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THE G-TRANSFORM OF GENERALIZED FUNCTIONS
R. S. PATHAK AND J. N. PANDEY

ABSTRACT. The classical G-transform is extended to generalized
functions (distributions). The corresponding inversion formula due to
Kesarwani is shown to be valid in the weak distributional sense. A
structure forumla for a class of generalized functions whose G-trans-
form exists is also given.

1. Introduction. In recent years, quite a variety of integral trans-
forms have been extended to generalized functions. In this paper, we
consider a G-transform, which encompasses a number of integral trans-
forms as special cases, both known as well as unknown. The G-trans-
form with its inversion formula, studied by Kesarwani [8, 9], after a
change of variables

2Y = X, 2 = Y, 0¥y = V and x/2+V/4y f(x1/2y) = F(X),
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is Meijer’s G-function [7].

In the present paper, we extend Kesarwani’s inversion theorem (cf.
[9], Theorem 1) for the G-transform defined by (1) to generalized func-
tions by interpreting convergence in the weak distributional sense. Our
notations and terminology follow those of [7] and [16]. We shall need
the following formulae (cf. [7], pp. 150-152):
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d \* m, < ap)__ — < O,ap>
(4) xk(a> Gp,q" x bq = Gp+1.a+1 x bq,
Define

a,b
® 9 = s (x| )
and
—b, —a
©) ) = Gt (| T3 70)
so that by (4)
ay m 0,a,b
M ke = () K0 = (7] 2% %)
and
dy " 0, —b,, —a

(8) h(x) = x’(a) h(x) =Cpf;+11.m+n+1 ( x| —d,, q—cm,:‘ )
for each r = 0, 1, 2, - --. Notice that kfx) = k(x) and hy(x) = h(x). It

will be assumed throughout that m, n, p, q are non-negative integers
satisfyingm — ¢ = n — p > 0 and

a, —¢#1,23 -+, fork=12 ---,pj=12 -, m,
and

d — b +#1,23 -, fork=12 --,nj=12 --,4q.

To simplify the analysis, we introduce the following notations. Set

lo=m —q=n—p,

2
m n D q
A:Re(E ¢ + Zdj—-zaj—Eb,-),
1

1 1 1
By =min Re(c;), j = 1, ---, m,
B, =min Re(—d), i =1, ---, n,
(9) 2 ( ]) '

0, = max Be(a,.), =1, p, 0, = max Re(—b].), i=1, -4

n:max[i 31 — o) + A}, 0, — 1] ,

}\szax[% Al-0)+ A+ o~ 1 —1 ]

r=2012,---.
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Now, we give asymptotic estimates of k(x), and those of h(x) can be
derived from k(x) by a simple change of parameters.
(i) Ifp + g =m + n, then

(10) k(x) = O(xfy), x — 0 + (cf. [7], p. 145)
(11) h(x) = 0(xf?), x — 0 +.
(i) fm — g = 1, then as x — oo,
k(x) = x/ol/20-01+A+r) (cos(oxl/e + a)(A + O[x—2/°])
(12) + sin(ox? + a)0(x~1/)}

P
+ 2 x(Re a!-l){Ej + O(x“l)},
1=0

where A, a, E; are certain constants and @, = 0 (cf. [7], p. 191 (9)).
Hence we can also write

(13) k(x) = O(x*), x — 00
and
(14) k(x) = O(x"), x — ©oo.

2. An integrodifferential operator. From [7], we know that kernel
k(ax) satisfies the differential equation

q

(15) [(—I)Tax}j(S—aj+ ]118—b-+—

n

- 71;—1 6 —c¢) ,1:1 6 —d) ]k(ax):O

where § = x(d/dx) and 1 = m — gq. Using the fact that

(6 + v)ftx) = ' *D[xf(x)]
we can write the above differential equation in the integrodifferential
form

(16) Ak(ax) = (— 1) ak(ax)
where the integrodifferential operator A, is defined by
A, =t ﬁ (xD~1x~1-%) ﬁ (x»D~1x~1-%)

i=1 i=1

(17 n .
. H <x1+c,Dx—c,) H (x1+dle—d’),

ji=1 j=1
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in which we interpret
4
dx’

