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SEMICOMPACT COZERO-FIELDS AND UNIFORM SPACES 

ANTHONY W. HAGER1 

ABSTRACT. A cozero-field .r/ is semicompact if each countable s/-
cover has a finite subcover. This paper examines those uniform 
spaces X for which coz X is semicompact, and shows that each of 
the following conditions (among others) characterizes such spaces: 
Each completely additive coz X-cover has a finite subcover; X is the 
unique member of its cozero class; X is the unique member of its 
proximity class and each finite coz X-cover is uniform; X is pre-
compact, and either cozero-fine or metric-fine; X is G8-dense in its 
Samuel compactification; Each metric uniformly continuous image 
of X is compact. 

1. Alexandroff Spaces. We use the terminology of §1 of [8d]. 
Briefly: A pair (X, s/}, where X is a set and s/ is a separated cozero-
field of subsets, is called an Alexandroff space or A-space, the members 
of s/ are called cozero-sets (and the complements zero-sets), and an A-
morphism between A-spaces is a function inversely preserving cozero-
sets. When possible, we just write X for (X, s/). If X and Y are A-
spaces, A(X, Y) stands for the set of A-morphisms from X to Y. For 
A(X, R) we just write A(X) (R being the reals, whose topology is a co
zero-field); A*(X) denotes the subset of bounded functions. For any A-
space (X, s/), we have from [1] that s/ = (coz f \ f EL A(X)}, where 
coz f = [x \ f(x) ¥= 0 ) . A topology T and a cozero-field s/ are coz-
compatible if s/ is a base for r; a compact Hausdorff space has a 
unique coz-compatible cozero-field [1]. (See also §9 of [8a].) There is 
an analogue of the Stone-Cech compactification [1], which we denote 
ßAX: an essentially unique compact A-space containing X as a dense A-
subspace, such that if K is compact, then A(X, K) = A(ßAX, K) | X (or 
just A*(X) = A(ßAX) | X). A uniformity /x on X is coz-compatible with 
s/ if s/ = (coz f \ f E U(i*X)}9 where U(fxX) denotes the real-valued 
uniformly continuous functions. (Similarly, (7*(JUX) denotes the subset of 

Received by the editors on December 31, 1976. 
AMS (MOS) Classification numbers. Primary 54E15, 54H05, 18A40, 54C50. 
lrThis paper is excerpted from a manuscript entitled "Uniformities induced by proxim

ity, cozero-and Baire-sets" (as is [8c]), which was submitted originally to Transactions 
Amer. Math. Soc, received June 13, 1973, in revised form July 28, 1975. Some of the re
sults were announced in [4b] and contained in a course of lectures delivered by the au
thor at the Charles University, Prague, in Spring 1973. Most of the work was done in 
Fall, 1972 under sabbatical support of Wesleyan University. The first version of the man
uscript was completed in Prague in Spring, 1973, under support of the Academies of Sci
ences of Czechoslovakia and the United States. I am pleased to thank these Universities 
and Academies for their support. 

Copyright © 1979 Rocky Mountain Mathematical Consortium 

447 



448 A. W. HAGER 

bounded functions.) Note that a topological (resp., uniform) space X can 
be equipped with the cozero-field (coz / | / G C(X)} (resp., (coz / | / 
G U(X)}.) So it makes sense to speak of A-maps from an A-space into 
a topological (resp., uniform) space. 

The objects we are calling Alexandroff spaces were introduced in [1] 
(called there completely normal Hausdorff spaces) and re-invented in 
[7] (defined dual to the above, called Hausdorff zero-set spaces). Other 
recent studies include [3], [6], and [8a, d]. 

2. Semicompact Alexandroff spaces. (X, s/) will be called semi-
compact if each countable s/-cover has a finite subcover. These spaces 
have been studied in [1] (called "countably compact") and [7] (called 
"pseudocompact"). We use the term "semicompact" (consistent with 
[12], at least) to avoid confusion. 

Recall (say, from [5]) that a Tychonoff space X is called pseudocom
pact if C(X) = C*(X). Equivalently, if each countable cozero-cover (i.e., 
by sets coz / , / G C(X)) has a finite subcover, that is , if the associated 
A-space is semicompact. 

Let S be an A-subspace of the A-space X: S is called G8-dense if 
each non-empty zero-set of X meets S (equivalently, if each non-empty 
G5-set of X meets S, referring to the topology with the cozero-sets as 
base). 

THEOREM 2.1. The following conditions on the A-space X are equiva
lent. 

(a) X is semicompact. 
(b) A(X) = A*(X). 
(c) X is G8-dense (ct) in ßAX; or (c2) in every A-compactification; or 

(c3) in some A-compactification. 
(d) X has a unique A-compactification. 
(e) X admits a unique coz-compatible uniformity. 
(fA) Each A-image of X in an A-space is semicompact. 
(fj) Each A-image of X in a uniform space is precompact. 
(fT) Each A-image of X in a topological space is pseudocompact. 
(fM) Each A-image of X in a metric space is compact. 
(g) Each A-morphism of X into a metric space extends over ßAX 

(with values in the metric space). 

