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PRODUCTS OF GENERALIZED METRIC SPACES 
RAYMOND F. GITTINGS1 

ABSTRACT. In this paper we investigate the productivity of many 
classes of generalized metric spaces; including M-spaces, iüM-spaces, 
u;A-spaces, quasi-complete spaces, 2-spaces and ß-spaces. The con
cept of a weakly-i space is introduced for the purpose of showing 
that, in the class of weakly-i spaces, each of the above classes of 
spaces are countably productive. The class of weakly-i spaces is gen
eral enough to include both the fc-spaces and the weakly 00-refinable 
spaces. Further, it is shown that the product of two M-spaces (wM-
spaces, quasi-complete spaces or 2-spaces) is an M-space (u;M-space, 
quasi-complete space or 2 -space) if one of the factors is a weakly-i 
space. Also, examples are cited which show that most of the above 
mentioned classes are not finitely productive and, even in the pres
ence of fairly strong conditions, are not preserved by uncountable 
products. 

1. Introduction. In [19] Isiwata presents an example of two com
pletely regular countably compact spaces whose product is not a q-
space. That example when considered in a more general context, shows 
that many other well-known classes of spaces are not finitely produc
tive. The most general consequence is best illustrated by introducing 
the following notion: 

L e t ^ be any class of spaces satisfying the following two conditions: 
(a) If X is a completely regular countably compact space, then 

(b) If X G Ä then X is a q-space. 
Any such class of spaces will be called a class of type Q. Of course, by 
Isiwata's example, any class of type Q is not finitely productive. 

In light of Isiwata's example, it is natural to consider the following 
class of problems: Let & be a class of type Q. Find a property p such 
that if X, Y EL&> and satisfy property p, then X x Y E ^ . I n addition, 
of course, we would like the same property p to work for numerous 
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classes of type Q and to be a fairly general property which is implied 
by a number of important or frequently investigated properties. Prob
lems of this sort have previously been investigated by several authors, 
especially for countably compact and M-spaces (cf. [10], [18], [20], [32] 
and [33]) and more recently for several other classes of type Q in [15]. 
In this paper we exhibit a particular property p which we use to pro
vide solutions to the above mentioned problems in many classes of type 
Q. In fact, the property p which we exhibit will be used to provide af
firmative answers to the following questions for various classes of spaces 

QUESTION 1.1. Let ^ be a class of spaces. If (Xn> is a sequence of 
spaces such that each Xn G SP and satisfies property p, does 

QUESTION 1.2. Let SP be a class of spaces. If X, Y ELSP and X satisfies 
property p, does X X Y G ^ ? 

The property p which we introduce will be general enough to be im
plied by an extensive number of properties which have been previously 
studied in the literature. Unfortunately, as will be readily seen in § 3 
and § 4, the author has not succeeded in answering Question 1.2 for 
some classes of spaces SP for which he has provided affirmative answers 
to Question 1.1. 

In § 2 we introduce the various concepts and terminology used 
throughout this paper. Affirmative answers to Questions 1.1 and 1.2 for 
various classes of type Q are presented in § 3. In § 4 we discuss the 
productivity of several classes of spaces which are not of type Q. Final
ly, in § 5 we exhibit a few examples and present a few open questions. 

Unless otherwise stated, all spaces are assumed to be Tv The positive 
integers will be denoted by N. A sequence xv x2, x3, • • of points will 
be denoted by (xn), a sequence fyl9 °i/2, ̂ 3 , - o f covers of a space X 
will be denoted by (^n> and a sequence X-j, X2, X3, • • • of spaces will 
be denoted by (Xn>. 

2. Preliminaries and definitions. If fy is a collection of subsets of a 
space X and xG X, we define St(x,fy), Sfifafy) and c(x, <ty) as follows: 

St(x,fy) = U { ( / e * : ï G [ / } , 

St2(x,fy) = U {U Gfy:U n St(x,fy) * 0} and 

c{x,fy) = H {U Œfy:x<EU}. 

Also, if A C X, we define St(A,fy) by St(A,fy) = 
U {17 E<& : A D U ¥= 0 } . The collection {St(U, %) : U G ^ } will be 
denoted by^* . 
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If^ and y are collections of subsets of a space X, we say t h a t ^ is 
a refinement of 7 , denoted a s ^ <7^ ox J >fy, if for every [ / E ^ 
there is a V G T such that U C V. A sequence (frn) of covers of a 
space X such that °i/x < °i/2 < fy3 < • • • is called a refining sequence. 
Further, if <fy1 < ^ 2 * < ^ 2 < ^ 3 * < - • • • , the sequence <^n> is called a 
normal sequence. 

Let <^n) be a sequence of covers of a space X, and, for each Ï G X , 
consider the following conditions on (^ n ) : 

(1) xn G Sf(x, ^ n ) for each n E: N implies the sequence (xn) has a 
cluster point. 

(2) xn G S£2(x, fyn) for each n G N implies the sequence (xn) has a 
cluster point. 

(3) {x^.i^ n) U {x} C £7n G ^ n for each n G N implies the se
quence (xn) has a cluster point. 

(4) xn G c(x, fyn) for each n E: N implies the sequence (xn) has a 
cluster point. 
A space X with a refining sequence <^n) of open covers satisfying (1), 
(2) or (3) is called a wA-space [4], wM-space [17], or a quasi-complete 
space [9], respectively. The sequence <^n) is called a voL-sequence, 
wM-sequence, or a quasi-complete sequence, respectively. A space with 
a normal it>A-sequence is called an M-space [26] and the sequence <^n) 
is called an M-sequence. A space X is called an M*-space [16] (M#-
space [34]) if there is a refining sequence (^n) of locally finite (closure 
preserving) closed covers of X satisfying (1). A space X with a refining 
sequence <f^n) of locally finite (closure preserving) closed covers satis
fying (4) is called a L-space [27] (2*-space [23]). The sequence <^n> 
will be referred to as an M*(M*, 2 or *2*)-sequence, respectively. 

