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1. Introduction. Let Q C Rn be a bounded domain with smooth 
boundary. Suppose that Laß, a, ß = 1, 2, • -, m are second order el
liptic operators without zero order terms which act on functions 
u : ß —• Cm. The spectrum of the system 

m m 

2 Kß + M 2 caß
uß = 0, a = 1, 2, • • -, m 

subject to appropriate homogeneous boundary conditions is known to 
consist of a discrete increasing set of numbers \L19 /Xg, • • •, /xw, 

In the case of a single equation with the Laplace operator as princi
pal part and with homogeneous Dirichlet boundary conditions, a par
ticularly simple method for obtaining a lower bound to the first eigen
value JL4 was obtained by Barta [1] who showed that 

** * (--£). 
s e n N <P / 

Here <p is an arbitrary C2 function defined in ß. This estimate is useful 
and of interest since the function <p is required to satisfy only a smooth
ness condition and not a boundary condition. This inequality was ex
tended and generalized to general second order operators in [10]. There 
it is shown, for example, that fil9 the first eigenvalue for the Laplace 
operator subject to zero boundary conditions satisfies the inequality 

^ inf ( d i v ? - |P|2) 

where F is a vector field in ß which is only required to satisfy a mild 
smoothness condition. The Barta inequality is recovered by setting 
Pi = —<px/q> with <p an arbitrary C2 function. Further extensions of 
these inequalities were obtained by Hersch [4]. Hooker [5] developed 
analogous results for second order equations with mixed boundary con
ditions and he also treated the eigenvalue problem for the biharmonic 
operator subject to a variety of boundary conditions. 

Upper and lower bounds for the eigenvalues of second order oper
ators have been obtained by a variety of methods. We mention the in
vestigations of Fichera [3], Payne and Weinberger [9], Weinberger [12], 
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Bazley and Fox [2], and Weinstein and Stenger [13]. Further references 
may be found in these papers, especially in [13]. For second order sys
tems, estimates for eigenvalues are closely connected to comparison 
theorems and the generalization to partial differential operators of 
Sturm Liouville theory. In this connection, see Kreith [6] and Swanson 
[ii]. 

In this paper we extend the results of [10] to second order elliptic 
systems. This extension is particularly useful in obtaining lower bounds 
for the first eigenvalue of those higher order elliptic equations which 
can be reduced to a second order system. In § 3 we illustrate the tech
nique for the biharmonic operator. The process for obtaining lower 
bounds for the spectrum of a second order system is improved sub
stantially by the introduction of a generalization of the spectrum of an 
operator. For the operators Laß we consider the system 

m m 

2 Kßu + H* 2 caßuß = 0, a = 1, 2, • • -, m 
ß=l ß=l 

where À = (À1, À2, • • -, Xm) is an element in Cm. The set S of values A 
for which the above system has a solution subject to a set of homo
geneous boundary conditions is called the generalized spectrum of the 
set {Laß} with respect to these boundary conditions. 

In § 2 we establish certain basic properties of the generalized spec
trum for the case of homogeneous Dirichlet boundary conditions. This 
information implies statements on the ordinary spectrum which consists 
of the "diagonal" A1 = A2 = • • • = Xm of the generalized spectrum S. 
In the most general case the generalized spectrum of a system will con
sist of a continuum in Cw, and the determination of the geometric 
properties of this set remains as an interesting subject of investigation. 

In § 3 we develop concrete techniques for obtaining lower bounds of 
the generalized spectrum and we apply the method for several types of 
boundary conditions. It is easily seen that the method is well adapted 
for actual computations. 

2. Basic Estimates. Let ß C Rn be a bounded domain with smooth 
boundary. For functions u : ß —* Rm or Cm we define the operators 

n 

a, ß = 1, 2, • • -, m, 

where u - (u\ u2, • • -, um) and x = (xv x2, • • -, xn). We shall suppose 
that aff = off for all a, ß, x. For X = (A1, • • -, Am) GCm we consider 

af(x) 
d2uß 

3x,9z, + 2 bf(x) 
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solutions of the linear second order uniformly elliptic system 

m m 

(1) 2 Laßu + \« y caß(x)uß = 0,a = l,2, • • -, m, 

subject to the homogeneous boundary conditions 

(2) 2 Baßuß(x) = 0 for s G 8ß, a = 1, 2, m. 

