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INVARIANCE IN INSEPARABLE GALOIS THEORY 
JAMES K. DEVENEY1 AND JOHN N. MORDESON 

ABSTRACT. Let L be a normal, modular extension of a field K of 
characteristic p ^ 0, and let K(Lpr)/K be separable for some non-
negative integer r. This paper is concerned with the intermediate 
theory for the Galois theory of inseparable extensions developed by 
N. Heerema. A new characterization of the distinguished sub fields 
for the purely inseparable case in terms of linear disjointness proper
ties is used to incorporate the purely inseparable intermediate theo
ry as a special case of the inseparable theory developed here. 

1. Introduction. Let L be a field of characteristic p ¥= 0. In [3], 
Heerema develops a Galois theory for inseparable field extensions 
which includes both the Krull infinite Galois theory and the purely in
separable, finite higher derivation theory. The groups used in this corre
spondence are subgroups of the group A of automorphisms of the local 
ring L[x] — L[x]/xpe+1L[x] such that f(x) = x where x is an in-
determinant over L, e is a nonnegative integer, xpc+1L[x] is the ideal 
generated in L[x] by xpe+1, and x is the coset x + xpe+1L[x\. For a sub-
group G of A, set GL = {f E G\f(L) Q L ) , G0 = {f G G\f(c) -
c G xL[x] for all c G L} , and LG = {c G L\f(c) = c for all / G G} . 
For K a subfield of L, let GK = {/ G G \f(c) = c for all c G K ) . If C 
denotes the group of all rank pe higher derivations on L, there is an 
isomorphism A(C) = A0 given in [3, Proposition 2.1, p. 194]. Basically, 
if G is a Galois subgroup of A, then GL can be considered as a classical 
group of automorphisms of L, and L is a normal separable extension of 
LGK G0 can be considered as a group of higher derivations on L via the 
isomorphism A, and L is purely inseparable modular extension of LG% 
and moreover, L == LGL ®LGLGO. 

Throughout this paper, K will be a given Galois subfield of L with 
Galois group G, and we will let LGo = S, LGL = J and A(CS) = G0. 
Moreover, we will assume [L : S] < oo in order to apply the Galois the
ory of [4]. In particular, S is normal over K and is the maximal sepa
rable extension of K in L, and / is a finite dimensional purely in
separable modular extension of K (as is L/S). 

The purely inseparable Galois theory of higher derivations developed 
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in [4] occurs as a special case of the inseparable theory when S = K, 
[L : S] < oo. In [1] it is shown that the only intermediate fields F of 
L/S which satisfy the property that if S is Galois in F, then F is in
variant under C s are those of the form S(Lpr). This defect is circum
vented in [1] by defining an intermediate field F of L/S to be distin
guished when it is left invariant under a standard generating set for 0 s . 
In [2] it is shown that F is distinguished if and only if F is homo
geneous [1, Definition 4.7, p. 292] and that F is homogeneous if and 
only if there is a subbase {xx, • • -, xr} for L over S such that 

( V % • ••,*/"•»},(* ̂ r ) 

is a subbase for F over S. Clearly if F is homogeneous, then L/F and 
F/S are modular. In this paper, the concept of distinguished inter
mediate fields for the inseparable Galois theory is developed. A new 
characterization for the purely inseparable case in terms of linear dis-
jointness properties is used to incorporate the purely inseparable inter
mediate theory as a special case of inseparable theory developed here. 
Of course any defect which appears in the purely inseparable Galois 
theory will also appear in the inseparable Galois theory. Theorem 2 cir
cumvents the problem concerning distinguished intermediate fields for 
the inseparable case in a similar manner to what is done in [1] for the 
purely inseparable case. Theorem 3 examines the question of when 
every intermediate field is distinguished. 

2. Intermediate Theory. Before developing an intermediate theory 
for Heerema's inseparable Galois theory, we first derive a new charac
terization for the purely inseparable case (i.e., G = G^. 

LEMMA 1 (REPLACEMENT LEMMA). Assume L/K is purely inseparable 

modular of exponent n. Let Tn U Tn_1 U • • • U Tx be a subbase for 
L/K where the elements of Ti are of exponent i over K. Let 
{bv • • -, br) C L be such that \b^\ • • -, br

pi} is relatively p-indepen-
dent in Kp~8 n L over (Kp~s+1 n L) (Lpi+1 H Kp~s). Then there exists 
rs+i D {bv • - -, br) such that TnU • • • U Ts+i+1 U Ts+i U • • • 7\ is 
also a subbase for L/K. 