Let (X, ST) be a space and let g be a function from N X X into J/~. 
Then g is called a COC-function for X if it satisfies the following two 
conditions: (1) x G n*=1g(n, x) for all x G X; (2) g(n + 1, x) C g(n, x) 
for all n G IV and x G X. The notion of a COC-function was introduced 
in [1]. 

Now let X be a space with a COC-function g, and for each x G X, 
consider the following conditions on g: 

(a) xn G g(n, x) for each n G N implies the sequence (xn> has a clus
ter point. 

(b) x G g(n, x) for each n E N implies the sequence <xn) has a clus
ter point. 

(c) (x, xn) C g(n, yn) and yn G g(n, x) for each n G IV implies the se
quence <xn) has a cluster point. 

(d) t/n G g(n, x) and xn G g(n, t/n) for each n G IV implies the se
quence (xn) has a cluster point. 
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(e) g(n, x) H g(n, x j ¥= 0 for each n E: N implies the sequence (xn) 
has a cluster point. 

If X is a space with COC-function g satisfying (a), then X is called a q-
space [22]; X is called a ß-space [13] if g satisfies (b); and X is called a 
wO-space, toy-space or wN-space if g satisfies (c), (d) or (e), respectively 
[14]. The COC-function g will be referred to as a q (ß, wO, wy or wN)-
function, respectively. If in (b), (c), and (d) we require the sequence 
(xn) to cluster to x, then we have a semi-stratifiable space, 0-space and 
y-space, respectively (see [14]). 

For the basic implications between the various classes of spaces in
troduced above, the reader is referred to [11], [14], [25] and [30]. In or 
der to determine which of those classes are classes of type Q, a few 
comments are necessary. The space X in Example 5.1 shows that the 
class of semi-stratifiable spaces is not a class of type Q. Since the space 
X in Example 5.5 is not first countable, X is neither a 0-space nor a y-
space (see [14]). Thus, neither the class of 0-spaces nor the class of y-
spaces are classes of type Q. The space N U {p}, where 
p E ßN — N(ßN being the Stone-Cech compactification of N) is an ex
ample of a 2-space (hence a 2 # -space and a jö-space) which is not a q-
space. Thus, the classes of 2-spaces, 2#-spaces and ß-spaces are not 
classes of type Q. Each of the remaining classes of spaces introduced 
above are defined by requiring that certain sequences have cluster 
points. Thus, it is immediate that the class of countably compact spaces 
is contained in each of those classes of spaces. It also follows immedi
ately from the definitions that each of those classes is contained in the 
class of ^/-spaces and are therefore classes of type Q. 

As will be shown in § 3, the following property p of a space X pro
vides affirmative answers to Questions 1.1 and 1.2 for many classes of 
type Q. A space X will be called weakly-i if given F C X, F H C is fi
nite for all closed isocompact subsets C of X implies that F is closed. 
According to Bacon [3], a space X is called isocompact if every closed 
countably compact subset of X is compact. The notion of a weakly-i 
space is motivated by that of a weakly-/: space introduced in [32]. Re
call that a space X is called weakly-k if given F C X, F n C is finite 
for all closed compact subsets C of X implies that F is closed. 

That the property of being a weakly-i space is indeed a very weak 
condition to impose on a topological space is the content of the follow
ing: 

THEOREM 2.1. (a) Every weakly-k space is a weakly-i space. 
(b) Every isocompact space is a weakly-i space. 

PROOF. The implication in (a) follows immediately from the defini
tions. To see (b), suppose X is an isocompact space and F C X is not 
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closed. Now F is isocompact and, since F is not closed, F fi F — F is 
not finite. Thus X is a weakly-i space. 

As an immediate consequence of Theorem 2.1, each of the following 
classes of spaces are contained in the class of weakly-i spaces. The re
dundancies are intentional. 

(A) First countable spaces; (countably) bi-sequential spaces; Fréchet 
spaces; sequential spaces; spaces of pointwise-countable type; (strongly) 
fc-spaces; (countably, singly) bi-fc spaces; fc-spaces. 

(B) Paracompact spaces; subparacompact spaces [6]; metacompact 
spaces, (weakly) 0-refinable spaces; meta-Lindelöf spaces; (weakly) 60-
refinable spaces. 

To see that each of the concepts in (A) implies weakly-i, we note 
that every fc-space is clearly weakly-fc and then invoke Theorem 2.1. 
Since each of the remaining classes of spaces in (A) are contained in 
the k-spaces [24], the implications all follow. For the definitions of the 
various concepts listed in (A) and the implications between them, the 
reader is referred to the paper of Michael [24] where a beautiful dis
cussion is presented. 

That each of the concepts in (B) implies weakly-i, follows from the 
following result of Wicke and Worrell [36, Corollary 2.4]: Every weak
ly ô#-refinable, countably compact space is compact. (The same result 
was stated without proof in Theorem (iv) of Worrell and Wicke [37]). 
Thus every weakly o0-refinable space is isocompact and hence weakly-i. 
As the reader will observe in [36], weak o0-refinability is implied by all 
those properties in (B). 

Another property of interest in determining when various classes of 
type Q are productive is the notion of a weakly-subsequential space in
troduced in [15]. A space X is called weakly-subsequential if each se
quence in X which has a cluster point has a subsequence with compact 
closure. (When we say a subsequence has a compact closure, we will 
mean, of course, that the range of the subsequence has compact clo
sure.) This concept is implicit in the work of previous authors ([18], 
[19], [28], [33]) and was also used by the author in [11]. 

