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THE a-REPRESENTATIONS OF AMENABLE GROUPOIDS 

PETER HAHN* 

ABSTRACT. Techniques of Zimmer are exploited to show that for 
an ergodic equivalence relation arising from a group action, in-
jectivity of any a-regular representation von Neumann algebra im
plies injectivity of all of the others; this is so in particular if the 
group acting is amenable. The a-representations of more general 
groupoids also are discussed. 

Ergodic action of a group G on a measure space (S, /x) defines an er
godic equivalence relation èG which has a representation theory analo
gous in some ways to the representation theory for groups. Of special 
interest is the regular representation of ëG, which generalizes the 
group-measure space construction and is primary in the sense that its 
commuting algebra is a factor. Just as for groups, to every 2-cocycle a 
on é? G are associated a-representations, in particular, a a-regular repre
sentation, which also is primary. The flow of weights of the factors ob
tained from different cocycles always is the same [8], but Connes' ex
ample [1] shows that the factors themselves may be different. 

Zimmer has introduced the concept of amenability for measure grou
poids such as é> G [13] and proved the equivalence of amenability of ßG 

for discrete G to possession by the regular representation factor of 
property E [14, 15]. The discreteness assumption was removed in [4] us
ing reductions. In this paper Zimmer's methods are extended to a-
representations using results in [6, 8]. We show in particular that if one 
a-representation factor is injective, then all of them are, so (except in 
case they are of type IIIJ they must coincide. This holds in particular 
for the measure-preserving actions of amenable groups. 

If G is abelian, then the relation €G is approximately finite (AF): 
there is an ascending sequence of smooth subrelations on (S, /x) whose 
measure-theoretic union in G [4]. It has been conjectured that the same 
is true if G is any amenable group; and indeed some progress in that 
direction has been made [3, 11]. For AF actions, the 2-cohomology is 
trivial and all representations are AF. Zimmer's papers and the present 
work in a sense bridge the gap left by the question of approximate fi-
niteness of the relations by proving the representation theory to be in
jective directly from amenability. 
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The paper is organized as follows: in § 1 we give the definitions es
chewed in this introduction. § 2 is devoted to two main technical re
sults generalizing to a-representations of discrete relations the methods 
of Zimmer. In fact, very little change is necessary; and where we omit 
details, they may be found by consulting [14, 15]. The main results are 
derived in § 3 by reduction to the discrete case using the theory in [4] 
and a generalization of an unpublished theorem in [6]. Finally, in § 4 
we consider more general measure groupoids and apply the techniques 
of § 2 to the groupoids arising in Zeller-Meier's crossed product [12] as 
an example. 

1. Preliminary Notions. Let (^, C) be a measure groupoid. By this 
we mean that, first, ^ is an analytic set with the algebraic structure of 
category with inverses for which e^(2) = {(x, y) G G X G : xy is de
fined} is Borei and the maps x I—> x_1 \$ —*$ and (x, y) H* xy :^ (2)^> G 
are Borei. Second, C is a measure class on ^ containing a probability 
measure X symmetric under x ^ x - 1 and with a disintegration X = 
f XudX(u) with respect to r = (x (—> xx_1) satisfying the following con
dition: for some X-conull Borei subset U0 C U^ = rÇf), r(x) G U0 and 
d(x) = x~xx G U0 imply that E H» f lE(xy) dXd{x\y) and y*x) are equa-
ivalent measures. It is possible to find a-finite measures (called Haar 
measures [7] for which the above equivalences are equality: 
$ l^xy)dvd(*Xy) = S Uy) dv«x)(y). The isotropy g r o u p s ^ = 
{x G G : r(x) = d(x) — u] possess a locally compact topology. 

A 2-cocycle from $ into the circle T is a function a :^2)—• T satis
fying a(x, y)o(xy, z) = o(x, yz)o(y, z) and o(r(x), x) = o(x, d(x)) — 1 for x, 
y, and z belonging to an inessential reduction (i.r.) $ \ U0 — 
[x G ^ :r(x) G U0 and d(x) G U0], U0 C U^ cornili and Borei. A weakly 
Borei function W of ^ into the unitary group of separable Hilbert 
space H is a o-repesentation if W(xy) = o(x, y)W(x)W(y) for x, y in an 
i.r. The commuting algebra W of W consists of all decomposable oper
ators T = f T(u)dX(u) on the direct integral space f HdR(u) = L2(U^, 
X, H) such that T(r(x))W(x) = W(x)T(d(x)) a.e.; W is a von Neumann al
gebra. For those groupoids with a.a. L2(G, Xu) of the same dimension, 
there is a a-regular representation Wa defined by Wa(x)f(y) — 
o(y-\ x)-1^-^), Wa(x) : L\G, vd™) — L\G, ^ and then W(x) = 
VWxWJtfVWx))-1, where V = J V(u) dX(u) : f L2(G, vu) dk(u) 
rx S HdX(u) is an isomorphism. 