D1= ~£z dt,

p
11 (xDxl—%) = (x31Dx1-0i)(x32Dx1-22) . - . (x8sDx1-),
ji=1

D=

and so on. Note that the operator D~! can be applied successively on
k(az) provided that

(18) B, > max[Rea;, Rebl,i=1,---,pj=1---,4q

Similarly, it can be seen that the second kernel h(ax) satisfies the in-
tegrodifferential equation

(19) v h(ax) = (— 1)"ah(ax)

where 7 is the same as in (15) and the operator Vv, is defined by

D q
v, = ! [[ (x-@Dx1+a) [ (x 2D~ 1x1+?)

i=1 i=1

3

TI -%Dxt) TT (@-oDxo).
ji=1 j=1
The operator Vv, can be applied to h(ax) provided that
(21) B, > max[Re(— a;), Re(— b)), i =1, ---,p,j=1,---,q.

Remark 1. If for a given k(x) the operator A, does not involve the
integration operator D! then the conditions (18) and (21) are treated
as empty. In case p = q = O the integration operator is absent and
the aforesaid conditions do not apply. The Hankel transform corre-
sponds to this case.

ReMARK 2. The operators A, and v, can be applied on any C*(R)
function ¢ any number of times which satisfies the asymptotic orders
(p(k)(x) = O(xa_k)’ x—0 +> k = 0’ 1’ 2; e
where

a > max(|Rea1.|, |Rebj|)’ i= 1’ Tt p’l = 1’ s q.
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Some properties of these operators are described below.
LemMma 1. Let ¢ € C®(R,) with the asymptotic order
(p""(x) = 0(1"‘_"), x—0+4+,k=0,1,2, ---,

where a > max(Rea;|, Reb),i = 1,2, ---,p,j=1,2, ---, q. Then
the integration operators (x~*D~1x~1+%) and (x~D~1x~1+%) when acting
on @ in succession are commutative.

Proor. Assume that
fi = sl te) oDty +a)g()
and
fo = (oDl b e Dl o),
It is easily seen, on using the fact that the differentiation operators
(x'~Dx% and (x1~%Dx%)
are commutative, that

('~ Dx)(x~*Dx*)[fy(x) = o(x)

and

[(x1=Dx®)(x1~2Dx)[f,(x) = @(x).
Hence

[ 2D x'~2Dx)](f; — f,) = O,
so that

f1 — f2 = Ax~% 4 Bx%,

But, f; — f, = 0(x®) as x — 0 +, where @ > max(|Req,|, |Reg))), i =
1, ---,pj =1 ---, q and therefore A = B = 0. Thus, f; = f,.

LeEmMA 2. Let ¢ € C®(R,) with the asymptotic order
¢¥x) = 0(x**), x >0 +,k =0,1,2, -,

where a > max(|Rea;|, [Reb)), i = 1,2, ---,p,j =12, ---, q. Then
the integration operator (x~*D~'x~1*%) and the differentiation operator
(x1=4Dx%) when acting on ¢ in succession are commutative.

Proor. The proof can be given by a single computation. For details,
see [13, pp. 8-9].
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CoroLLARY. The differentiation and integration operators in A, and
Vv, when acting on ¢ € C®(R,) with the asymptotic order

¢¥x) = 0¥, x -0 +,k =0,1,2, --,

where a« > max(Rea,|, |Reb))), i = 1,2, ---,p,j =12, -+, g, can
be switched in any order.

Proor. Since two differentiation operators are commutative, the re-
sult follows in view of Lemmas 1 and 2.

3. The testing function space G, ,. Let I denote the positive half-axis
(0, 00). For a, b € R! construct a positive continuous function £, ,(x) on
R! as follows:

x~¢ 0<zx<l1
£(x) = & 4(x) = {

x~b 1< x< oo

Then G,, is defined as the space of all infinitely differentiable com-
plex-valued functions ¢(x) on I such that for each non-negative integer r

(22) Yr((p) = Ya.b.r((p) = 02:2&0 [ga,b(x)A;q’(x)l < oo,

where A, is the integrodifferential operator defined in Section 2. The
operator A, can be applied to ¢(x) provided that for each k = 0, 1, 2,

(23) e®(x) = 0(x*7 %), x — 0 +,

where a > max[|Re(a;), Re()|], i = 1, ---,p,j =1 ---, q. In the
case p = q = 0 condition (23) is treated as empty.