PROOF. We shall use the construction of a subbase given by S weedier 
in [7, p . 402]. Tn is a relative p-basis for L over Kp~n+1 H L. Since 
Tn U • • • U 7\ is assumed to be a subbase for L/K, we can proceed to 
the stage of constructing a relative p-basis for Kp~ii+8) D L over 
Kp-(i+8)+1 H L. Since L/K is modular, T/n"( i+8) U • • • U Tp

i+S+1 is p-inde-
pendent here [7, Theorem 1, p. 403], and in fact is a relative p-basis for 
(Kp-ii+s)+1 H L) (Lp H Kp-(i+t) over Kp-{i+t)+1 n L. The set [bv • • -, br) is 
in Kp~li+8) H L since {bf, • -, bpi] C Kp~8 H L. Moreover, it is p-inde-
pendent over (Kp-(i+t)+1 n L) (Lp H Kp~ii+8). For if not, there exists a 
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non-trivial relation among the monomials {Ub^i 
br

nr\0 ^n{< p}with coefficients in (Kp~{i+S)+1 n L) (Lp H Kp~{i+S). Rais
ing this relation to the pi power would give a non-trivial relation 
among {II ( V ) * ! ••• (br

pi)nr | 0 ^ n, < p} with coefficients in 
(Kp_8+1 H L) (Lpi+1 H Kp_8), contrary to assumption. Thus, {bv • • -, fcr} 
can be completed to a relative p-basis Ts+i for Kp~{i+8) Pi L over 
(Kp-(i+8)+1 H L) (Lp H Kp-(i+8). Thus Tn U U 7^+s is part of a sub-
base for L/K. In constructing a relative p-basis for Kp h O L over Kp 

H L where h < i + s, Tn
pn~h U • • • U Ti+s

p(i+a)~h U • • • U 7\+ 1
p will 

be a relative p-basis for (KP_Ä+1 Pi L) (Lp Pi KP_A) over KP_Ä+1 H L, and 
hence can be completed to a relative p-basis with Th. This establishes 
the lemma. 

We note that as a corollary of the replacement lemma, the complete 
set of elements of a given exponent from some subbase may be used in 
any other subbase. 

LEMMA 2 (SHIFT LEMMA). Assume L D M D K where L is purely in
separable modular of exponent n over K. If 

(1) KP~T (I L and M are linearly disjoint over Kp~r D M for all r, 
and 

(2) (Kp-r H L) (Lpi+1 H Kp-r~) and (KP~T n L) (Lpi H Kp-r"1 n M) 
ore Zinearfy dw/oinf ot;er (Kp_r H L) (Lpi+1 H Kp-r_1 H M) for all 
i and r, 

then any relative p-basis for (Kp~r Pi M) (Lpi Pi Kp-r_1 Pi M) ot;er 
(Kpr PI M) (Lpi+1 Pi Kp-r_1 Pi M) remains p-independent over (Kp~r H L) 
(Lpi+1 n Kp-r-1). 

PROOF. This result follows by applying the standard theorem on lin
ear disjointness to the diagram of fields below. 

(Kp'r n L)(Lpi+1 n KP 

Kp-r n L 

n M) 

(Kp-r n M) 
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THEOREM 1. Assume L D M 3 K where L is purely inseparable mod
ular of exponent n over K. Then there is a subbase B of L over K and 
a subset B' of B such that C = {bp \b E Bf, r is the exponent of b over 
M] is a subbase of M over K if and only if 

(1) Kp~r H L and M are linearly disjoint over Kp~r Pi M for all r; 
(2) (KP~T H L) (Lpi+1 H Kp-r~) and (Kp~r D L) (Lpi H Kp~r_1 Pl M) 

are linearly disjoint over (Kp~r D L)(Lpi+1 D Kp-r_1 H M) for all 
r, i. 

PROOF. Assume conditions (1) and (2) are satisfied. Then M is modu
lar over K [8, Proposition 1.4, p. 41]. The idea of the proof is to simul
taneously construct subbases for L/K and M/K with the desired proper
ty. Once again, we will use Sweedler's method. 