If G is a locally compact second countable group acting on an ana
lytic probability space (S, /*) so that (s, g) \-+ sg : S X G —* S is Borei and 
the measure class [/i] is invariant, (S X G, [/A] X Haar) is a measure 
groupoid with multiplication (s, g)(sg, g') — (s, gg'). The map 
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x h-* (r(x), d(x)) projects any groupoid G onto another, (r, d)f^), which is 
principal: the isotropy groups are trivial, (r, d)(S X G) is denoted ^G , 
the measured equivalence relation furnished by the action of G on 
(S, /x). A necessary and sufficient condition for a principal $ to be sim
ilar [9] to an 6'G is that there be a Borei set E C U# such that [£] = 
r^d_1(£)) is cornili and [«] D £ is countable for a.a. u [4]. Such principal 
groupoids are called concrete. 

Zimmer's concept of amenability for measure groupoids is as follows: 
Let u I-* Ku be a family of non-empty weakly compact convex subsets 
of the dual E* of a separable Banach space £. Let y :d?-^> Aut£ be a 
homomorphism (y(:n/) = y(z)y(y) o n a n i-r)> Borei for the strong oper
ator topology; and let y*(x) = y(x"1)*. If {(u, <£) G L^ X £* : <J> G £M} 
is Borei and y*(x)Kd(x) = K ^ a.e., wh>XM is called invariant. $ is 
amenable if for every y and invariant it h-* Kw, there is a Borei 
u\-*<j)u G Ku with y*(x)<f>d(a.) = <t>Hx) a.e. uh»(()u is called an invariant 
section. 

Finally, from the theory of von Neumann algebras we recall the fol
lowing property equivalent to injectivity ([2], Proposition 6.2): a von 
Neumann subalgebra M of the algebra âiï(H) of all bounded operators 
on the separable Hilbert space H is said to have property E if there is 
a norm one projection P of âïï(H) onto M. P(l) = I and 
S1P(T)S2 ¥> P(S1TS2) for all S^ S2 G M and T G ^(fl). 

2. Fundamental Technical Results. We are prepared now to show 
how Zimmer's techniques may be adapted to treat a-representations of 
discrete principal groupoids. The proof of the present Proposition A is 
essentially that of Theorem 2.1 of [15]; for Proposition B, the proof of 
the theorem of [14] is modified. The discreteness assumption will be re
moved later. 

PROPOSITION A. The commuting algebra of any o-representation of an 
amenable standard countable equivalence relation S? has property E. 

PROOF (sketch). Let G be a discrete group acting on (S, /x) to furnish 
é>. a ~ a', where o' has the property o((s, t), (t, s) = 1. By Lemma 4.10 
of [8], we may assume for o this property. Let Mr be the isomorphism 
of L°°(S, fi) with the diagonalizable operators in &( f H d/x(s)), 3) the 
decomposable operators. Let p be defined by J* f(sg) d\i[s) — 
f f(s)p(s, g) dn(s). Ug<j>(s) = p(s, g)1/2W(s, sg)<j>(sg) defines a unitary oper
ator on f Hdii(s) and if T = f T(s) d^s) G ^ , UJU^1 G D and 

(1) *gT(s) = UgTVg-\s) = W(s, sg)T(sg)W(s, sg)"1 
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U -1 — U -l gh-» U is not necessarily a homomorphism of G, but 
g H» <&g is, and 

(2) y(s, t)Q = W(s, t)QW{t, s) 

defines a homomorphism of ^into the automorphisms of trace class (H). 
y* on (tr class(H))* = #(H) is defined by the same formula. 

Let TGS). Apply Lemma 2.2 of [15] to the maps s h-> 2 j = 1 
Mr(fù^9i

T(s) ( 2 j = 1 £ ^ 1) to obtain a Borei family 5 l-> CS(T) of com
pact convex subsets of &(H). Since 

(3) y*(s, sg)<PgT(sg) = $ggT(s), 

this is an invariant family, a cross-section for which belongs to 
C^T) H W, where CS(T) is the closed convex hull of the family of op
erators ^^MrifJUgTU-i in either the weak or the o(L°°(S, jn, &(H), 
L\S, ix, tr class(//))) topology. 