House [15] observes that every weakly-fc, T2-space is weakly sub-
sequential and so all of those concepts listed in (B) imply weakly-sub
sequential (at least for T2-spaces). On the other hand, there are para-
compact T2-spaces (hence weakly i-spaces) which are not weakly-
subsequential (see Example 5.2). Thus, while weakly-subsequential 
spaces do generalize those concepts in (A), they have the disadvantage 
of not generalizing those concepts in (B). However, as the following re
sult shows, this only becomes important when studying those classes of 
spaces which are not of type Q. 
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THEOREM 2.2. For a regular q-space (X, ST), the following are equiva
lent: 

(a) X is weakly-subsequential. 
(b) X is weakly-k. 
(c) X is weakly-i. 

PROOF. That (a)=>(b) is the content of [15, Theorem 3.7] and 
(b)=>(c) is Theorem 2.1 (a). Thus it suffices to show (c)=>(a). Let 
g:N X X—* T be a g-function for X. By regularity, for each x G X we 
can construct a ^-function h : N X X-^^T such that, for each x G X, 
h(l, x) C h(l, x) C g(l, x) and for n ^ 2, fc(n, x) C ft(n,x) C 
h(n — 1, x) H g(n, x). Let (x n ) be a sequence in X with a cluster point 
p. Then for each k, there is an nfc ^ fc such that xnfc G h(fc, p). Since h 
is a ^-function, the sequence (xw ) has a cluster point 5 which belongs 
to C\%=1 h(n, p). Let F = {xnjfc*fc E iV} and note that if F - {s} is 
closed, there must be a subsequence of (xn > all of whose terms are 5, 
so that (xn ) has a subsequence with compact closure. 

On the other hand, suppose F — [s] is not closed. Since X is weakly-
i, there exists a closed isocompact subset C of X such that 
C H (F — {s}) = fa : / G N), where (z?) is an infinite subsequence of 
<xnfc>. Now let K = F U ( PI J = 1 ft(n, p)) and note that by the condi
tions imposed on the {/-function h, K is a closed countably compact 
subset of X. Since ( ^ : / G 2V} C X, ( ^ :/' GN) is closed and count-
ably compact. But [z^ : / G 2V} C C and, since C is isocompact, 
( ^ :jÇEN) has compact closure. Thus X is weakly-subsequential. 

We note that regularity is only needed for (c) => (a). In fact, (a) and 
(b) are equivalent for T2-spaces [11]. 

COROLLARY 2.3. Let & be any class of regular spaces of type Q\ then 
the following are equivalent for any X G ^ : 

(a) X is weakly-subsequential. 
(b) X is weakly-k. 
(c) X is weakly-i. 

It follows that for regular spaces of type @, the presence of any of 
the properties listed in (B) implies the space is weakly subsequential. In 
addition, for spaces of type Q9 each of the properties listed below im
plies first countability [21] and hence implies the space is weakly-i and 
weakly subsequential: 

(C) Point-countable separating open cover [13]; G8-diagonal; G8*-
diagonal [13]; points are G8's. 

The author wishes to thank F. Siwiec for his suggestion on using 
weakly-i spaces. Although the proofs of the theorems remain unaltered, 
this concept improves upon that of weakly-Ok originally used in [11]. 
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3. Products of classes of type Q. The results of this section provide 
affirmative answers to Questions 1.1 and 1.2 for various classes of type 
Q when property p is weak subsequentiality. For some classes of type Q 
where weak subsequentiality provides an affirmative answer to Question 
1.1 we were not able to provide affirmative answers to the correspond
ing Question 1.2. However, by using a stronger concept than weak sub
sequentiality in the hypothesis of Theorem 3.3, affirmative answers are 
provided for some of those classes. We wish to impress upon the reader 
that, although weak subsequentiality appears in the hypothesis of Theo
rems 3.1 and 3.2, it could validly be replaced by regular weakly-i space 
or by any of those concepts listed in (A), (B), or (C) of Section 2 (at 
least for regular spaces). Even when some of these stronger concepts 
are used, many of the results are new. 

The major results of this section are listed below; the proofs will be 
given after the discussion following Theorem 3.3. 

THEOREM 3.1. Let (Xn) be a sequence of weakly-subsequential spaces 
and let X = II^=1Xn . 

(1) If each Xn is countably compact, then so is X. 
(2) If each Xn is an M-space (M*-space, M*-space), then so is X. 
(3) If each Xn is a wM-space, then so is X. 
(4) If each Xn is a wà-space, then so is X. 
(5) / / each Xn is quasi-complete, then so is X. 
(6) 1/ each Xn is a wN-space, then so is X. 
(7) If each Xn is a wy-space, then so is X. 
(8) / / each Xn is a wO-space, then so is X. 
(9) If each Xn is a q-space, then so is X. 
REMARKS. The result in (1) is due to Saks and Stephenson [33]; in 

fact, they show we may take a product of up to tft factors instead of 
only countably many. On the other hand, Example 5.6 shows that an un
countable product ot metrizable spaces need not be a q-space. Thus we 
cannot take more than countably many factors in (2)-(9). The results in 
(4), (6) and (9) were obtained in [15, Theorem 3.11] with (4) being ob
tained independently by the author in [11]. The technique used in [15] 
is somewhat different than that used in this paper and in [11]. 

THEOREM 3.2. Let X and Y be spaces with X weakly subsequential. 
(1) If X and Y are countably compact, then so is X X Y. 
(2) If X and Y are M-spaces (M*-spaces, M*-spaces), then so is 

XxY. 
(3) If X and Y are wM-spaces, then so is X X Y. 
(4) If X and Y are quasi-complete, then so is X X Y. 
(5) If X and Y are q-spaces, then so is X X Y. 