STAGE 1. Let An be a relative p-basis for M over Kp~n+1 D M. By as
sumption (1), An remains p-independent over Kp~n+1 Pl L and hence can 
be completed to a relative p-basis for Kp~n Pi L = L over Kp~n+1 PI L 
with Bn r The elements of Bn r may be changed later. 

STAGE 2. We want to construct a relative p-basis for Kp~n+1 PI M 
over Kp~n+2 Pi M. Consider (Kp~n+2 Pi M) (Lp H Kp~n+1 Pi M)/(Kp~n+2 PI 
M). An

p is p-independent here since L/K is modular. This set can be 
completed to a relative p-basis with elements of Lp, called Cn 1

P. By the 
Shift Lemma, A / U Cnl

p is p-independent in (Kp~n+2 D L) (Lp Pl 
Kp"n+1) over Kp~n+2 PI L ' = (Kp"n+2 n M) (Lp2 H Kp"n+1 Pi M), and 
hence by the Relacement Lemma, we can replace An U Bnl with 
An u Cn,i u ßn,2- L e t An-\ b e a relative p-basis for Kp~n+1 PI M over 
(Kp~n+2 n M) (Lp Pl Xp_n+1 PI M). By the Shift Lemma, An_1 is p-in
dependent in Kp-n+l H L over (Kp"n+2 Pl L) (Lp Pl Kp~n+1), and hence 
An u Cn,iP u Bn,2P u A n- i i s p-independent over Kp"n+2 Pl L and 
can be completed to a relative p-basis for Kp~n+1 Pl L over Kp~n+2 PI L 
with Bn_ l t l . Thus we now have Tn = An U Cn a U Bn 2, Tn_x = 
A n- i u Bn-i.i a s P a r t o f a subbase for L/K and T n = An, T^ , ! = 
Cn a

p U An_1 as part of a subbase for M/K. 
We now assume that after the completion of stage (i — 1) we have 

constructed partial subbases 

Tr = \ U Crl U • • • U CM_B+r_2 U B , , , . ^ . ! 

and 

r r = Ar u c„,n_r""-r u • • • u c ^ y , 

n ^ r ^ n — t + 2. 

STAGE i. We want to construct a relative p-basis for xp_n+1_1 Pl M 
over Kp~n+t D M. This is done in i steps via the intermediate fields 
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(Kp~n+i n M) (Lpi n Kp_n+i_1 n M)/(Kp_n+i n M) (Lpi+1 n Kp"n+i_1 n M ) , 
i — 1 ̂  / = 0, and is done in descending order of /. For / > 0, 
K-a-i-/ u Cn-(i- i-^, / U • • • U C ^ . ^ . . / is p-independent 
here since it is part of a subbase of L/K and hence is p-independent 
over (Kp~n+1 H L) (Lpi+1 H Kp_n+i_1). Complete this to a relative p-basis 
with elements of LP\ called Cn_ii_1_j)f\ Using the Shift and Replace
ment Lemmas, we can replace Bn_{i_1_j)j with Cn_{i_1_j)J U 
#w_(j_i_;)J+r When / = 0, we want to construct a relative p-basis for 
Kp_n+i_1 fi M over (Kp_n+i n M) (Lp D K^^'1 n M). Note that we have 
already shown Tr

/p_n+,~1, n = r = n — i-f-2, is p-independent in 
(Kp_n+i H M) (Lp H Kp"n+i_1 H M) over Kp~n+i n M, and that we have al
ready added some "new" elements to these. Thus when we choose any 
p-basis for Kp"n+i_1 H M over (Kp_n+i H M) (Lp H Kp"n+i_1 H M), called 
An_i+V we have constructed T'n_i+1 = C ^ ' 1 U • • • UCn_ ( i_2U

p 

U An_ i + 1 as part of a subbase for M/K. By assumption, An_i+1 remains 
p-independent in Kp_n+i_1 n L over (Xp_n+i H L) (Lp H Kp_n+i_1). Since 
U{rr

pr-(n-<+1)| n ^ r ^ n - i + 2} is a relative p-basis for (Kp_n+1 H L) 
(Lp H Kp_n+i_1) over Kp'n+i O L, we can find Bn_i+1 1 so that 
A n _ m U B U (Tr

pr-(n-i+1)| n g r ^ n - t + 2} is a 'relative p-
basis for Kp n+t 1 D L over Kp n+1 D L, i.e., we can choose Tn_i+1 = 
An_ i + 1 U Bn_i+lv Since L/K is of bounded exponent n, the desired 
subbases are constructed in a finite number of stages. The proof of the 
converse is straightforward. 