Now let F consist of all S ^ Mr(fi)$gi as above and let F be the 
closed convex hull in the a = o(B(ß), & ®max^*) topology on the al
gebra of bounded operators on Q). Before proceeding further, we need 
a lemma. 

LEMMA. Let Oy G F converge in &{ß) to $ 0 and let $ £ F . Then 
0 $ 7 -^ OO0 G F . 

PROOF, «r-convegence implies pointwise weak convergence on S). Let 
TG&,<t>,t£ S h dus). Let * = 2? = 1 M ^ ) * , , By (1),<*(*7(2)) (<#>), 
^> = 2?=i <U0i(Qy(T)) (!#(*)), Mr(fM) - . 2»= 1 <Ugi(90(T)) ( l / " » ) , 
Mr(f$) = <O(O0(T))(</>), T//>. On bounded subsets of ^ ( ^ ) , pointwise 
weak convergence implies a-convergence, so a — lim OOy = OO0. The 
multiplicativity O ^ = ^ 0f ^ r ^ implies that each $O y belongs to 
F, so<M>0GF. 

Returning to the proof of Proposition A, we partially order F by 
^ ^ ^ if C^^T)) C Cs(02(T)) for all TG&. As in Proposition 
4.4.15 of [10], one sees that Zorn's Lemma applies to give a maximal 
element $ 0 (the key point is that 7\ G C8(T) implies C ^ ) C C^T), 
which holds by an argument as in the lemma). Let 
7\ G C^%(T)) H W. Let 0>y G F be a net such that Qy(Q0(T)) — T r 

We may assume that >̂Ŷ >0 has a limit 01? so that ^>
1(T) = T1. 

Cs(01(T)) =^(^(7^) C CÄ(̂ >0(T)) and since $ 0 is an accumulation point 
of F, O j G F by the lemma. By maximality of O0, {7^} = CS($0(T)) = 
[$0(T)}. Thus <50 is the map required for property E. 
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PROPOSITION B. Let WG be the left o-regular representation of the 
standard countable equivalence relation è\ If (Wa)' has property E, then 
$ is amenable. 

PROOF (sketch). Let G, S, /A, and p be as in the proof of Proposition 
A. Again we may assume o((s, t), (t, s)) — 1. Let ßs be a counting mea
sure on sG C S, so that v = f 8S X ßs dn(s) defines a Haar measure 
(v, ju). A = (dv~1/dv)~1 satisfies p(s, g) — A(sg_1, s) a.e. and may be 
taken to be a homomorphism. (W*7)" is spatially isomorphic to the von 
Neumann algebra LG generated by the operators Tf defined by Equation 
4.2 of [8]. 

LEMMA. UJ(S, t) — o((t, s), (s, sg))_1A(sg, s)1/2j(sg, t) defines a unitary 
U9 G La- VoÌs> f) = °((s> )' (*> *g))/(Ä> fë) defines a unitary Vg G Ra = 
V . V,-^*, t) = o((s, tg-% (tg-\ t))-ij(s, tg^a.e. 

PROOF. Let D be the characteristic function of {(s, t) G £ : s = t}. 
Letting f(s, t) = D(sg, f)A(«g, s)1/2 in Equation 4.2 of [8], we obtain Ug 

after perhaps a limit argument involving A-boundedness. Vg = JaUgJa 

by equation (4.6) of [8]. Thus Ug G La and V̂  G Ra. The remaining 
statements involve only computation. 

Returning now to the proof of Proposition B, for / G L°°(^, v) define 
f(s, t) = f(s, tg). Let M be the representation of L°°(^, v) on L\£, v) by 
multiplication. M(f) = V^M^V^-1. Let P be the projection of 
^(L2(^, v)) onto Ra guaranteed by property E and let R(f) = P ° M(f). 
V.R^V-1 = PiV^ifiV^1 = R(f). Moreover, as R(/) G 
Ra C Mr(L°°(S, /i))' (Theorem 4.1 of [8]), R(/) = f R(f)(s) d^s) is de
composable and R(f)(s) — Wa(s, sg)R(f) (sg)Wa(sg, s) for ju-a.a. s. 

Let r(f)(s) = S R(f)(s)D(s,')D(s,-)dßs. r : L»@,v)-+ L"(S, M) is a 
norm one unital positive projection. 