The vy, are seminorms on G,, and y, is a norm. The topology over
G,, can be generated by the separating collection of seminorms
{¥,};2¢ (16, p. 8] and therefore G, , is a countably multinormed space.
We may say that a sequence {g,};>, where each ¢, belongs to G, ,(I)
converges in G, ,(I) to ¢(x) if for each fixed r, y(p, — @) tends to zero
as ¥ — oo. We say that a sequence {g,(x)};>, where each @ (x) belongs
to G, ,(I) is a Cauchy sequence in G, , if y(p, — ¢,) tends to zero for
any non-negative integer r as p and » both tend to infinity independent-
ly of each other. It can be readily seen that G,, is sequentially com-
plete locally convex, Hausdorff topological vector space. The space
D(I), i.e., the space of infinitely differentiable functions having compact
supports defined over I(0 < t < o0), is a subspace of G, ,(I) and the
topology of D(I) [14, Vol. I, p. 65] is stronger than the topology in-
duced on D(I) by G, ,(I) and as such the restriction of any member of
G, (D) to D(I) is in D'(I).
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We may compare the space G, ,(I) with other testing function spaces
on which Hankel transformable generalized functions are defined. In-
deed, by suitable change of variables and specialization of parameters it
can be shown that the inversion formulae for the Hankel transform giv-
en by Zemanian [16], Koh and Zemanian [6], Dube and Pandey [1] and
those for the Hardy transforms established by Pathak and Pandey [11,
12] are special cases of the general inversion formula proved in this pa-

per.

LeMMa 3. If m —q=n—-p=1Lb=1na=8,1+ B, >
max[Re(a;), Re()], i = 1, ---, p, 7‘ =1 ---, qand t > 0, then for
fixed x > 0, k(xt) € G, ,, where k(x) is defined by (5).

Proor. The result can be proved by using standard technique. For
details, see [13, p. 11].

4. The G-transform of generalized functions. For f € G, ,, the distri-
butional G-transform can be defined by
(24) Fly) = (flx), klxy))

where x, y > 0 and k(x) is the same as defined by (5). From Lemma 3,
we know that for fixed y > 0, k(xy) € G,,, hence the relation is
meaningful.

THEOREM 1. For y > 0, let F(y) be the G-transform of f € G, (I) as
defined by (24). Assume that a = B, and b = X\, where B, and A, are
constants defined by (9). Then F(y) is differentiable and

< flx), ;-yuxy) >

Proor. The proof is straightforward; for details, see [13, p. 12].

THEOREM 2. Let m — q = n — p > 1 and let F(y) be the distribu-
tional G-transform of f € G, where b = 7, a = B; > — 1 +
max[Re(a;), Re(b)), i = 1, ---,pj=1 -+, q
Then

{ O(ymm(a ,b) y— 0+

max(a b)+s y— oo,

where s is a non-negative integer.

Proor. The proof can be given by using the boundedness property of
generalized functions. For details, see [13, p. 14].



314 R. S. PATHAK AND ]. N. PANDEY

Lemma 4. Leta = B, b = m, min(a, b) + B, > — land x, y > 0,
and B, and B, be constants as defined by (9). Let k(x) and h(x) be the
functions as defined by (5) and (6) respectively; then for fixed x > 0

| Kty)hxy)dy — 0

inG,,ase— 0 +.

Proor. The proof is similar to that of [11, Lemma 4] and is therefore
omitted. For details, see [13, p. 15].

LemMA 5. Let f € G, under the conditions of Lemma 1. Then, for
fixed x, N > 0 and mm(a, b) + B, > — 1,

f (fle), k(zy)) hixy)dy <f f k(ty)h( xydy>
Proor. The proof follows by using Riemann sum technique. For de-
tails see [13, p. 16].
5. Inversion of the distributional G-transform. Let us define

'N
(25) Gitx) = J kity)h(ay)dy

where k(x) and h(x) are the same as defined in (5) and (6).
LEMMAG. Letx, y, N>0andm —qg=n—p =1 8,> — 1,
Re(@, — b,) < Lj=1--,ph=1i- g
Re(c, - dy)> - 1,j=1 -, mh=1 - n,
(1 +0)<min(l + A —ocRea, — A + o Reb,),

N[

i=L--.ph=1 -4

Define
N
oy = o ke g,
where
z n,q 0 - b
— .£ h du —pr+q+1 m4n+1 ( _ d — ].>
Then

lim ¥,(x, y) = { ! x<y
y).

