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MATRIX OPERATORS ON P 

D. BORWEIN AND A. JAKIMOVSKI 

Introduction. Suppose throughout that A = (ank) (n, k = 0, 1, 
• •) is an infinite matrix of complex numbers, and that 

p = 1 and 1 = 1. 
p q 

Let P be the normed linear space of all complex sequences x — {xn} 
(n = 0, 1, • • • ) with finite norm ||x||p, where 

( 2 K\p ) 
\ n=0 / 

1/p 
when 1 = p < oo 

and 
*i!oo = SUP \*n\-

Let B(P) be the normed linear space of all bounded linear operators 
on P into P; so that A G B(P) if and only if, for every x G P, 
yn = (Ax)n = 2 £ = 0 ankxk is defined for n = 0, 1, • • •, and 
y — {t/n} G / p . The norm ||A|| of a matrix A in B(P) is given by 

||A||= sup ||Ax||p. 
Ikllp^l 

It is known (see [8, p. 164]) that, for 1 = p < oo, every operator in 
B(P) has a matrix representation. Matrices in B(P) have been character
ized in terms of their elements only for p = 1, 2, oo. Crone [1] charac
terized matrices in B(P) by means of rather complicated conditions that 
are difficult to apply. The following are characterizations of B(fi) and 
B(f°) (see [8, p. 167 and p. 174]): A G B(fi) if and only if 

( c i) sup 2 Kk\ < °°-

A G B(P) if and only if 
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(C2) Sup 2 K/cl < °° 
ni=0 *=° 

With regard to sufficient conditions for A G B(/p), it is known (see 
[8, Theorem 9, p. 174]) that if both (CJ and (C2) hold then A G B(lp) 
for every P ^ 1. It is also known (see [5, p. 354]) that, for 1 < p < oo, 
A G B(P) if 

n=0 \ k=0 / 

p/q 
< OO. 

Further, it is known (see [3, p. 346]) that, for 1 < p < co, a matrix is 
in B(P) if and only if its transpose is in B(iQ). Hence, for 1 < p < oo, 
A G B(P) if 

(Q) 2 ( 2 K*lp ) 
q/p 

< OO. 

In § 2 of this paper we establish theorems concerning other condi
tions for A G B(P), and most of the rest of the paper is concerned with 
applications of these theorems. The main applications are in § 5 where 
simple necessary and sufficient conditions are obtained for certain 
weighted generalized Hausdorff matrices to be in B(P). In some cases 
the norms of such matrices are easily computed. In all that follows sup
pose that 1 < p < oo. 

2. Bounded operators on P. 

THEOREM 1. If bnk > 0 for n, k = 0, 1, 2, • • - , and if 

and 

«UP 2 Kk\(Kk)
1/p = Mx < oo 

sup 2 k*l(fc„*)-1/a = M 2< oo, 

then A G B(P) and \\A\\ ^ M\/QMl/p. 

PROOF. Let yn = 2*=0anfcxfc where x = {xk} G /p. Then, by Holder's 
inequality, 
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\yn\p^ ( 2 Kk\(Kk)1/p Y'1 ikfclft.*)-' 
\ fc=0 / fc=0 

1/Q\r \P 

^MT1 2Kk\(Kk)-
1/QK\", 

kzzO 

and hence 

2n \yJT2Mr1 2 1**1- E l« ,** ) - 1 " 

ê MÇ-iAf2 J o |xk|-. 

The desired conclusions follow. 

As an immediate corrollary we have: 

THEOREM 2. / / ank g 0 for 0 S fe g n, anfc = 0 /or k > n; i/ fcn > 0 
/or n = 0, 1, • • ; and if 

n / h \l/p 

(1) sup 2 *»* ( ^ ) = M, < oo 

and 

00 / h \1/Q 

(2) sup 2 «n* ( j f ) = M2 < °°> 

then A G £(/*>) an J ||A|| ^ M\/(1MYP. 

The next theorem shows that in certain circumstances (2) implies (1). 

THEOREM 3. If ank ^ 0 for 0 ^ k ^ n, anfc = 0 /or k > n; if bn > 0 
/or n = 0, 1, • • •, and 2^_0 bn = oo; and t/, as n —* oo, 

(3) 
n / Z? \ 1 / p 

an — 2 anfc V T~ I -^ ° (finite or infinite), 
k—0 \ un / 

then (2) implies (1) with M1 = supn^0an. 