In (4) and (5), Y is assumed to be a regular space. 
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We note that missing from the peceding theorem are the analogous 
results for u;A-spaces, u;y-spaces, o>0-spaces and tt>2V-spaces. The reason 
for this is that the technique used to prove (2)-(6) requires constructing 
a certain closed countably compact subset of Y. The analogous con
struction fails in the other situations. However, using a concept from 
[15], we obtain a somewhat weaker result in Theorem 3.3. 

A space X is called subsequential if each sequence in X which has a 
cluster point has a convergent subsequence. This concept was also used 
in [11] but was not given a name. 

THEOREM 3.3. Let X and Y be spaces with X subsequential 
(1) If X and Y are wA-spaces, then so is X X Y. 
(2) If X and Y are toy-spaces, then so is X X Y. 
(3) / / X and Y are wO-spaces, then so is X x Y. 
(4) If X and Y are wN-spaces, then so is X X Y. 

REMARKS. (1) The author does not know exactly which of the proper-
ites in (A), (B) and (C) of Section 2 can validly replace subsequentiality; 
however, the following replacements are possible. First, note that each 
of the classes of spaces in (l)-(4) of Theorem 3.3 are spaces of type Q, 
and so any of those properties listed in (C) could replace sub
sequentiality. Also, it is clear that every Fréchet space is subsequential, 
so that any of those properties preceding Fréchet spaces in (A) could 
replace subsequentiality. 

(2) The following remark holds only for iM-spaces as Example 5.3 
will show. If we assume both X and Y are regular 0-refinable spaces, it 
follows from Remark 1.9 of [5] and Theorem 4.10 in [15] that X X Y is 
a wA-space. Further, we can replace 0-refinability by any of those 
properties preceding it in (B). 

We now turn to the proofs of Theorems 3.1-3.3. In the proofs of 
those theorems, we will present a proof of only one part and simply in
dicate how the other parts follow using the same technique. Three 
comments concerning notational conventions used in the proofs are nec
essary. By a point x in the product space X = Tï%=1 Xn we will always 
mean x — (xv x2, x3, • • ) where xj G X. for each / G N. By a sequence 
(x(n)> in the product space X = Ti%=1 Xn we will mean the sequence 
x(l), x(2), x(3), - o f points of X. By the first convention, for each 
n G AT", x(n) = (^(n), x2(n), x3(n), • • •) where xfin) G X,. for each / G N. 
Also, recall that a sequence is said to have compact closure if the range 
of the sequence has compast closure. A similar convention is adopted 
when we say a sequence has countably compact closure. 

PROOF OF THEOREM 3.1. We give a proof of the result for uW-spaces 
in (6). For (6)-(9) let ^ be a COC-function for Xn. For each i G N and 
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x G X, put 

g(f, x) = gl(f, xt) X g2(i, x2) X • • • X ft(l, x,) X I I *>• 
i>i 

It is easy to verify that g is a COC-function for X. 
(6) Suppose g| is a wN-function for X{ and let (x(n)) be a sequence 

in X such that g(n, x) fi g(n, x(n)) ^ 0 for each n G N and some point 
x G X. It follows that gt(n, xt) n g^n, x1(n)) =£ 0 for each n G N and, 
since gi is a wN-function for X1? that the sequence (x^n)) has a cluster 
point in Xx. Since X1 is weakly-subsequential, there is an infinite subset 
N1 C N such that (x^/) : / G A^) has compact closure in X1# Let 
nx = inf {/ : / G A^} and consider the subsequence (x2(fj : / G A^ — 

(ni}> o f <*2(
n) : n G A 0 - S i n c e g2(/>*2)

 n g2(/>*2(/)) * « f o r e v e r y 
/ G iVx — {n1}, the sequence (x2(j) : / G Nx — ( n ^ ) has a cluster point 
in X2. (It is essential here to observe that, since g2 is a wAf-function for 
•̂ 2» & I (^ ~~ (n i ) ) X ^2 c a n be considered as a u;N-function for X2). 
Since X2 is weakly-subsequential, there is an infinite subset N2 C 
N1 — {nt} such that (x2(j) : / G N2) has compact closure in X2. Let 
n2 = inf {/: / G AT2}. Continuing by induction, we can select for each 
k > 2 an infinite subset A^ C Nk_1 — {nk_1}i with nfc_1 = inf {/ : / G 
nk_t], such that (%(/) : / E Affc) has compact closure in Xk. 

Now, with n i = inf {/ : / G A^}, consider the subsequence 
(x(ni) : i G N) of the sequence (x(n)). Let 

and 

Cfc = ClXk{xk(i) : / G nk} U {**(/) : ; < nk and / G NJ for ft ^ 2. 

Since Ck is a compact subset of Xk for each k, C — YYk-1 Ck is a 
closed, compact subset of X which contains {x(n^j ,i G N}. It follows 
that (x(ttj) : i G Af) is a subsequence of (*(rc)) with compact closure and 
so has a cluster point in X. Hence, the sequence (x(n)) has a cluster 
point showing that X is a wAT-space. 

(7) Suppose g| is a wy-function for X{ and let (x(n)) and (y(n)) be 
sequences in X such that, for some point x G X, y(n) G g(n, x) and 
x(n) G g(n, i/(n)) for each n G N. Then the sequences (t/^n)) and 
(x1(n)> satisfy t/1(n) G g^n, Xj) and x1(n) G gj(n, i/1(n)) for each n G Af. 
Thus, since Xx is a wy-space, the sequence (x^n)) has a cluster point. 
The remainder of the argument proceeds exactly as in (6) so that X is a 
wy-space. 