The quantities Baß are boundary operators of order zero or one. The 
set X in Cm for which non-trivial solutions of (1), (2) exist is called the 
generalized spectrum of the operator L = {Laß} with boundary condi
tions (2). We denote this set in Cm by S and we shall be interested in 
obtaining explicit upper and lower bounds either for S or a portion of 
S. The subset of S for which X1 = X2 = • • • = Xw, i.e., the diagonal of 
S, coincides with the ordinary spectrum of the operator L; we designate 
this set by S0. With Baß = 8aß and appropriate conditions on the mat
rix C = {caß}, it is known that S0 is a discrete set. See Morrey [8, p. 
251]. 

We first consider the simpler strongly elliptic system 

(3) â iS « ^ ) +x-|ic^^ = a 
a = 1, 2, • • •, m, 

subject to the homogeneous Dirichlet boundary conditions 

(4) ua(x) = 0 for x G 90, a = 1, 2, • • -, m. 

We shall suppose that the coefficients in (3) are real-valued, bounded, 
and sufficiently smooth so that the basic existence theory is valid for 
the Dirichlet problem for (3). Assume that the elements of C satisfy 

m (5a) 2 caß(x) S 0, a = 1, 2, • •-, 
8=1 

and 

(5b) caß(x) ^ 0 for a ± ß, a, ß = 1, 2, • • -, m 

for all x E ß. We write X = 0 whenever Xj = 0 for all i between 1 and 
m, and we observe that the system (3) satisfies a maximum principle for 
X = 0 whenever (5) holds [8]. Hence it follows that the real part of the 
generalized spectrum of (3), (4) can never be negative if (5) holds. This 
observation yields a simple example of a lower bound on the real part 
of S. 
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To obtain useful bounds on S, we let F* = (P^, • • -, Fn
a), a — 1, 2, 

• • -, m, be C1 vector fields on ß . For any u E C^ß) such that (4) 
holds, we have 

(6) X V • [P«(«f] = 0, o = 1, 2, • • -, m. 

Multiplication of (3) by M<* and an application of Green's Theorem 
yields 

m X [ J, i»^v*i^]-' 
a = 1, 2, • • •, m. 

Adding (6) and (7) and then summing on a, we obtain 

J
m f n (\ua dua n dua 

B 2 i 2 flST-T- + 2 2 pi*"" - ? " 

+ (divF" - Xacaa)(u
af - Xa 2 caß"a^ r = ° 

fit* J 
The integrand in (8) is a quadratic form in u and 9M/3*J- The 
coefficient matrix of this form, denoted by M, may be written 

(8) 

M 
I A BT \ 

Vß D I 

where the matrices A, B, and D are defined as follows: let Aa, a — 1, 
2, • • -, m denote the n X n matrix with entries (ag). We define A to be 
the mn X wm matrix 

A = 

A1 0 
0 A2 

0 0 • 

The matrix B is m x win with entries 

P1 0 
0 P2 

B = 

0 0 
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The m X m matrix D is symmetric with the form 

D 

div? 1 - X 1 ^ - ^ c 1 2 + X2c21) 

- i ^ + A2^) divP*-A2c22 . 

V-T(Xlclm + ^ m l ) 

^ I m + ^ O 

div P™ - \m„ 

Since (3) is elliptic the matrix A has an inverse and, denoting the de
terminant of any matrix C by |C|, we find 

\M\ = \A\ • \D - BA^B7] 

= IA1! ••• |AW| • \D - B A - 1 « 1 ] . 

It is a simple fact that the quadratic form (8) is positive definite when
ever D — BA~XBT is a positive definite matrix. See, for example, the 
Lemma in Kusano and Yoshida [7]. The symmetric matric D — BA^B7 

which we denote by D has entries 

div?1 - A 1 ^ - P\Al)-lP1T 

D = 

- \ (\2C2m + XmCm2) 

F ( X l c l m + A W C m l ) divP™ - \mcmm - pn(Am)-1PmT 

The unform ellipticity in fl of the system (3) implies that there are pos
itive constants m„ and M„ such that 

(9) 
for all £ G Rn, x G ti, a = 1, 2, • • -, m. 

The notation |£| indicates the Euclidean norm of the vector (£1? 
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The following result yields a lower bound for the generalized spec
trum of problem (3), (4). 