PROOF. Suppose (2) holds. Then 

file:///yJT2Mr1
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m m m / , \ 1 / q 

2 o bnan= Ybk 2 anJ %>• ) ^M2B 
nzzO k-0 n—k \ O^ / 

where Bm = 2™_0 bk. But a simple consequence of (3) is that 

-j m 

^ - 2A bnon^ o as m-»co. 
Bm nzz0 

Hence 0 = o = M2 < oo, and so (1) holds with M1 = supw^0an < oo. 

The following theorem shows that under certain conditions (1) .is nec
essary for A G B(P). 

THEOREM 4. Suppose that ank = 0 for 0 ̂  k ̂  n, ank = 0 for k> n; 
that bn = bdn/Dn where b > 0, dn > 0 for n — 0, 1, • • -, and 
Dn = 2* = 0 dk^oo; and that (3) holds. If A G B(/p) tfien (1) holds and 
| | A | | ^ a . " 

PROOF. Suppose without loss in generality that a > 0 and let 
a < /A < À < a. Let 

î/n = 2 0 «»*** where xfc = ^ ^ ^ , e > 0. 

Then there is an integer N independent of e such that for n ^ 2V 

n l b \ 1 / p 

Now choose c so small that 

oo oo , / \ oo 

A * * » 4 DJ+* - \ X I rèo*"' 

Then 

n-0 n-N n=0 

Therefore ||A|| ^ /A and, since /A is an arbitrary number in the interval 
(0, a), it follows that ||A|| ^ a. This implies that a is finite and hence 
that (1) holds with Mx — supn^0an. 
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3. Remarks. 

(a) Theorem 4 can be used to show that certain matrices are not in 
B(P). Consider for example the matrix A given by 

0 * t = • y + 2 ) forQgfc^n; nk p{n + l )1 / p log(n + 2) (k + l)1/Q 

ank = 0 for k > n. 

This matrix is readily shown to be regular, i.e., (Ax)n —+ £ whenever 
xn —+ £. It also satisfies the conditions 

00 00 

sup SK*IP < °°; SUP 2 Kk\Q < °°> 
k^O n = 0 ni=0 * = ° 

which are evidently necessary for A E B(ip). Take fon = 
l/(n + 1) log(n + 2). Then 

y a ( h YP
= 1 y (log(/c + 2))"« 

JÊb nk\ bn / p(log(n + 2))1/(ï iS> fc + 1 

- > o o a s n - > oo. 

Thus (3) holds, and so by Theorem 4, A is not in B(iv). 
(b) Consider the matrix A given by 

1 1 
(n + l)1/plog(n + 2) (it + l)1/<? for 0 ^ k ^ n, 

önfc = ° f o r k > n-

Taking bn = l/(n -f 1), we find that 

n Ih V'p l n l 
iSb nk\ bn / log(n + 2) *=i> fc + 1 

whereas 

•i=l nk\ bk / n^k (n + i)log(n + 2) 

This is inconclusive as a test for whether A is in B(P) or not, but it 
shows that (2) may fail to hold when both (1) and (3) hold. It is readily 
shown, however, that the same ank satisfies both (1) and (2) with 
bn = l/(n + l)log(n + 2). Thus, by Theorem 2, A G B(P>). A straight
forward calculation shows, however, that neither (C3) nor (C4) holds. 
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(c) Consider now the matrix A given by 

1 
(n + l)1/2log(n.+ 2)(loglog(n + 3))5/4 

. / loglog(fc + 3) \ 1 /2 

V fc + 1 / 
for 0 ^ Jk ^ n, 

= 0 for n > k. 

It is readily shown that in this case (C3) holds with p = q = 2, and so 
A E B(/2). On the other hand, it can be shown without difficulty that, 
for p = q = 2, (2) fails to hold with bn = l/(n + 1), whereas both (1) 
and (2) hold with bn = l/(n + l)log(n + 2). 