(8) Suppose gj is a u;0-function for Xi and let (x(n)) and (y(n)) be 
sequences in X such that, for some point x G X, {x, x(n)} c g(n, y(n)) 



488 R. F. GITTINGS 

and y(n) G g(n, x) for each n G N. Then the sequences (y^n)) and 
<*i(n)> satisfy {xv x^n)} C g^n, y^n)) and ^(n) G g^n, s j for each 
n G N. Hence, since X1 is a w;0-space, the sequence (*i(rc)) has a clus
ter point. The remainder of the argument proceeds exactly as in (6) so 
that X is a w0-space. 

(9) This is the content of [15, Theorem 3.11 (3)]. An argument analo
gous to that used in (6) could also be given. 

For (2)-(5), let (&ntj; / G iV) be a sequence of covers of Xn. For each 
i G N, put 

W{ = {U1XU2X---XUÌX Uk>iXk : U, G ^ i ? / = 1, 2, • • -, i}. 
(2) The result for M-spaces follows from [18, Theorem 1.3 in II]. 

Suppose (ftnj'.j E: N) is an M*-sequence (M#-sequence) for Xn. It is 
easy to verify that (y^*) is a refining sequence of locally finite (closure 
preserving) closed covers of X. The remainder ot the argument follows 
exactly as in [18, Theorem 1.3 in II]. (It is essential here to know that, 
for each n G N, the sequence ( ^ n j : i G N) is a refining sequence). 

(3) Let <^ni> be a u;M-sequence for Xn and let (x(n)) be a sequence 
in X such that, for some point x G X, x(n) G St2(x,W^n) for each n G N. 
It is easy to verify that the sequence (x^n)) satisfies x^n) G 
Sfi(x1,

6^1 n) for each n G N and thus has a cluster point in Xv The re
mainder of the argument proceeds exactly as in (6) so that X is a wM-
space. 

(4) This is the content of [15, Theorem 3.11 (2)]. An argument analo
gous to that used in (6) could also be given. This result was also ob
tained independently by the author in [11]. 

(5) Let ^nfi) be a quasi-complete sequence for Xn and let (x(n)) be 
a sequence in X such that, for some point x G X, {x(j) :j = i] U {x} C 
Wi G ̂ i for each i G N. It is easy to see that the sequence (x^n)) 
satisfies (x^/) : / = f} U {xt} C U1 G ^ for each i G N and thus has a 
cluster point in Xv The remainder of the argument proceeds exactly as 
in (6) so that X is a quasi-complete space. 

PROOF OF THEOREM 3.2. (1) Let (sn) be a sequence in X x Y. For 

each n, put sn = (xn, yn) where xn G X and yn G Y. Since X is weakly 
subsequential (xn) has a subsequence <xn ) with compact closure in Y. 
Since Y is countably compact, the subsequence (yn ) of (t/n) has count-
ably compact closure in Y. It follows that Clx [xn : k G N} X 
CZF{t/nfc: k E N} is a closed, countably compact subset of X X Y, and 
so the subsequence (snk'.k EN), and hence also (sn) has a cluster 
point in X X Y. Thus X X Y is countably compact. 

For (2H4), let <^n> and <^n> be sequences of covers of X and Y, 
respectively. For each n E N, p u t W n = {U X V: U E°i/n> V E7^n}. 
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(2) The result for M-spaces follows from [18, Theorem 1.1 in II]. 
Suppose (^n) and (^n) are M*-sequences (M*-sequences) for X and Y, 
respectively. It is easy to see that (#^ n ) is a sequence of locally finite 
(closure preserving) closed covers of X x Y. That X x Y is an M*-space 
(M#-space) follows exactly as in [18]. (It is essential to know that since 
C^n) *s a sequence of closure preserving closed covers of Y, 
C^n-i SKy^n) i s countably compact in Y). 

(3) Suppose (^ n) and Ç^n) are tt>M-sequences for X and Y, respec
tively. Let (sn) be a sequence in X x Y such that, for each n E N, 
sn E Sf2^ yrn) for some point s0 E X X Y. Since xn E St2(x0>fyn) for 
each n E N, the sequence (xn) has a cluster point and, since X is 
weakly-subsequential, has a subsequence {xn ) with compact closure. 
On the other hand, the subsequence (yn ) has a cluster point in Y and 
any such cluster point is in H^=1 ClYSt2(y0,y^n) which is closed and 
countably compact in Y. To see this, note that ClYSt2(y0,y^n) C 
Sfi(y0,y^n) for each n E N and use [17, Lemma 2.5 in I]. It follows 
that ClY{yn :k EL N) is countably compact in Y. It follows, as in (1), 
that X X Y is a u;M-space. 

(4) Let (^ n) and (3^n) be quasi-complete sequences for X and Y, re
spectively. Since Y is regular, we may assume without loss of generality 
that {ClyV: V E ^ n + 1 ) <T^n for each n E N. Let <sn> be a sequence 
in X X Y such that, for each n G N, {si : i ^ n} U {s0} C Wn E >^ n 

for some point s0 E X X Y. It is easy to see that the sequence (xn) sat
isfies {x{ : f i^ n) U {x0} C C7n E ^ n for each n E N and thus has a 
subsequence (xn ) with compact closure. On the other hand, the sub
sequence (yn ) of (yn) has a cluster point in Y, and any such cluster 
point is in n ^ - ! ClY Vn which is easily seen to be closed and count
ably compact in Y. It follows, as in (1), that X x Y is a quasi-complete 
space. 

