ^ 

o *{*) 2 -5 - s i n n t * 
2,4,#" W J-

= - ^ d + £0). 

Substituting from (24) and (30) into (33) and carryig out the integrations 
and summations, (see Appendix [11]) we obtain 

. . _ ma (77 — 1) x 2 sin2Tj K(cos TJ) — (IT — 2)£(cos TJ) 
' ' C ~ 2 sin2Tj 2Ö(T7 - 1) - K(cos TJ) - (2air - l)E(cos TJ 

where K and E are complete elliptic functions of the first and second 
kind. 

The physical process of contact of two unbonded surfaces require 
that the normal contact stress vary from a finite negative value (i.e., 
compression) over the contact region to a value of zero over the sepa
rated region. Hence, at 6 = TJ, <J(TJ) = 0. This gives c — —ma from (24), 
and substituting from (34) we have the following equation for the de
termination of contact angle TJ. It should be noted that this equation is 
unaltered either due to change in load at infinity or the radius of the 
insert. 
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(35) 
(77 — 1)(1 + 4a sin2Tj) — 4a sin2rj K(cos Ï)) 

- {77 - 2 + 2(27ra - l)sin2rj}aE(cosTj) = 0. 

This equation has a real root. For various values of a, the roots of (35) 
are given in Figure 2. 

19 

& 18 

pr 
17 

16 

1 C 

0 O.I 0.2 0.3 
G 

FIGURE 2. 

0.4 0.5 

The contact angle 17 for various values of a. 

It is seen that even though the normal stress vanishes at 0 = 17 the 
shearing stress is singular. This is due to the assumption that no slip 
takes place. Approximate solution of such slip problems have been at
tempted in [10]. 
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