Much of this is known: the equivalence of (a), (b), (ct), (c2), and the 
first part of (f) is in both [1] and [7]. These are probably familiar as 
analogues of pseudocompactness. There are more analogues as well. For 
example, each of the following is equivalent to (a): (g) vAX = ßAX (vA 

being Gordon's A-space analogue of the Hewitt realcompactification); 
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(h) Each / G A*(X) assumes its sup and inf; (f) Each infinite family of 
cozero-sets has a cluster point. 

We need just 2.1 for application to uniform spaces so we give the 
proof. 

PROOF OF 2.1. (a) => (b). If / G A(X), then {{x \ \f(x)\ < r}} is a 
countable cozero-cover (2.1 of [8d]); with a finite subcover, / is 
bounded. 

(b) => ( c j . If 0 ^ Z(f) C ^ X - X, then for x G X, g(x) = l/f(x) 
defines unbounded g G A(X) (1.2 of [8d]). 

(c1) => (a). If (C n ) is a countable cozero-cover with no finite sub-
cover: for each n, choose a cozero-set Cn ' of ßAX with Cn ' PI X = Cn. 
Then Z = ^ X - U n C n ' works. 

(cx) => (c2) => (c3). Obvious. 
Now, 4.3 B of [8d] implies immediately: If S is G8-dense in Y, then 

A(S) = A(Y) | S. 
Thus (c3) => (Cj), because the A-compactification in (c3) has to be 

j8^X; and (c2) => (d), because every A-compactification has to be ßAX. 
(a) => (e). Assume (a), and let /A be coz-compatible. Since any unifor

mity has a base of some of its own cozero-covers, each ju-uniform cover 
has a finite subcover. So \x is precompact, and fxX is a uniform subspace 
of its Samuel compactification s/xX. But SJIX is an A-compactification of 
X (because (7*(/xX) = U(s[iX) | X). Since (d) holds too, ju, is determined 
uniquely. 

(e) => (a). §2 of [8a] shows that, if t c / is a cozero-field, then the fam
ily of countable s/-covers is the base for a uniformity, say /xa(^/), which 
is coz-compatible with s/. The obvious variation on that construction 
shows the family of finite s/-covers is the base for another coz-com
patible uniformity, /x0(c/). (These are provable as well by combinatorial 
means. For ju0(r/) one uses the "normality" of .r/ and for /A1(C/), the 
"perfect normality".) Now, obviously, (a) <=> [/x0 = jtij, which is im
plied by (e). 

Certainly (a) => (fA). (fA) => fv as in (a) => (e). And (f^) => (a) by 
considering the identity X —» j^X (as in (e) => (a)). Next: (fA) => (fT), 
clearly. / r => (fM) because a pseudocompact metric space is compact 
[5], 

(IM) => (g)- Obvious. 
(g) => (Cl). If / G A*(ßAX) and 0 * Z(f) C ßAX - X, then with M 

= /(X), the restriction / | X violates (g). 
3. Semicompact uniform spaces. A separated uniform space X (we 

can usually suppress indicating the uniformity) will be called semi-
compact if the associated A-space is semicompact, that is, if each 
countable cover by sets in coz X = (coz / | / G U(X)} has a finite 
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shall give some characterizations. 
Since each uniform space "is" an A-space the notation A(X, Y) (for 

X, Y <E Unif) is clear. Evidently, U(X, Y) C A(X, Y) always. But hardly 
conversely: for X, Y metric, A(X, Y) = C(X, Y), but only rarely is C7(X, 
Y) = C(X, Y). In case X G Unif has the property that U(X, Y) = A(X, 
Y) for each Y E Unif, (or equivalently, for each metric Y), then X is 
called coz-fine. It is a small theorem that X is coz-fine iff X is finest in 
its cozero-class (which by definition consists of all uniform spaces X' 
with coz X' = coz X); see [8c]. 

Given X G Unif, let X be the uniform space weakly generated by all 
functions in all A(X, Y), Y Œ Unif. That is, X carries the coarsest uni
formity making all these functions uniformly continuous; this uniformity 
is at least as fine as X's (since U(X, Y) C A(X, Y) always) and it is eas
ily seen that X = X iff X is coz-fine. 

There is a somewhat complicated cover-theoretic description of X 
which we shall need: Given X G Unif, a cover 7// (not necessarily uni
form) is called a completely additive (cd) coz X-cover if (a) °fr' C % im
plies U J// G coz X, and (b) 7// initiates a normal sequence of covers 
with property (a). Then (§4 of [8c]), X has subbasis of ca coz X-covers. 