(5) Let g and h be q-functions for X and Y, respectively. Since Y is 
regular, we may assume without loss of generality that ClY h(n + 1, y) 
C h(n, y) for each n E N and y E Y. For each « = (x, y) E X X Y and 
n G N define fe(n, 5) = g(n, x) X h(n, y) and let sn E fc(n, s0) for each 
n E N. It follows that the sequence (xn) has a subsequence (xn ) with 
compact closure in X. On the other hand, the subsequence (yn ) has a 
cluster point in Y and any such cluster point is in H ̂ )_1 ClY h(n9 y0) 
which is easily seen to be closed and countably compact in Y. It fol
lows, as in (1), that X X Y is a q-space. 

Before proceeding to the proof of Theorem 3.3, we note that the es
sential step in the proofs of (2)-(5) of Theorem 3.2 was the construction 
of a countably compact subset of the space Y. That construction does 
not seem to work for the concepts in (l)-{4) of Theorem 3.3. 
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PROOF OF THEOREM 3.3. Since the same technique is used in (l}-{4), 
we give a proof for (1) and leave (2)-(4) to the reader. 

(1) Let (^n> and (^n) be iM-sequences for X and Y, respectively. 
For each n E N, let 3T n = {U X V: U <=fyn, V G f f l } and let 
sn E St(s0, 3TW), where sn = (xw, t/J E X X Y for n ^ 0. The se
quence (xn) satisfies xn E St(x0,fyn) for each n E N and, since X is a 
u?A-space, has a cluster point in X. Since X is subsequential, there is a 
subsequence (xn > of (xn) converging to some point x E X. Also, be
cause Y is a t^A-space, the subsequence (yn ) of (t/n) has a cluster 
point y E Y. It follows easily that (x, y) is a cluster point of the sub
sequence <5n ) and hence of (sn). Thus, X X Y is a u;A-space. 

4. Products of other generalized metric spaces. The purpose of this 
section is to investigate the productivity of some classes of generalized 
metric spaces which are not of type Q. As indicated in Theorem 4.2, 
many of those classes are countably productive. Except for the concepts 
of developable space and a#-space, the concepts discussed in Theorem 
4.2 have either been defined in this paper or can be found in the ap
propriate references referred to in the proof of that theorem. A defini
tion of developable space may be found in [13]; the concept of a a*-
space is defined below. 

A space X is called a o*-space [34] if there exists a closed c o v e r t 
= U %=1 J

r
n of X, where each J r

n is closure preserving, such that if 
given distinct points x and y of X, there is an F G J " such that x E F 
and y $ F. In the proof of Theorem 4.2 we use the following charac
terization of a a#-space communicated to the author by R. W. Heath. 
Since a proof of this characterization has not appeared in the literature, 
a proof is indicated here. 

LEMMA 4.1. A space X is a a*-space if and only if there is a COC-
function g for X satisfying: (1) n ~ = 1 g(n, x) — {x} for every x E X; 
and (2) if y E g(n, x), then g(n, y) C g(n, x). 

PROOF. A space with a COC-function g satisfying (1) and (2) is called 
an a-space in [13]. Proposition 4.3 of [13] shows that every a*-space is 
an a-space. For the converse, suppose g is a COC-function for X satis
fying (1) and (2). For each x E X and n E N, let Bx(n) = 
X — U {g(n, y) : x $ g(n, y)} and note that each Bx(n) is a closed sub
set of X. For each n E N, put <%n = {Bx(n) : x E X}. To see that ,#n is 
closure preserving let A C X and suppose z $ U [Bx(n) :x E A). For 
each x E A, z $ ^ (n) and so there exists some t/ E X such that 
z E g(n, y) and x ^ g(n, y). By (2), g(n, z) C g(n, t/) and hence g(n, z) C 
U {g(n, t / ) : x $ g(n, t/)}. Thus, g(n, z) H B (n) = 0 . It follows that 
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g(n,z) H (U { B » : x E A}) = 0 and so * $ U ( B » : x E A) 
showing that â& is closure preserving. 

To complete the proof that X is a a*-space it remains to show that 
S$ — U^ - ! S$n is a cover of X which separates distinct points. Since 
x E Bx(n) for each n E N, Sß is a cover of X. To see that Sß separates 
distinct points, suppose x, y E X with x -£ y. By (1), x $ g(n, y) for 
some n G N and so y ^ ^(rc). Thus X is a a#-space. 

A COC-function g satisfying conditions (1) and (2) of Lemma 4.1 will 
be called a o*-function. 

THEOREM 4.2. The following classes of spaces are countably produc
tive: (1) a-spaces; (2) M{-spaces (i — 1, 2, 3) and Nagata spaces, (3) 
semi-stratifiable spaces; (4) semimetrizable spaces-, (5) developable 
spaces; (6) stricf p-spaces; (7) p-spaces; (8) quasi-metrizable spaces; (9) y-
spaces; (10) 0-spaces; and (11) o*-spaces. 

PROOF. The proofs of (1), (2), (3) and (4) may be found in [30], [8] 
and [9], respectively. The truth of (5) is well-known and can be proved 
using the techniques used in the proof of Theorem 3.1. (Note that a de
velopable space is weakly-subsequential). Fairly easy proofs of (6) and 
(7) can be given using the internal characterizations found in [5] and 
[7] (see [11, Theorems 4.5.2 and 4.5.4] and [15, Corollary 4.11]). Ac
tually, (7) is the content of [2, Theorem 15]. The truth of (8) is well-
known; in fact, by using the characterization of Ribeiro [31] this can be 
proved in the same fashion as (11). 

(11) Let (Xn) be a sequence of a#-spaces and let g{ be a a#-function 
for X<. Let X = n ~ = 1 Xn and let x = (xv x2, • • •) E X. Define g(n, x) 
= gi(n> *i) X g2(n, x2) X • • • X gw(n, xn) X Uj>n X, for each n E N. It 
is easy to verify that g is a a # -function for X. 