THEOREM 1. Let (3) be uniformly elliptic in a bounded domain ß. 
Then there is a vector X0 = (X0\ • -, X0

m) with \X0
a\ > 0, a = 1, 2, 

- -, m such that no point of the generalized spectrum S of (3), (4) is 
contained in the set S' = [X : \X\ ^ |A0|}. 

PROOF, let d denote the diameter of ß, suppose the origin of coordi
nates is in ß at distance no greater than d from the boundary, and set 

P{
a - 8 tan yxi9 a — 1, • •, ra, i = 1, 2, • • •, n 

where 8 > 0 is a constant and y > 0 is a constant less than TT/2d. From 
(9) we have 

n 

|Pa(A«)-1PaT| ^ m ^ l F f = m ^ 1 Ô2 2 t a n ^ . 
i = l 

We now estimate the diagonal terms of D. We find 

div F* - Xacaa - F^A*)-1!**7, 

aa 

n 
^ «V 2 secVi - \\«caa\ - m,,-1«2 2 t a n ^ 

g 5y - |X«caa| + 5(y - m ^ S ) 2 t a n ^ . 

We now choose 8 < may and select X0
a positive and such that 

X0 < 8y/caa where caa = suparGÎ2|caa|. With these choices each diago
nal element of D is positive for all X such that |X| ^ |A0|. We now ob
serve that all the non-diagonal terms of D contain as factors two com
ponents of X. Reducing the absolute magnitude of X0 increases (does not 
decrease) the positive lower bound of every diagonal term and decreas
es every non-diagonal term. Hence for a sufficiently small value of |A0| 
the matrix D is positive definite. The form (8) is positive definite and 
(3), (4) has no solution for |\ | ^ |\0|. 

The next result shows that the generalized spectrum is always bound
ed away from zero and, in fact is confined to a region in Cm outside an 
arbitrarily large ball if ß has a sufficiently small diameter. 

THEOREM 2. Let (3) be uniformly elliptic in a domain ß 0 and suppose 
X is fixed. IfQis contained in a ball B C ß 0 of sufficiently small radi-
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us, its size depending only on the coefficients in (3), then there are no 
nontrivial solutions of (3), (4). 

PROOF. Without loss of generality, choose the origin in fl0 and define 

Pf = 8 tan yxv 

As in (10) the diagonal terms of D are estimated by 

divF" - \«caa - Pa(Aa)-1PaT 

n 

S Ôy - \\«caa\ + Ò(y - m«"1«) 2 tan2yx4. 
izzl 

We choose 8 = y infaraa. Let c0 = maxasupa.GÎÎ |cÄtt(x)|. If y is chosen 
so large that 

/ X<*̂  \ 1 / 2 

y > max / *% Y nax ( y- I 
« \ rna I 

then all the diagonal elements of D are positive. Now if y is increased, 
the diagonal elements increase, but the off-diagonal terms are un
changed. Hence we can choose y so large that D is a positive definite 
matrix. Hence the quadratic form in (8) is positive definite for this 
value of y. Furthermore, if the ball B has radius r so small that 
r < ir/2y, then all the quantities Ps* remain bounded. For any Q in B, 
there are no non-trivial solutions of (3), (4). 

REMARKS, (i) It is clear that the generalized spectrum has a lower 
bound which tends to infinity as diam fi —» 0. (ii) If fi is bounded and 
contained in a slab of width less than ir/2y (instead of a ball), the same 
result as that in Theorem 2 holds, (iii) For sufficiently small domains 
Theorem 1 yields uniqueness for solutions of the Dirichlet problem 
even in cases where (5a) and (5b) hold, (iv) From the proof it is clear 
that the functions P%

a are required to be C1 only in the i-th variable. 
The functions need only be continuous in the remaining variables. 

If the system (3) is replaced by the general non-selfadjoint system 

<u>. 
+ X" 2 ca/8(*K = 0, a = 1, 2, ••-, m, 

then Theorem 2 holds so long as the funtions bfß are bounded in ß. 
The proof is virtually unchanged. On the other hand Theorem 1 does 
not hold unless additional restrictions are placed on the bfß. 
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Theorem 1 has an analogue if the boundary condition (4) is replaced 
by the more general condition 

(12) hjx)-^- + ka(x)u« = 0, a = 1, 2, • • -, m 

where 3 / 3 ^ = 2j* i=1 a^ni 3/3^ and n% is the i-th component of the 
unit normal to 3fì. If there is a positive constant C0 such that 
ka(x) ^ C0 for all x E 3fi, a = 1, • • -, m, then the boundary term 

Jan 2 ( ^ ^ - + M 2 2 P,«*, ids 

which will occur in the proof of Theorem 1 if (12) is used instead of (3) 
will be nonpositive whenever 

M * ) W " i S ka(x), x E 30, 

i = 1, 2, • • -, n, a = 1, 2, • • -, m. 