The following are open questions: 

(i) If ank ^ 0 for 0 ^ k ^ n, ank = 0 for fc > n, and (C3) holds, is 
there always a positive sequence {frn} for which both (1) and (2) hold? 

(ii) The same as (i), but with "(C3) holds" replaced by "A E B(P)'\ 

4. Operators associated with weighted means. For n = 0 , 1, • • •, let 

n 
fln > °> An = 2 A*. 

fc=0 

The weighted or (iV, an) means of a sequence {sn} are given by 

n 

*=o Aw 

We consider a matrix A = (anfc), associated with such means, defined 
as follows: 

Let 

and let 

\> g 0, An = —a=i- for n ^ 1, 

t(^)'"o s i s"'"£ i-
Jk = n = 0, 

n>k. 

Let 

fow = - — f o r n ^ 1, 



MATÄIX OPERATORS ON I' 469 

and let 

b0= < 

^ - i f A 0 > 0 , 

\ 
+ 1 if \0 = 0. 

Then, for n § 0, 

A. *=o * A. A 

1 n 

= T - 2 % = 1; 
A„ fc=o ^ 

and, for fc ^ 0, 
00 lb \x/« 

A»K 

= t+oA i«(^7-r. ) 
«* (i + xfc) â i + v 

Hence, by Theorem 2, A e B(/p) and ||A|| g (1 + X,,)1^. 

Suppose in addition that an= 0(An_1), i.e., that bn = O(l), and that 
An —» oo. Let & = 1 + supnaofcn, let D_x — 0, and for n = 0, let 

d„ = Dn - D„_r 

Then Dn —* oo, since S ^ bn â 2" = 1 an/AB = oo; and, for n ^ o, 

Thus, by Theorem 4, ||A|| ^ 1, i.e., in this case we have 

(1 + W> § ||A|| g 1 

and in particular, if X0 = 0, ||A|| = 1. 
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5. Generalized Hausdorff matrices. Suppose in what follows that 

oo 1 

0 ^ A 0 < A 1 < ••• <A n , An — oo, 2 — = o o . 
w = 1 A n 

Let {/xn} (n = 0) be a sequence of real numbers. The divided difference 
[/xn, • • -, [im] is defined inductively by [/xn] = fxn, 

[/V '"> Mm! = 
_ L/V * * *> Mm-lJ iPn+V ' ' ' > Pn 

Let 
K+i 

Mn 
0 

Am - K 

for m > n ^ 0. 

••• \ iK> •••> MJ 0 ^ A: < n, 

fc = n, 
k>n, 

Kk 

and let 

Kk = A n f c ^ T " f 0 r ° - k - n> n - 1 ; A 0 0 = A 0 0 = MO-

We require three lemmas, the first of which is known. (See Hausdorff 
[2] and Leviatan [6, Theorem 2.1; 7, p. 227-228]; and the references 
given in the latter two papers.) 

LEMMA 1. The following three conditions are equivalent: 

(4) Mn = £ tXnMt) for n = 0, 1, 2, • • -, 

where a G BV[0, 1], 
n 

(5) sup 2 | \ , k | = L < <x>, 
näO fc=0 

(6) sup 2 | A i | = L * < o o , 
fc^O n=:fc 

Moreover, when the conditions hold 

max(L, L*) =i £ |d«(f)|. 

LEMMA 2. 1/ L„ = 2 ^ |AJ , Mn = 2 J = 1 |Xn_J, then for « g o , 
L n + 1 = Ln and Mn+2 = M „ + l -
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PROOF. W e have, for 0 ^ k ^ n, 

X — X . . . X [/Afc, • • % \Xn\ — LM/c+p • ' '> Mn+J 
An+l,fc — A / c+ l A n + 1 Ä T 

A n + 1 - Afc 

- An+i x Afc+i x 
~~ X X nk X _ X 'xn+l,fc+l> 

Aw+1 Ak A n + 1 Ak 

and so 

X _ A n+i Afc x -+- fc+1 X 
Ank — \ An+l,k + \ A n+l , f c+ l ' 