DEFINITION. As usual let K be a Galois subfield of L. Let G — AK 

and let %f = {xlv • • -, xtj,, • • -, xnl, • • •, xni } be a subbase for L/S 
where x{j has exponent i over S. Let ^ J = {d1' | 1 = i = n, 
1 = /' = /!} be the set of rank pe higher derivations defined on L by 

M V rs/ I O otherwise, 
where [pe_1] is the greatest integer less than or equal to pe~\ and 
8(U)Ars) = 1 if i = r, / = 5, and is 0 otherwise. Let tf7 = A(^ J ) . Then 
GLHJ = [ok(dij) | a G G^ A(dij) G tfJ) is called a standard generating 
set for G with respect to ffi. An intermediate field F is distinguished if 
and only if F[x] is invariant under some standard generating set. 

Clearly n ^ e + 1 and à(dij) G G0. Also [pe~j] = p e " j if i ^ e and 
[p*-*] = 0 if i = e + 1. 

The case when G = G0 is the intermediate theory developed in [1]. 
In view of [1, Corollary 4.13, p. 294], the linear disjointness conditions 
of Theorem 1 yields a new characterization of the distinguished sub-
fields in this case. We now derive a characterization of the distin
guished subfields for the inseparable Galois theory. 
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THEOREM 2. Let K be a Galois subfield of L such that [L : S] < oo. 
Let G — AK and let F he a Galois intermediate field of L/K. The fol
lowing are equivalent. 

(1) F/K is normal and F D J is homogeneous in J/K. 
(2) F[x] is invariant under a standard generating set for G. 
(3) F/K is normal and SF is homogeneous in L/S. 

PROOF. (1)=> (2). Let %f = {xlv • • -, xlh, • • -, xnl, • • -, xnjJ be a 

subbase of J/K such that for fcx = j v • • •, kn ̂  jn, 

Or _ fr PC11 . . . r PClk! . . . r Peni . . . r P6nkn\ 

r/P — l ^ i i > 5 •*'ifc1 ? >* W l > » *nkn J 

is a subbase of (F H J)/K. Let GLH J be a standard generating set for G 
with respect to 2rif and ofij G GLH J where / « = A(d"). Since ^ gener
ates F over S H F, it suffices to show ofij(xrs

p&rs) G F[x] and a / ^ s ) G F 
where 5 G S Pi F. Clearly of^s) G S H F since fij is the identity on S 
and (S fi F)/K is necessarily normal. Now 

pe 

fi(x„*'»)= \x-dj\xrr*) 
uzzO 

pe 

and du
ij(xr

p&rs) = dt
i'(xr8y>'n if u = fpe" for some *, djifa**8) = 0 oth

erwise. Suppose w = fpe« for some t. Then dt
li(xrs) = oiiJ)Ars) if f = 

[pe _ i] + 1 and dt
li(xrs) — 0 otherwise. Therefore, 

-fiJ(Y Per,\ _ r peTg I ,p([p«-*l + l)pefV5 

Thus, ofj(xr
pe") G (F H /)[*] since a is the identity on J[x\. 

(2) => (3). Let GLHJ be the standard generating set. Since the identity 
map is in Gu F[x] is invariant under HJ. Thus F[x] is invariant under 
GL. Since L is also invariant under GL, F[x] H L = F is invariant under 
GL and F /K is normal. Since F[x] is invariant under HJ and clearly 
every element of HJ is the identity on S, SF[x] is invariant under HJ. 
Thus SF is invariant under ^~1(HJ) which is a standard generating set 
for L/S in the sense of [1]. Thus, SF is homogeneous in L/S. 

(3)=> (1). We show F H / = M satisfies conditions (1) and (2) of The
orem 1. To show (1), we need to prove that Kp~r D / and M are linear
ly disjoint over Kp~r fi M. However, a basis for Kp~r fi / over KP~T fi M 
is a basis for Sp~r fi L over Sp_r fi SF, and since SF is homogeneous in 
L/S, by Theorem 1, this set will be independent over SF hence over M. 