If, in the proof of Theorem 1, the constant 8 is reduced sufficiently, 
then (13) will hold throughout. The remainder of the proof is unaf
fected. On the other hand if ka(x) is not bounded away from zero, then 
it may happen that Xa = 0 is in the generalized spectrum. For example, 
if ka(x) = 0 for all a, then choosing for each a, ua = const, Xa = 0 
yields a solution of (3). 

Similarly, a theorem analogous to Theorem 2 holds if (3) is replaced 
by (12) and the constant C0 exists. To see this we choose 8 so small that 

for all x E 3ß, i = 1, 2, • • -, n. We choose y as before. Then we select 
r so small that r < 7r/4y(rather than 7r/2y) and the result follows. 

The boundary condition (2) may be put in the form 

(14) J x ( fa0(x) M + ga^uß ) = 0, « = 1, 2, • • -, m. 

lì f — {faß} is an invertible matrix and g = {g^^} is such that / _ 1 g is 
positive definite, then boundary condition (14) is essentially the same as 
(12) with Theorems 1 and 2 applicable to (3), (14). On the other hand, 
there are important cases in which / and g are singular. Then special 
techniques are required and we shall give an example illustrating the 
method in such cases. However, we first give an example yielding a 
lower bound for (3), (4) which applies to the biharmonic operator. 
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I 

0 

P1 

0 

0 

I 

0 

P2 

plT 

0 

divP1 

W + A2) 

0 

p 2 r 

l - ^ + x2) 
divi« 

EXAMPLE. Let u — (u1, u2) be a solution in a bounded domain ß of 
the system 

Aw1 - X V = 0 
(15) 

Au2 - X V = 0 

with the boundary condition 

(16) u1 = u2 = 0 on dß. 

The generalized spectrum X = (X1, X2) is real in this case and the matrix 
M has the form 

M = 

Then M is positive definite provided that 

(divP1 - IP^XdivP2 - |P2|2) > ^(X1 + X2)2. 

That is, for arbitrary vector fields P1, P2, such that Pf is C1 in x% and 
C° in xi? J ¥= i, a = 1, 2, we have 

(17) (X1 + X2)2 ^ 4 inf (divP1 - IP^XdivP2 - |p2|2). 
xeSi 

We show that it is frequently possible to choose P1 and P2 so that the 
bound (17) is actually achieved at a point X = (X1, X2) in the spectrum 
S such that (X1)2 + (X2)2 is a minimum. Thus all of S is outside the disk 
of radius (X1)2 + (X2)2. To see this let u1 = qp, u2 = \p be the eigenfunc-
tions which yield the solution of (15), (16) with |X| G S. It is clear that 
for any a, ß, the functions acp, ß\p satisfy (15), (16) with the eigenvalues 
ßX1/«, aX2/ß. Then minimizing the quantity (ßX1/«)2 -h (otX2/ß)2 for all 
a/ß, we find that the minimum value is 2XXX2 which occurs for 
a/ß — X2/Xx. If <p, \p are never zero in ß, then we choose 

Pi1 = -?* /¥> pi2 = - * , / * • 

Then (17) yields the inequality 

(Ai + X2)2 i= 4XXX2 

and the lower bound of 2X*X2 is achieved for X1 = X1, X2 = X2. 
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A simple method for obtaining a lower bound results from the choice 

*V = Pi2 = - V . / V 

where <p is any positive C2 function in ß. We obtain from (17) 

\* + A2 ^ 2 inf - * £ - . 
XGfi <)P 

In particular if <p is the first eigenfunction of the membrane equation 
with zero Dirichlet boundary conditions and /x the corresponding eigen
value, then 

(18) X1 + X2 ^ 2/1. 

The system (15) is related to the biharmonic operator in that 

A2!/1 - XWu1 = 0 

with the boundary conditions u1 = AM1 = 0 on 8ß. Setting v = X1X2, 
we see that (18) implies the well-know inequality 

v ^ jit2. 