T(f)(s) = J* R(f)(s)(V-lD)(s, -W-iDis, -)dßs 

= J m(sg)W(sg,s)(V~W)(sg, ^Wis^s^V-^isg, -)dßsg 

= T(/)(«g) a.e. 

because W(*& «X V l D X « & *) = "(C> sg)> (»& *))_1 V 1 * ^ *) = <*' s& 
(sg s))_1a((s, tg-1), (fg-1, t))_1D(s, tg-1) = D(sg,t). Another calculation 
shows that a.e. 

(4) r(ßE • d)(s) = T( / ) (S)1^) . 

Now we use T to produce an invariant section for a cocycle y* on ^ 
with sh>K C E* an invariant Borei family of non-empty compact 
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convex subsets. Choose s I—• b(s) G Ks a. Borei function and define F(t, s) 
= y*(s, t)b(t) G Ks. Choose a(s) so that T((U, V) h^ <0, F(u, v)))(s) = 
(0, a(s)) a.e. By extension and (4), r((t, v) h— (0(v), F(u, v)))(s) = 
(0(s), a(s)) a.e. For g G G, 

<0, a(sg)> = r((w, t>) h- <ft F(u, 0)»(*g) a.e. 

- r(((w, t>) h- <0, F(u, v))y)(s) 

= T((u,v)h->(0,F(u,vg)))(s) 

= T((W, t>) l-> <0, y*(üg, i?)y*(t;, u)b(u)))(s) 

= T((U, V) l-> <y(t>, t>g)0, F(w, t?)fc(w)»W 

= {y{s> sgW> fl(*)> a.e. 

= <0, y*(5g, s)a(s)> 

so that by separability of E, s h-* a(s) is invariant. 
To show a(s) G Ks a.e. it suffices to prove that if SQ = 

{s G S : (0, a) ^ q for all a G A J is non-null, then (0, a(s)) ^ q a.e. 
on Sfl. But by (4), r((u, t>) h* <0, F(W, t>)>lÄf(t>))(*) i= r((u, t,) h- flflÄf(t>))W 
= ql8(s) a.e. Thus (l8(s)0, a(s)) ^ <7ls(s) a.e., so (0, a(s)) ^ 9 for a.a. 
* e SQ: 

3. Reduction to the Discrete Case. Statements about concrete princi
pal groupoids—those principal groupoids furnished by group ac
tions—often can be reduced to the discrete case by the result in [4] al
ready described. To use this idea in the present case, we need a result 
telling how the von Neumann algebras behave under such reduction. 

THEOREM. Let [<j>] \$ -^Zf and [$\:2f -+& be a similarity of grou
poids and W a a-representation of 2rif. Then <j> may be chosen so that 
W°<t>isao°(<l>X (^-representation of^ and then W and ( W ° </>)' are 
isomorphic von Neumann algebras. If (r, d)Çf) or (r, d)(^) is concrete 
and W is the o-regular representation of 5 ^ , then W ° <j> is (equivalent 
to) the a ° (<t> X ^-regular representation ofd?. 

PROOF. The first statement follows from the proof of Theorem 5.19 
of [6] with only minor adaptation. The second is a restatement of Theo
rem 8.3 of [4]. 

The foregoing render our main result easily accessible. In the case 
a = 1, equivalence of injectivity of the regular representation and ame
nability was obtained similarly in Section 8 of [4]. 
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THEOREM 2. Let ^ be a concrete principal groupoid, o a cocycle on $. 
The following are equivalent: 

1. $ is amenable. 
2. The commuting algebra of the o-regular representation is injective. 
3. For every o-representation W of G, W is infective. 

PROOF. The property of amenability is invariant under similarity of 
measure groupoids. Therefore, in view of Theorem 1, it suffices to 
prove the equivalence of 1, 2, and 3 for some similar groupoid. Thus, 
we may assume that & is &G for some countable group G acting on 
(S, /x). Then 1 => 3 by Proposition A, 3 => 2 is obvious, and 2 => 1 by 
Proposition B, because injectivity and property E are equivalent prop
erties. 

A groupoid Ç&, C) is ergodic if f \\E° r — \E° d\dk — 0 for some 
Borei set E implies X(E)X(U^ — E) = 0. d? is ergodic if and only if 
(r, d)^f) is ergodic. 