To show (2), since SF is homogeneous in L/S, we have that (Sp_r fi 
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L) (Lpi+1n Sp_r_1) and (Sp-r n L) (Lpi H S p"r~1 fi SF) are linearly disjoint 
over (Sp_r H L) (Lpi+1 H Sp_r_1 D SF). We first note that Sp_r H L = 
S(Kp-r H /) and that S = Spi+1 0 r m K . Thus we get 

(Sp-r n L) (Lpi+1 n sp-r-1 n SF) 

= S(Kp-r n /) ((Spi+1 ®K,^ Fi+1) 

n (S(Kp-r-1 n / n F))) 

= s(Kp-r n y) ((sp i+10^+ip i+1) 

n (spi+1 ® ^ K ®Ä K P - ^ 1 n M)) 

= S(xp-r n 7) ((spi+1®jr,Hi./pi+1) 

n (sp i + 1®xp^xp- r-1 n M)) 

= S(xp-r n 7) (Spi+1 ®^+<^4+1 n K*-'-1 n M)) 

= S(xp- rn j) (spi+1(jpi+1 n Kp-r-1 n M)) 

= S(Kp-r n 7) (7pi+1 n xp~r-1 n M). 

Similarly, (Sp_r n L) (Lpi+1 n Sp"r_1) = S(Kp_r H 7) (7pi+1 H Kp"r_1) 
and (Sp"r H L) (Lpi n Sp_r_1 PI F) = S(Kp"r H 7) (7pi H Kp"r_1 H M). 
We need to show (Kp"r n 7) (7pi+1 H iCp_r_1) and (Kp"r Pi 7) (7pi H 
Kp"r_1 H M) are linearly disjoint over (Kp_r H 7) (7pi+1 H Kp_r_1 H M). 
But since S and 7 are linearly disjoint over K, a basis for (Kp_r Pi J) (Jpl 

H Kp_r_1 n M) over (Kp~r H 7) (T^1 H Kp-r_1 D M) will be a basis for 
S(Kp_r n 7) (7pi n Kp"r_1 n M) over s(Kp-r n 7) (7pi+1 n K^-1 n M) 
and will thus be independent over S(Kp_r H J) (7pi+1 O Kp_r-1) and 
hence certainly over the subfield (£p"r H 7) (7pi+1 H Kp-r"1). Thus M = 
F H 7 satisfies (1) and (2) of Theorem 1, and F H 7 is homogeneous in 
J/K. 

COROLLARY 1. Let K be a Galois subfield of L. Let G — AK, S = LGo 
and 7 = LGL. Let F be a Galois intermediate field. Then F is distin
guished if and only if F — S1®KJ1 where Sx is normal separable over 
K and there exists a subbase {xv • • -, xn} for J over K such that {x^n\ 
- - -, xs

pn*} is a subbase of Jx over K, s ^ n. 

In view of Theorem 2 and its corollary, if a Galois intermediate field 
F of L/K is to be distinguished, then its purely inseparable part (F Pi J) 
must be homogeneous in J/K. We now wish to determine necessary and 
sufficient conditions for every intermediate field to be distinguished. 
Let L/S denote a purely inseparable modular extension of bounded ex
ponent. If [S : Sp] = p2, then every subbase of L/S has no more than 
two elements. 
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THEOREM 3. Every intermediate field of L/S is homogeneous if and 
only if either 

(1) V Q S, or 
(2) L/S is simple, or 
(3) [S : Sp] = p2 and if L/S has a subbase of two elements with ex

ponents ex = e2 over S, then ex — 1 ^ e2, or 
(4) L/S has a subbase of two elements with exponents 2,1 over S. 

PROOF. Suppose every intermediate field of L/S is homogeneous. 
Then for every intermediate field F of L/S, L/F and F/S are modular. 
Thus either (1) Lp Ç S, or (2) L/S is simple, or (3) [S : Sp] ^ p2, or (4) 
L/S has a subbase of two elements one of which has exponent 1 over S. 
([5, Corollary to Theorem 4]). 