We write X G coz! if X is the only member of its coz-class. 
/P denotes the class of precompact uniform spaces, p is the pre-

compact reflection (see [10a]) and the ^-(proximity, or precompactness) 
class of X consists of all X' with pX = pX' (equivalently, U*(X) = 
U*(X')). We write X G SP\ if X is the only member of its p-class. Isbell 
[10b] and Polyakov [13] have s t u d i e d ^ ! . One sees easily that X G SP\ 
iff X G SP H (proximally-fine). (See [2] on proximally-fine spaces.) 

For X G Unif, we write X G coz-^5 if each A-image of X in a uni
form space is in SP (i.e., precompact). Cf. 2.1(f). 

Finally, X is called metric-fine [8a] if U(X, M) = U(X, aM) for any 
metric M. (Here a is the fine coreflector in Unif [10a]: Given Y G 
Unif, OLY carries the finest uniformity compatible with the underlying 
topology of Y.) We need only this (2.3 of [8a]): if X has a base of 
countable covers, then X is metric-fine iff each countable coz X-cover 
is uniform, i.e., \i2X — X, where [ix — /A1(COZ X) is the uniformity with 
base of countable coz X-covers mentioned in the proof of 2.1(e) ==> (a). 

THEOREM 3.1. 

(a) X is semicompact. 
(b) The image of X in its Samuel compactification sX is G8-dense. 
(c) X is a G8-dense uniform subspace (cx) of its Samuel com

pactification; or equivalently, (c2) of some compact space. 
(d) X G coz! 
(e) X G coz-,^. 



COZERO-FIELDS 451 

(f) X G SP H (coz-fine). 
(g) Each ca coz X-cover has a finite subcover. 
(h) X G SP\ and each finite coz X-cover is uniform. 
(i) X G SP\ H (metric-fine). 
(/) X G ^ n (metric-fine). 
(k) Each metric uniformly continuous image of X is compact. 
(I) Each uniformly continuous function from X into a metric space 

extends over sX (with values in the metric space). 

PROOF, (a) through (e) are equivalent: 2.1 shows the equivalence of 
(a), (b), (d), (e). Such an X is precompact, hence X C sX, hence (b) => 
(Cj). Clearly, (cx) => (c2). And (c2) => (b) because the compact space in 
(c2) must be sX. 

(d) => (h). The p-class of any space is a subset of the coz-class; so 
coz! C SP\. The uniformity jn0 defined by finite coz X-covers is in the 
coz-class of X (see 2.1(e) => (a)). So (d) => [[IQX = X]. 

(h) => (i). Assume (h). Since each finite coz X-cover is uniform, and X 
G SP, JLIQX = X. Evidently, p^X = JLIQX for any Y. Thus, /XjX is in the 
p-class of X. Since X G SP\, iitX — X. Since X has a base of countable 
covers (even finite ones, since X G SP), X is metric-fine. 

(i) => (j) is clear, since SP\ C SP. 
(j) => (k). Let / G U(X, M) be onto, with M metric. If X is metric-

fine, then / G U(X, aM). If X G SP, then aM G SP. Since the base for 
an aM is all open covers, each open cover has a finite subcover. 

(Je) => (T) is obvious. 
(I) => (c) is like 2.1 (g) =» (cx). _ 
(f) <£> (g) by the description of X given above. 
(/) => (e). Each uniform image of X is precompact (since X G SP), 

and each A-image is a uniform image (since X G coz-fine). 
(c) => (j). Assume (c), with X C K. Then X G ^ and K = sK, the 

Samuel compactification. A uniform subspace is an A-subspace (by 
Katëtov's extension theorem for bounded functions [11]). Thus, as in the 
proof of 2.1 (c3) =* (ct), it follows that sX = ßAX. Now let / G A(X, 
M), M metric and / onto. There is an extension f G A(ßAX, ßAM). 
Since (c) holds, (a) holds also, and by 2.1(f), M = /^M. Since ßAX — 
sX, then, / ' G A(sX, M) = C7(sX, M) (by compactness of sX). Thus, the 
restriction / = f | X E U(X, M). 

COROLLARY 3.2. The class coz! of semicompact uniform spaces is 
closed under formation of: uniformly continuous images, G8-dense sub-
spaces, and arbitrary products. 

PROOF. In each case, 3.1(c) can be used. 

REMARKS 3.3. We compare coz! with SP\\ 
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Isbell [10b] has shown (1) that the cone T in precompact spaces over 

the countably infinite free precompact space is a test space for spaces 

in . ^ 1 , i.e., X G #\ iff each / G U(X, T) extends over sX; this is to be 

compared with the much simpler condition 3.1(1) for coz!; and (2), that 

# \ is closed under uniformly continuous images and products (the latter 

result using (1)). It can be shown that ^P\ is closed under forming G8-

subspaces, as well. 

Polyakov [13] has shown that SP\ is closed under finite products, and 

Husek [9], that a product is proximally-fine iff each finite subproduct 

is. These combine to give another proof of Isbell's product theorem. 

REMARK. 3.4. In [4], A. Diabes has shown, independently, 3.1 (a) <^> 

(c), and given a number of other equivalences, mostly involving uniform 

measures. 
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