3. Additional comparison functions. Let Q be an m X m matrix with 
entries Q"/3 which are C^ß). An application of Green's theorem yields 
the identity 

-X [ * - i £ ( - . ^ ) 
m "I 

= I [ Ç°* . 2 «S 
•- «.»=1 

a«a 3«v 
(19) L w=i 9*i 3^ 

+ «? 2 flg ^ -22Ü + X»Ç«W 2 c«X 1 
U = l 0 ^ 0^- 0 = 1 J 

_ f n«ywy Ì * . 
Jasi ^ 3ra 

The identities for a = y allow an additional useful transformation if the 
0"" are (?(Q). We have 
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-J" [ <?-"•*! i r ( a%^t ) + x - ç^â ^ ] 
(20) 

Jsì L ^ „ 4 a« 3x4 3*, 2 (M } È dXj \ °« dx, I 

Suppose that each Qaa is positive in £2 and in addition that 

(21) sup 2 ^ - ( a g ^ ü ) < 0, a = 1, 2, - • -, m. 
*e î î u=i dx- \ dxi I 

With boundary conditions (4), we may combine (20) with (8) and obtain 
a lower bound which may be an improvement over that determined by 
the matrix M. The usefulness of such scalar fields depends on the possi
bility of finding positive functions Qaa which satisfy (21). If Q, is bound
ed such functions always exist. For example, setting 

(22) Ç«« = 1 - yrp 

where y > 0, p > 0 are constants, we find 

s T-(nT) 

= -YprP-4 ( p - 2 ) 2 (afax,) 

+ 2 -£- K ) * / + ̂  2 «»a 1 • 

If the coefficients ag are in Cx(ß), then the ellipticity of the operators 
(ag) yields a positive lower bound for the terms in the bracket on the 
right if p is sufficiently large. Then choosing y sufficiently small guar
antees that Qaa is positive in Œ. 

For boundary conditions (12), the functions Qaa are required to satis
fy on 3fì the inequality 

(23) K(x)d-^ - 2ka(x)Q<*<* g 0, a = 1, 2, • • -, m. 
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If there is a constant m > 0 such that ka(x) ^ —m for oc G 8ß, then the 
functions Qaa defined in (22) will satisfy (23) provided y is sufficiently 
small. Thus if ka is negative and bounded away from zero in ß, func
tions Qaa exist which satisfy boundary conditions (12). At the end of 
this Section we give an example to show how lower bounds of the gen
eralized spectrum can be obtained by use of the functions Qay with 
a ¥= y. 

It is frequently the case that boundary conditions (2) imply that the 
first derivatives of one or more of the functions ua vanish on 3fì. Under 
these circumstances additional vector fields can be used for comparison. 
Let Ra = (Rf, - , Rn

a), a = 1, 2, — , m be vector fields of class 
C1(Î2) H C(Q). We have the identity 

(24) 
J« L u 4 i Hk dxk dXj \ *« dx, I 

n m a a 1 

(d lvH) Jx a« l ^ l ^ 

a?-
dXj l3 3xi dxk 

r 
+ i X Ì=1 V ^ K) 9«a

 9M« 

* 9 *i 9*; 

+ Jm H* a « dXi dXk
 ni 

o Jan Z. n * »« « *** 
M,fc=i dXj dx} 

J n m a a 

« I £"••£*"•• 
If the first derivatives of ua vanish on 8ß, then the right side of (24) is 
the integral of a quadratic form in ua and its first derivatives. If Ra can 
be chosen so that this form combined with the quadratic forms consid
ered earlier is positive definite for a set of values X, then we get fur
ther bounds on the generalized spectrum. For example, if Rk

a is a fune-
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tion of xk alone, if the coefficients ag are constant, and if ua is a 
solution of (3) with the appropriate boundary conditions, then (24) 
yields 

Ç 1 y l y 3 V _0™l) fl„ 9"* 9«" 
Ja 2 ij^i \ Ä 3x& 9x,. / « 3x, 3aj 

If we make the particularly simple choice Rk
a = x&, we find 

J n L 2 (n 2)
 4,èi °w 3x{ ^ 

+ A" 2 2 «fcCaX - g - J = o . 
fc=l 0 = 1 0Xfc J 

When n ^ 3, the above relation provides a positive definite form in the 
first derivatives, usually of considerable help in counterbalancing the re
maining terms, those containing (ua)2 and the ones involving products 
of ua with its first derivatives. 