Suppose (1) and (2) do not hold. Then L/S has a subbase of two ele
ments. Suppose the exponents of these elements over S are ex = e2 with 
ex — 1 > e2. Let {mv m2) be a subbase of L/S with exponents ev e2, 
respectively. Set F — S(m2 — m^). Then F/S has exponent e1 — 1 > e2. 
Since F is also homogeneous, there exists a subbase {tv t2} of L/S with 
exponents ex, e2, respectively, such that F = (F H S(*1)) ® s (F PI S(£2)) = 
S(^1

P). Thus F Ç (Lp) which is clearly impossible. Hence, ex — 1 = e2. 
Conversely, if (1) or (2) hold, the converse is immediate. Suppose (4) 

holds. Let F be an intermediate field of L/S such that L ¥= F ¥= S. Then 
either F = S(c) where c has exponent 2 or 1 over S, or F = S(cv c2) 
where {cv c2} is a minimal generating set of F/S and Fp Q S. If F = 
S(c) and c has exponent 2 over S, then clearly F is homogeneous since 
(c) can be extended to a subbase of L/S. Suppose c has exponent 1 
over S. If {c} cannot be extended to a subbase of L/S, then for all 
t EL L such that t has exponent 2 over S, c E S(t). For any such t, F — 
S(tp) so F is homogeneous. If F = S(c1? c2), then F = Sp_1 (1 L so 
F = S(f1

p, £2) where {^, £2} is a subbase of L/S with exponents 2, 1 over 
S, respectively. Thus F is homogeneous. Suppose (3) holds and L/S is 
not simple. If {tly t2} is an equi-exponential subbase of L/S, then 
F = F H S(tv t2) so F is homogeneous. Suppose L/S has a subbase 
whose elements have exponents ev ex — 1 over S. Since [S : Sp] = p2, 
LpCl_1 D S. Suppose F = S{cv c2) where [cv c2) is a subbase with expo
nents e{, e2 over S, respectively. If either c1

p-ei+ei ' or c2
p~€l+e2' e ^> 

say c1
p-'»+'i' G L, then { c / - ^ 1 , c2

p-Cl+1+e2'} is a subbase of L/S. Hence 
F is homogeneous. Suppose ĉ "*1"*"*2' and c2

p~ei+e2 are not in L. Then 

C l ' = c^-i+^-i ' and c2' = c2
p"ei+1+e2' E Sp"ei+1 fl L since L D Sp_ei+1. 

Now c1
/, c2 ' $ S(LP) = Lp. Thus both c / and c2 ' are in a subbase 

of L/S. Suppose e / ^ e2
r. Let {£, c1

/} be a subbase of L/S with 
exponents e^ ex — 1, respectively. Then S(c2, c^) — Sp_ei+1 n L 
= S(fp, C l ') so S(cc

pe2'-e\ Cl) =S(fpei_ei; C l ) . Thus F = S ( c 2 , q ) = 
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S(tpei e\ c1). Hence F is homogeneous. The result follows by symmetry 
for e2' ^ e/. Suppose F — S(c) where c has exponent e' over S. Then 
cp-e1+e' G L o r cp-e1+i+e' G ( S P - 1 + I n L) _ S ( L P) . This either cp_ei+e or 
cp-e1+i+e' | s -n a s u | 3 ] 3 a s e 0f L/s so F is homogeneous. 

REFERENCES 

1. J. Deveney, An intermediate theory for a purely inseparable Galois theory, Trans. 
Amer. Math. Soc. 198 (1974), 287-295. 

2. , Pure subfields of purely inseparable field extensions, Canad. J. Math. 28 
(1976), 1162-1166. 

3. N. Heerema, A Galois theory for inseparable field extensions, Trans. Amer. Math. 
Soc. 154 (1971), 193-200. 

4. N. Heerema and J. Deveney, Galois theory for fields K/k finitely generated, Trans. 
Amer. Math. Soc. 189 (1974), 263-274. MR 48 #8462. 

5. J. Mordeson, On a Galois theory for inseparable field extensions, Trans. Amer. 
Math. Soc. 214 (1975), 337-347. 

6. J. Mordeson and B. Vinograde, Structure of arbitrary purely inseparable extension 
fields, Lecture Notes in Math. 173, Berlin-Heidelberg, New York 1970. MR 43 # 1952. 

7. M. Sweedler, Structure of inseparable extensions, Annals of Math. 87 (1968), 
401-410; correction, ibid (2) 89 (1969), 206-207. MR 36 #6391; 38 #4451. 

8. W. Waterhouse, The structure of inseparable field extensions, Trans. Amer. Math. 
Soc. 211 (1975), 3ä-56. 

9. M. Weisfeld, Purely inseparable extensions and higher derivations, Trans. Amer. 
Math. Soc. 116 (1965), 435-449. MR 33 #122-

VIRGINIA COMMONWEALTH UNIVERSITY, RICHMOND, VIRGINIA 23284 

CREIGHTON UNIVERSITY, OMAHA, NEBRASKA 68131 