A n + 1 A n + 1 

It follows that 

n 

A i + 1 ~ Ln — | A n + 1 > 0 | = 2 ( lAn+l,fc+ll "" lAn,fcl> k—o 

= 2J \ \An+l,k+l\ \ \An+l,k 

vfe+i |x 
\ lAn+l,fc+l kn+l 

A n - H ~ Afc+1 

n+1 

A« , n — A t 

= à ( 'A—i n ^ * 
lAn+l,fc 

and hence 

A n + 1 

— IX I A n + 1 ~ A 0 
— — | A n+l ,o l A 

A n + 1 

A n + 1 

To complete the proof, let 

V = V i > K = Mn+i f o r n = °-

Then, for n > fc ^ 1, 

Anfc = V " * " K-lWk-l' ' "> Ki-ll 

— A n - l , f c - l » 

and for n ^ 1, 

Ann — Mn — A n - l , n - l * 
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Hence, for n ^ 1, 

K = 2 K_1>fc|, 
k—0 

and so, by the part already proved, Mn ^ Mn+1. 

A function a G #V[0, 1] is said to be normalized if a(0) = 0 and 

2a(t) = a(f+) + a ( f - ) for 0 < f < 1. 

LEMMA 3. Suppose (4) holds with a normalized. 

(i) / / A0 = 0, then lim Àn0 = a(0 + ) and 
n-*oo 

lim 2 | \ J = £ \da{t)\. 
n-»oo Ä—O 

(ii) lf\0>0, thenlim 2 |\,*| = X* |da(*)| - |a(0 + )|. 
n-*oo fcz:0 

PROOF, (i) The first conclusion in (i) is known (see Hausdorff [2, (25) 
p. 287). To establish the second, define ajf) for 0 ^ t ^ 1, n = 1, 2, 
• -, by setting 

«„(0) = 0; «„(*) = 2 A»* for 0 < t g 1 

where 

Then by Lemma 1, 

(7) x w > i = | o i\.ti ^ JÒW>I-

Further, Schoenberg [9, p. 607] (see also Leviatan [6, p. 102]) has 
shown that (4) is sufficient for 

(8) lim £ t*. dan(t) = £ t*. da(t) = jus for * = 0, 1, 2, • • •. 
n->oo 

It follows from (7) by Helly's Theorem (see [10, Theorem 16.3, p. 29]) 
and the Helly-Bray theorem (see [10, Theorem 16.4 and Corollary 16.4, 
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pp. 31-32]) that there is a strictly increasing sequence ( n j of positive 
integers and a normalized function y E BV[0, 1] such that 

(9) lim J 7 tx>dani(t) = £ fi'dy(t) for s = 0, 1, • • • 
i->oo 

and 

X1 |dY(*)| ^ Um inf X1 |dan/*)|. 
i-»00 

But (8) and (9) imply that y(t) = a(t) for 0 ^ £ ^ 1 (see Schoenberg [9, 
Corollary 8.1, p. 609]). Hence, by (7) and Lemma 2, 

£ \da(t)\f, lim inf £ |\n^| 

= lim 2 Kfc| ^ r l<M*)l-
n-*oo «_0 

(ii) Define sequences {An'}, {/*w'} by 

V = 0, /V = «(1) - «(0); 

K = An-1> /*»' = M»-l f0T n = L 

Then 

/xn' = J 0 fx» da(f) for n = 0, 1, 

Further, for n > k ^ 1, 

= \fc ' ' ' ^ n - l L M / c - 1 ' ' ' "> Mn- l J = \i-l,fc-l' 

and for n ^ 1, \ ; n = /An' = Xn_ln_r 

Hence, by part (i), 

n - l n 

= i\Kk\-\Ko\ 
k=0 

— Jjda(t) | - |a(0 + )| a s n ^ o o . 
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This completes the proof of Lemma 3. 

Now let H — (hnk) be the "generalized weighted Hausdorff" matrix 
given by 

Kk= < 

(H" 0 ^ k ^ n, n ^ 1, 

k = n = 0, 

k> n, 

and let H be the matrix (|^n&|). 

THEOREM 5. (i) If (4) holds with a normalized, then H, H G B(P), 
\\H\\ ^ \\H\\ and 

£\da(t)\-\a(0 + )\^\\H\\1â i\da{t)\. 

(ii) IfH<E B(P) then (4) holds. 