The proofs of (9) and (10) follow exactly as in the proof of (11). Also, 
(9) was obtained in [1] using mapping techniques. 

It seems to be an open question whether the classes of 2-spaces, 2 # -
spaces or ß-spaces are productive. However, we can obtain results sim
ilar to those obtained in § 3. In order to do so we introduce the follow
ing concepts: A space X is called a productively espace (productively 
^t-space) if there exists a refining sequence &~n) of locally finite (clo
sure preserving) closed covers of X such that, for each x E X, if (xn) is 
a sequence with xn E c(x, JFn) for each n E N, then (xn) has a sub
sequence with compact closure. The sequence ( J ^ ) will be called a 
productively ^-sequence (productively 2*-sequence). 

THEOREM 4.3. / / (Xn) is a sequence of productively ^-spaces (produc
tively 2 *-spaces), then X = Ti%=1 Xn is a productively espace (produc
tively ^t-space). 



492 R. F. GITTINGS 

PROOF. Let &~ni : i E IV) be a productively 2-sequence (productive
ly 2*-sequence) for Xn. For each i G N, let 2f \ = {F1 X F2 X • • • 

x Fi x nn>ixn : Fi E ^ , i ' / = ^ 2> • • -> * } • l t is e a sy to see ^ t 
(ß^i) is a sequence of locally finite (closure preserving) closed covers 
of X. Let (x(n)) be a sequence in X such that x(n) G c(x, 5^n) for some 
x G X and each n G N. Using the notation of the proof of Theorem 
3.1(6), the sequence (x^n)) satisfies x1(n) G c(x1? J

r
l n ) and thus has a 

subsequence with compact closure. The remainder of the argument, 
showing that X is a productively 2-space (productively 2#-space), pro
ceeds exactly as in the proof of Theorem 3.1 (6). 

COROLLARY 4.4. Let (Xn) be a sequence of weakly-subsequential or 
weakly-i spaces and let X — T\%-x Xn. If each Xn is a espace ( 2 # -
space), then X is a 2-space (2 *-space). 

PROOF. We consider only 2-spaces since the proof for 2#-spaces is 
identical. It is obvious that every weakly-subsequential, 2-space is a 
productively S-space; thus it suffices to show that every weakly-i, 2 -
space is a productively 2-space. To see this, let Y be a weakly-i, 2 -
space and let &~n) be a 2-sequence for Y. Let (yn) be a sequence in 
Y such that yn G c(y, J r

w ) for some point y G Y. Since Y is a 2-space, 
the sequence (yn) has a cluster point q and any such cluster point is in 
nn=lC(?/> ^n)' L e t F = ( î / n : n ^ Nì a n d n o t e ^ i f F ~ W) i s 

closed, the sequence (yn) has a constant subsequence. So we may as
sume F — {q} is not closed. Since Y is weakly-i, there exists a closed 
isocompact subset C of X such that C f l ( F — {q}) = {yn :k G N) is 
an infinite subsequence of (yn). Now, let K — F U C\%=1 c(y, Fn) and 
note that K is a closed, countably compact subset of Y. Since 
ClY{yn :k G N} C C H K, (yn) has compact closure. Hence Y is a 
productively 2-space. 

The reader may wonder why we chose to introduce the concepts of 
productively 2-space and productively 2*-space in this section, not 
having introduced analogous definitions for those concepts studied in 
§ 3. The reason, as the proof of Theorem 2.2 indicates, is that such def
initions would actually have been equivalent to assuming the spaces 
were weakly subsequential, i.e. if, for example, we defined productively 
M-spaces in a manner analogous to our definition for productively 2 -
spaces the following would hold: A space is a productively M-space if 
and only if it is a weakly-subsequential M-space. (The situation for 2 -
spaces is discussed in Example 5.2). 

THEOREM 4.5. Let X and Y be topological spaces with X weakly-sub
sequential (or weakly-i). 

(1) If X and Y are 2-spaces, then so is X X Y. 
(2) / / X and Y are 2 *-spaces, then so is X X Y. 
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PROOF. (1) As the proof of Theorem 4.4 indicates, it is sufficient to 
consider X to be a productively 2-space. Let <J r

n) be a productively 
2-sequence for X and let <J^n) be a 2-sequence for Y. For each n G N, 
put 3^n = {FxG:F G ̂ n , G G^ n } and observe that < ^ n > is a se
quence of locally finite closed covers of X X Y. The argument showing 
that X X Y is a 2-space proceeds in a similar fashion to that of [18, 
Theorem 1.1 in II] and is left to the reader. (It is essential to know that 
^n=i C(y>^n) *s countably compact in Y). 

(2) The proof of this result is obtained by making the appropriate 
changes in the proof of (1) above. 

REMARKS. We may validly replace weak-subsequentiality or weakly-i 
space in the hypotheses of Corollary 4.4. and Theorem 4.5 by any of 
those properties listed in (A) or (B) of § 2. The author does not know if 
such replacements are possible for those properties appearing in (C). 

We now turn our attention to a brief discussion of ß-spaces. Since 
the class of ß-spaces is not of type Q and since an argument similar to 
that used in Corollary 4.4 does not give the desired result for ß-spaces, 
we do not know if the countable product of weakly-i, ß-spaces is a ß-
space. However, the following result was obtained in [15, Theorem 
3.11 (5)] and independently by the author in [11]. 

THEOREM 4.6. The countable product of weakly-subsequential ß-
spaces is a ß-space. 

THEOREM 4.7. If X is a subsequential ß-space and Y is a ß-space, 
then X X Y is a ß-space. 