N-c
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Proor. We have

},1_{?0 Ypx y) = J; Y e men <xu
0, — b, — a, ) du

- GU <" 1)

[7, p. 159 (1)], which is equal to 1 if x < y and equal to 0 if x > y.
For details, see [13, p. 17].

a, bq> Gra+l

p+9+1,m+n+1
Co> Uy

LeMMA 7. Let ¢ and d (d > c) be two positive numbers; then under
the conditions of Lemma 6,

. d 1 t € (c
}Jl_x_g .£ Gpt, x)dx = { 0 . QE[(cfd(]i)

Proor. In view of Lemma 6, we have

j;d Gyt x)dx = jow k(ty) h,(dy) ; h,(cy) dy
=Vt d) — Y2, o)

Ifc<d<tort<c < d, this tends to 0, and if ¢ < ¢t < d, this
tends to 1, when N — oo.

LEMMAS. For0 < a =t =b,0<c=x=dand N > 0, the
function Gy(t, x) is bounded uniformly for all x, t, N > 0, provided that

Bi=n> — B, — 1, Re(gq; — b) <1
and
— 21 + 0) < min(A — o Rea;, — A + o Re b)),
ji=1-ph=1-"q

Proor. Let us consider at first the case 0 < N = L

N
Gyl ] = J; er(ey)k(ty) | 1y"hixy)\dy.

Since for B, = u, |2~"k(z)| is bounded by a positive constant B for all z
> 0,and forc = x = dand 0 < y = 1, (xy)~P9h(xy)| is bounded by
another constant D. Therefore,
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N
Gx(t, x)| =B D sup t7xP: 1+Bzd
g, 0 o v

(=

<BD sup xP2 sup 7 1

<M,
c=zr=d a=t=b n + .82 + 1 !

M, being independent of x, ¢ and N. Next, consider the case N > 1.
N
Jo Keyhisyy Ji Kewhiay)dy

Since the first integral is bounded by M, we consider the second. In
view of the asymptotic expansions of k(ty) and h(xy) we can write

N
5" Keghizyay
= jl‘ N (ty)/o /D108 (cos(o(ty)? + a)A + O[(ty)=2/°])
+ sin(o(ty)!’" + o)0[(ty)~/7])
+ (ty)~YE + O[(ty)~"]}
- [(ay)/ o0/ D=8 cos(a(xy) /' + a')YA’ + O[(xy)=-2/°])
+ sin(o(xy)’? + a’)0[(xy)~17]
+ (xy)HE" + O[(xy)~"]}]dy,

where A, A, E, E', a, o' are certain definite constants. Considering
each of the above integrals of the right-hand side separately, it can be
shown that each of them is bounded, the bound being independent of ¢
and N provided that

0, + 0, < L, 1/06{—%1 + o) + A}
+02<0,1/o{%(1+o)—A} + 0, <O.
See also [13, p. 20].

COROLLARY. For0 < c=a=8=d,0<a=t=band N > 0,

17 Gyt 2 dx < oo

Gylt, 9] =

+

LEMMAO. For0 <26 <c< t< b,c > 0,
-3
I e xdx — 0

as N — oo uniformly for ¢ < t < b, provided that o, + 0, < 1 and
—(1/2)e + 1) < min(— A — ¢0,, A — oa,).
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Proor. We have

(ot na= [Tax [ Keyhty)dy

= [ ay 7" ket
£ dy £ key)hiry)d
-5y f k(ty)h(xy)d

Since, by Lemma 7, the first integral on the right-hand side is equal to

zZero,
[ eytmar = — 7 ay [ keyhiay)as

Now, therefore, we establish the uniform convergence of the integral
on the right. Using the notation of Lemma 6, we have

Sty £ wegntegie = [ ke [ byt — S)Z — hy(ey) ] dy.