As an example, we consider the problem of determining a bound on 
the first eigenvalue for the vibration of a clamped plate. The motion is 
described by the equation 

(25) A2<p - v<p = 0 in 0 

subject to the boundary conditions 

(26) (p = 0,-lj2- = 0 on 80. 
on 

We transform (25) into a second order system by setting u2 = /xA<p and 
identifying u1 with cp. The result is the second order system 

(27) Aw1 - Xxu2 = 0, Aw2 - W = 0 

where X1 = jn"1 and X2 = \iv. The boundary conditions (26) become 

(28) u1 = 4 ^ " = 0, i = 1, 2, • • -, n on 80. 
oxi 

It is important to note that no boundary conditions on u2 are pre
scribed. Thus, although (27) is the same system as that considered in the 
previous example, the conditions (28) require the methods of this sec-
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tion for the determination of a lower bound on the generalized spec
trum of (27) and consequently a bound on the first eigenvalue of (25), 
(26). 

It can be shown that the generalized spectrum of (27), (28) is real, 
and to find a lower bound for it, we apply (19). We set Q22 = 0 and 
choose Q12 — Q21. The boundary conditions (28) show that Ç11 and 
Q12 may be chosen arbitrarily in fi except for the usual smoothness re
quirements. Writing Q1 for Q11 and Q2 for Ç>12, we find from (19) that 

X [ Q^u^ + ui I -|£~|2L + ç * w ] =o 

X [ ̂ (v«1 • v«2) + u* jg -|£- - Ç + W«2)2 ] = o 

X [^^.vi^ + i^l-g-g- +XV)2 ]=o. 
We apply Green's theorem in the first equation above, subtract the sec
ond equation from the third and then apply Green's theorem again to 

X [ Ç'IV^I2 - \ (w1)2 AC1 + KQ^u2 J = 0, 

+ ç>2xV)2 - Ç2X2(M1)2 J = o. 

We combine (29) and (30) with the form for P1 = (Pj1, P2\ •••, P^) 
which was derived in Section 2. The resulting matrix is 

( Ç1/ PT (grad Q2)T 

P div P - IAQ1 - A2Ç»1 £ (X1?1 - AC2) 
gradÇ»2 ^ ( X ^ - A Ç 2 ) X*Ç2 

When the matrix Mx is positive definite the corresponding values of X 
— (À1, À2) are excluded from the generalized spectrum. We make the 
simple choice Q1 = Q2 = 1 in fi and find that Mx is positive definite 
provided that 

obtain 

(29) 

(30) 
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( d i v P - |P |2-X2)X1>|-(X1)2 . 

Thus for arbitrary vector fields P, the value of \ must satisfy 

^ \ 1 + X 2 ^ inf ( d i v P - |P|2). 
XEÏI 

Let T be the first eigenvalue of (A + r)<p — 0 in ß with cp = 0 on 9ß. 
Then clearly 

i. A1 + A2 ^ T 

or 

*- JUT1 + ^ = T. 

Now minimizing this inequality with respect to ju, we get \i = y/v~/2. 
Hence we obtain for the first eigenvalue v1 of the clamped plate prob
lem the classical inequality 

(31) vx g T2. 

This inequality corresponds to A1 = 2\/iT1 and À2 = 1/2 •\JV1, and we 
observe that it is essential to develop the framework of the generalized 
spectrum to obtain this result. If we had confined ourselves to (27), (28) 
with A1 = A2, i.e., if we had restricted the consideration to the ordinary 
spectrum of a second order system, the lower bound would not have 
been as strong as (31). Of course, improved bounds, both theoretical 
and numerical can be obtained by other choices of Q\ Ç>2 and by se
lecting Q22 different from zero. In this last case, Q22 would have to sat
isfy a boundary condition. Moreover, added information about the gen
eralized spectrum can be found by means of (24) which can be applied 
with a = 1. Condition (28) shows that the boundary term in (24) van
ishes and hence R1 = (JR1

1, R2\ • • •, R^) may be chosen arbitrarily ex
cept for smoothness hypotheses. To illustrate this point, suppose that ß 
is contained in the domain D = { r : 0 < r 0 ^ r ^ r 1 < l } where 
r2 = 2 j = 1 x{

2. We choose Q1 = 1 - r2, Q2 = 1 and find for vx the 
bound 

_ > (T + n)2 

1 _ (1 - r0
2)2(l - r,2) 

which is an improvement over (31). 
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