PROOF. Let g and h be ß-functions for X and Y, respectively. For 
each s = (x, y) G X X Y, define k(n, s) = g(n, x) X Hn, y). Let (sn) be 
a sequence in X X Y such that s G g(n, sn). It follows, just as in the 
proof of Theorem 3.3 (1), that (sn) has a cluster point. Hence X X Y is 
a ß-space. 

REMARKS. (1) Since each of the concepts listed in (A) of § 2 implies 
weak-subsequentiality, Theorem 4.6 holds if we replace weak-sub
sequentiality by any of those concepts. 

(2) Since every Fréchet space is subsequential, Theorem 4.7 holds if 
we replace subsequentiality by any of those properties listed in (A) of 
§ 12 which precede Fréchet space. 

(3) The author does not know if Theorems 4.6 and 4.7 hold if the ap
propriate replacements are made using those properties listed in (B) or 
(C) of § 2. 



494 R. F. GITTINGS 

5. Examples and open questions. 

EXAMPLE 5.1. A weakly-i, countably compact space which is not 
compact (hence not isocompact). 

Let X = [0, fì) where Q is the first uncountable ordinal. Since X is 
first countable, it follows from Theorem 2.2 that X is weakly-i. How
ever, X is not compact and, since it is countably compact, can't be iso
compact. 

In [23], Michael defined the concept of a strong 2-space and showed 
that the countable product of strong 2-spaces is a strong 2-space. Since 
every strong 2-space is subparacompact [23], it follows that [0, fi) is 
not a strong 2-space. However, as we just observed, [0, fi) is a weakly-
i, countably compact space and hence a productively 2-space. This 
shows that our results in Theorem 4.3 and Corollary 4.4 are not a con
sequence of Michael's results. 

The following example shows that the analogue of Theorem 2.2 does 
not hold for 2-spaces, 2#-spaces or ß-spaces. Also, this example shows 
that a productively 2-space need not be weakly-subsequential. (See the 
remark following the proof of Corollary 4.4). 

EXAMPLE 5.2. A weakly-i, 2-space which is not weakly subsequential. 
Let X be the Arens-Fort Space (Example 26 of [35]). It is easy to see 

that X is a 2-space which is not weakly-subsequential (this was ob
served in [15]). Since X is clearly paracompact, X is weakly-i. It follows 
that X is a productively 2-space. 

It should be noted that Example 3.8 of [15] shows that a weakly-f, 
weakly-subsequential space need not be weakly-fc. Hence both of these 
concepts are strictly weaker than weakly-fc. 

The next example shows why Remark (2) following Theorem 3.3 was 
restricted to wA-spaces. 

EXAMPLE 5.3. A paracompact wy-space (hence tt>0-space) which is not 
a strict p-space. 

The familiar Sorgenfrey line has all the necessary properties (see [14, 
Example 4.14]). We note that for completely regular spaces, the con
cepts of a strong u>A-space and a strict p-space are equivalent. 

As the following example shows, it is not possible to appeal directly 
to Theorem 3.3 when attempting to replace subsequentiality by any of 
those properties from (B). 

EXAMPLE 5.4. A paracompact u>A-space which is not subsequential. 
Let X - n ^ i i G / } , where I = [0, 1] and If = [0, 1] for each 

i E 1. The space X is clearly compact and hence a paracompact u?A-
space. Consider the sequence (an) of X, where an(x) is defined to be 
the nth digit of the binary expansion of x G /. Since X is a compact T2-
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space, the sequence (an) has a cluster point. Now suppose (an ) is any 
subsequence of (a n ) , and let y E J be such that an (y) = 0 if k is odd 
and an (y) = 1 if k is even. It follows easily that the subsequence (an ) 
does not converge. We note that, by Theorem 2.2, X is weakly-
subsequential. 

EXAMPLE 5.5. A completely regular countably compact space which 
is not subsequential, weakly-subsequential or weakly-f. 

Let X be one of the factors in Isiwata's example [19]; the example 
mentioned in § 1. By Theorems 2.2 and 3.2, X is the desired example. 

As the next example shows, none of the results in Theorem 
3.1 (2)-(9)> Theorem 4.2 (1)-(10)> Theorem 4.3, Corollary 4.4 and Theo
rem 4.6 hold for uncountable products. 

EXAMPLE 5.6. Let X = I I {Na : a E: A}, where A is uncountable and 
each Na is a copy of the natural numbers with the discrete topology. 

As observed in [15, Example 3.13], X is not a q-space nor a ß-space. 
Since each Na is metrizable, Na satisfies the hypotheses of all of those 
results mentioned preceding this example. However, it is known that 
each of those properties imply the space is either a q-space or a ß-
space. Further, this example shows that no replacements can be made 
from those properties in (A), (B) or (C) of § 2 to obtain results for 
uncountable products. 

Next, let us mention a few open questions concerning products of 
generalized metric spaces. 

QUESTION 1. If X and Y are 2-spaces is X x Y a 2-space? 

QUESTION 2. Same as Question 1 for 2#-spaces and ß-spaces? 

QUESTION 3. Does Theorem 3.3 hold if subsequentiality is replaced by 
either weak-subsequentiality or the property of being a weakly-i space? 

QUESTION 4. Do any of the theorems in this paper hold if weak-
subsequentiality is replaced by either normality or collectionwise nor
mality? 

Arhangel'skii [2] observes that every p-space is a fc-space and thus a 
weakly subsequential, quasi-complete space. Thus, by Theorem 3.2 (4), 
the product of a p-space and a quasi-complete space is quasi-complete. 
However, the following related question seems to be open. 

QUESTION 5. Is the product of a strict p-space and a wA-space a wà-
space? 

Of course, an affirmative answer to Question 3 would provide an af
firmative answer to this question. 
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