Using the asymptotic estimates of k(ty) and h,((¢ — &)y) and considering
each of the integrals separately as in Lemma 8, it can be shown that
for 0 < 26 < ¢ <t < b and ¢ > 0, the right-hand side tends to zero
as N — oo, provided that

0,+0, <1 —1o+ 1)< — A — go,
— 4o + 1) <A — oo,
See also [13, pp. 21-22].
LemMMAa 10. Let 0 <t < d — 8 and 8 > 0. Then,

hes GMt x)dx — 0

as N — oo uniformly for 0 < t < d — 8 provided that 6, + 0, < 1
and — (1/2)o + 1) < min(— A — oo, A — o0,).

Proor. Proof is based on the conclusion of Lemma 7 and the tech-
nique is similar to that used in the proof of Lemma 9.

Lemma 11. Let ¢(x) € D(I) and its support be contained in [c, d]
where 0 < c <d. Letc + 8§ =t =Db, 6 > 0. Then

j" Gt x)p(x)dx — 0
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as N — oo uniformly for all t € [c + §, b], provided that 0, + 0, <
land — (1/2)c + 1) < min(— A — 60, A — o0,).

Proor. By Lemma 8, there exists a constant K such that |Gy(t, x)| <
K uniformly for all x € [¢,d], t € [c + 8, b] and N > 0.
In view of the uniform continuity of @(x) in ¢ = x = d, for a given

arbitrary ¢ > 0, we can find a continuous function x(x) such that

f - lp(x) — x(x)ldx = f_s lpx) — x(x)|dx < 1£< )

The interval (c, ¢ — 8) may be divided into sub-intervals (c, x,), (x;, %,),

+, (x,_p t — 8), so chosen that the fluctuation of x(x) in each of
these sub-intervals is less than ¢/K(b — 8 — c). Let y(x) be a function
which, in the interior of each part (x,_;, x,), where r = 1, 2, ---, n,
has the constant value ¢, = x(x, + x,_,)/2. At the extremities of the
parts, we take y(x) to have the value zero. Thus, y(x) has the finite set
of values ¢, ¢,, - -, ¢c,, 0.

Since [x(x) — Y(x)] < ¢/K(b — 8 — c) everywhere except at the end
points of n sub-intervals of (¢, ¢ — 6), we have

7 xw) - v < £
¢ K

and therefore

L7 1ot — wwiax < 2.
Now,
t—8
‘ Jc‘ P(x)G(t, x)dx
= | L7 6w - 016y
v 26 [7 e nae
= ' 7 o - l Gt 1) | dx

S5 Gy, wax
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Since ¢ lies outside the interval [x, ,, x,] for each r = 1, 2, 3, ---, in
view of Lemma 10,

L e ndx [ —o

independently of ¢ for all ¢ € [c + 8, b] as N — co. A positive num-
ber N, (not depending on x) can be so chosen that

l f Gylt, )dx

<";,forr= 1,2, ---,

2 e

and for all values of ¢ € [c + &, b]. Thus, | f i 3@(x)Gy(t, x)dx| < 3 ¢,
provided N = N,, for all values of t € [c + &, b].

Lemma 12. Let ¢(x) €D(I) and its support be contained in [c, d],
where 0 < c<d Let0<t<d—86¢c>28 > 0. Then
hes GMt D)p(x)dx — 0

as N — oo uniformly for all t € (0, d — 8) provided that o, + ¢, <
land (1/2) (6 + 1) < min(— A — oo, A — o0,).

Proor. Assume at first that ¢(x) is an infinitely differentiable real
valued function defined on [t + &, d], 0 < t < d — . Then @(x) is a
function of bounded variation on [t + &, d] [17, p. 118, Ex. b]. Con-
sequently, there exist monotonically increasing functions p(x) and g(x)
on [t + &, d], with p(t + 8) = q(d) = 0 such that [17, p. 120, Theo-
rem 6.27]

o) = plt + 8) + plx) — qx) (1 + 8 =x = d)
Hence

: s Mt X)p(x)dx =p(t + 9) ti s Gt x)dx
d d
+ Jips POGHE x)dx — jt‘+s q(x)Gp(t, x)dx.

The result now can be proved by using mean value theorem of integral
calculus followed by a variation of technique used in the proof of Lem-
mas 9 and 10. For further details, see [13, pp. 25-26].