PROOF. As in §4, let bn — l/Xn for n ^ 1, and let 

K= 1 
Ao 

- J - + 1 if A0 = 0. 
Ai 

Let fc = 1 + suPn^0^n' ^ e t ^ - 1 = Q> a n ( ^ ' ^ ° r n — ^ ' ^ e t 

dn=Dn-Dn_v 

Then Dn—> oo, since 2 " = 1 bn = 2^= 11/Xn = oo; and, for n â 0, 

^ " » ( ' " V ) ^ 
Let 

°n = 2 I M ( - ? " ^ for n i= 0. 
fczzO ( t î 

Then 
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I n 

2 |\,*| when X0 > 0, n ^ 0, 

I k—0 

I 

2 Wk\ w n e n A0 = 0, n i= 1. 
I k—l 

(i) Suppose (4) holds with a normalized. Then, by Lemma 1, we have 

an ë X 1 l<*"«l for n ^ 0 

and 

n=fc \ uk / n—k 

^ J ^ |da(*)| for k ^ 0. 

Hence, by Theorem 2, / / E B(/P) and \\H\\ ^ J J |da(f)|; and this implies 
that H E B(f>) and ||H|| ^ ||#||. 

Next, by Lemma 3 and Theorem 4, 

°n- So \Mt)\ - l«(0 + )| ë ||//||. 

(ii) Suppose H E ß ^ ) . By Lemma 2, an —» a and, by Theorem 3, 
o < oo. Further, Hausdorff [2, (7) p. 282] has shown that, if A0 = 0, 
then 

n 

7Zi \ k — MO' 

and so 

l\J ^ 2, \K,\ + kl f<>r » ̂  i-

It follows that 

n 

sup 2 \Xnk\ ^ 2 supaw + iMol < oo 
n^O k-° n^0 

and therefore, by Lemma 1, that (4) holds. 
This completes the proof of Theorem 5. 
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EXAMPLE. Let 8 + l /p ^ 0 and let Xn = n + 8 + l/p. Then, it is 
readily shown that 

A--(nV-V / p)A n"^ f o r 0= f c=n 

where h°nk = H> An/x& = ^n_1/x/c — An_1/ifc+i- The associated hnk is 
given by 

\ I / P 

*nk 

= / n + 8 + l /p \ /fc + 8 + l /p \ 1 /P
An_ 

V n - fc / V n + 8 + l /p / n — k / \n + 8 + l /p 

for 0 ^ A: ̂  n, n ^ 1, 

>fc 

fy)0 — ^0* 

By Theorem 5, we have that H (E B(ÊP) if and only if fin = 
f I tn+s+1/p dy(t) for n ^ 0, where y G BV[0, 1]. Furthermore, if y is 
normalized and y(0-f ) = 0, then ||ff|| = fl\dy(t)\. The condition 
y(0 + ) = 0 involves no loss in generality when 8 + l /p > 0, and when 
8 + l /p = 0 it only affects the value of /x0. This is similar to results of 
Jakimovski, Rhoades and Tzimbalario [4, Theorems 1 and 2], the main 
parts of which we can deduce from the above result. Let H' = (h'nk) be 
the matrix given by 

Ku = 
\ (nn-l)*-*»> ° = k = n> 

k>n, 

and let H' = (\h'nk\). We have that 

/ n + S + l/p\ 
\ n-k / / k + Ô+l/p \ 1/»_ 3 , 

\ n + S + l/p / ~ tüt n + Ô 
( n-k ) 

where 

- ^ ( " + Î / ; 1 / P ) ( - ^ W - " - ^ T T m + i/p) 
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as n—* oo, and wn > 0 for n i? 1. It follows that there are positive 

constants cv c2 such that 

Cl\hnk\ S |fc;fc| S c2|/infc| for 0 ^ k^ n. 

Hence fl' G B(P) if and only if H G B(/P) and so, by the result proved 

above, H' <EB(P) if and only if \in = f J f + 8 + 1 / p dy(t) for n ^ 0, 

ô + 1/p ^ 0, where y G £V[0, 1]. Jakimovski, Rhoades and Tzimbalario 

proved this only for 8 ^ 0, but they also showed that in this case 

|H'| = fl \dy(t)\ provided y is normalized. This we cannot deduce from 

the results established in the present paper. 
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