COROLLARY. / / (é?9 C) is a concrete principal groupoid and 
o) \—> {é> ̂  CJ on (Q, p) is an ergodic decomposition (Theorem 6.1 of [8]), 
then € is amenable if and only if a.a. è\ are amenable. 

PROOF. First assume that dimL2(^, vu) is essentially constant. The 
regular representation commuting algebra of é> then decomposes corre
spondingly as a direct integral. The result follows from the fact that 
§ Mw dp(u>) is injective if and only if a.a. Mw are. The general case is 
verified using Lemma 3.10 of [8] and a simple argument about count
able disjoint unions of amenable groupoids. 

The range closure A of the modular homomorphism A of the ergodic 
groupoid $ is the R-action defined as follows (see [9], Section 7): * 
E C Uj X R is invariant if ljr(x), s) - lE(d(x), s + A(x), s + A(x)) a.e. 
R acts on the measure algebra of invariant sets by translation by ( — r) 
of the second coordinate. A is the point realization of this action. 

COROLLARY. Let (S>, C) be an amenable ergodic concrete equivalence 
relation such that A is not translation by R on itself. Then for any 2-
cocycle a, (Wa)\ (Wa)", and (W1)' are isomorphic factors. 

PROOF. The algebras are factors by Theorem 5.1 of [8]. For any 
groupoid c ,̂ K = /1—> / is a conjugate linear isometry on L2(g, v) such 
that KLaK = L-. Since J0LJa = Ra s (W) ' and La s (W)", we 
have (W1)' ^ (W1)" and it suffices to prove for # the isomorphism of 
(W1)" and (W)" for every a. If either (W1)" or (W*)" is type I, then S 
is essentially transitive by Theorem 5.4 of [8], a is trivial, and (W1)" 
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and (Wa)" are isomorphic by Lemma 4.10 of [8]. If either (W1)" or 
(Wa)" is of type IIl9 Theorem 5.6 and Proposition 8.1 of [4] show that 
é? is a discrete relation, say on (S, /x), and existence of a trace permits us 
to choose /A invariant. This in turn allows construction of a trace using 
the conditional expectation (Proposition 2.9 of [4]), so that (W1)" and 
(W*)" are the AF factor of type I I r Finally, if (W1)" and (W*)" are in
finite and non-type I, they are the unique AF factor ([2], Part VII) with 
A as their flow of weights ([4], Theorem 5.5). 

The restriction placed on A simply avoids the case in which the fac
tors (WaY are all injective of type 11^. The ergodicity assumption can 
be removed by insistence that the type III1 component in the ergodic 
decomposition be null. 

COROLLARY. If G is an amenable locally compact second countable 
group acting on (s, /A) and o is a cocycle on the resultant equivalence re
lation <ffG, then the left o-regular representation von Neumann algebra is 
injective. 

PROOF. S X G is amenable by Theorem 2.1 of [13], so S'G = 
(r, d)(S X G) is amenable. 

4. Non-Principal Groupoids. For non-principal groupoids results are 
more difficult to obtain. We can treat at least the case of a groupoid 
intermediate between S X G and 6'G for discrete G. 

THEOREM 3. Let G be an amenable discrete group acting on (S, ji), $ 
another groupoid with (r, d)$f) — é> G, II a homomorphism of S X G 
onto $. If o is any T-valued 2-cocycle on d?, then the commuting al
gebra of every a-representation ofd? is injective. 

PROOF. Slight modification of the proof of Proposition A proves this 
result, too. W(s, sg) is replaced by W(II(s, g)) and (2) and (3) are rewrit
ten 

(2') y(II(S, g))Q = W(U(s, g))QW(n(sg, g-i)) 

and 

(3') y W , g))*ffr(sg) = a>ggT(s) 

As shown in Example 4.8 of [8], Zeller-Meier's cocycle twisted 
crossed product by the action of a discrete group on an abelian von 
Neumann algebra is a special case of a a-regular representation of 
S X G. Thus we obtain 
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COROLLARY. The Zeller-Meier twisted crossed products by the action 
of a discrete amenable group on an abelian von Neumann algebra are 
injective von Neumann algebras. 

Calvin Moore has pointed out to us that his corollary is a con
sequence of Proposition 6.8 of [2]. 

Finally, we state without proof a theorem hinting at other results 
along these lines. The proof is an adaptation of Zimmer's argument for 
Theorem 2.1 of [13]. 

THEOREM 4. Let $be a measure groupoid with (r, d)^f) similar to £ G, 
G amenable. If a.a. the isotropy groups $u are amenable, then $ is ame
nable. 
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