The proof for infinitely differentiable complex valued function g(x)
can be given by separating it into its real and imaginary parts.
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LemMa 13. Suppose that @(x) € D(I) and its support is contained in
[c, d]. Let the conditions of Lemmas 6 and 8 be satisfied. Then, for B,
Zn,b>n> —B, —lLanda =0,

1 Gyt Dpwdx — o)

in G,, as N — oo,

Proor. Using the properties of the operators A, and v, we have

gon; [ ewdr [ keyhiy)dy

60 ewdr [ Key)vihy)dy

= ) J eGHt xdx

(integration by parts) where ¢ (x) = ALgp(x).
Therefore, in view of Lemma 7, we need only show that I — 0 uni-

formly for all ¢ > 0 as N — oo, where I is the expression defined be-
low:

1=t | f° eocut s — 000 |

= &0 [ [od0) — 901Gyt Ddx.

Now, using the standard technique as used in [11], it can be shown that

I — 0 as N — oo uniformly for all ¢ > 0. For further details, see [13,
pp. 27-32].

THEOREM 3. Assumptions:
(i)o/zsm—q:n—pgl,
m n P q
(ii)AEBe<§Cj+2dj—2aj—2bj>,
1 1 1
(iii)Re(aJ'—bh)<1’i:1’...’p’h:1,'."q’
(iv) Re(c; —dy) > — 1, j=1 -, mh=1,---,n,

(v) Re ¢; = max[1/6{(1/2)1 — o) + A}, Re(a; — 1)],
i: 1’ -..,m’i — 1, ...,p’

(vi) — (1/2)1 + o) < min(A — 6 Rea, — A + o Re b,),
"= 1; "',p’h = 1) "';q:
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(vii) min Re(c;) > max{Re a;, Re b}],
h 1 .’ml_l...’p,izl’...’q,

min Re(— d,) > max[Re(— a;), Re (— b))},
h: 1’ ceey n’i e 1’ ...’p’iz 1’ RN q.

The condition (vii) is treated as empty in case p = q = 0.
(viii) @ = min(Re ¢;, 0), h = 1, ---, m,

b > max[1/0{(1/2)(1 — o) + A},
Re(@; — 1)] > — 1 — min Re(— d,),
i=1--.ph=1--n

min(@, b) > — min Re(— d,) — 1,
min Re(— d;)) > — Lh =1, ---, n,

(ix) F(y) is the distributional G-transform of f € Ga, b defined by
m a,b
= < fx), Gp-;-z:z.m+n (xy C,:, d: > > :
Conclusion: For each ¢(t) € D(I),
—b, —a > >
—d - dy, o(x)

(26) lim < f Y)Gpdaman <xy

N-w
= (fl1), 9(1))-
Proor. Assume that the support of ¢(x) is contained in the interval
[c, d], d > ¢ > 0. The result (26) will be proved by justifying the steps
in the following manipulations.

en (&' Fuhdy, o0 >
=f 1 Flyhxy)o@dyds

(28) = 7 o jZ" (fit), k(ty)yhixy)dy

@) = (o S wpayay ) oy
d

(30) = " (o, Gyt Do

(31) - < fio, [ Gyt vewds >

(32) — (o), ().
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The equality of expressions (27) and (28) is obvious in view of Theo-
rems 1 and 2. That expression (28) equals (29) follows from Lemma 5.
The fact that expression (29) equals (30) is obvious. By following a tech-
nique very similar to that used in proving Lemma 5, one can show the
equality of (30) and (31). Lastly, expression (31) goes to that in (32) as
N — oo, by Lemma 13. This completes the proof of the theorem.

An immediate consequence of the above inversion theorem is the fol-
lowing uniqueness theorem.

THEOREM 4. Let the distributional G-transforms of f, g € G, (I) be
Fly) and G(y) respectively and assume that Fly) = G(y) for all y > 0.
Then f = g in the sense of equality over D(I).

6. Some special cases of the inversion Theorem 3. By specializing the
parameters in the definition of the kernel k(x), a number of known as
well as unknown inversion theorems can be deduced as corollaries to
Theorem 3. A few of them are cited below. In all of the following
cases, the definition of the space G, , is to be modified according to the
specialization of the orders and parameters.

Takingp = g, m = n,a; + b; =0forj=1, ---,pand ¢, + d,
=0for h = 1, ---, m in Theorem 3, we arrive at the following ex-
tension of the inversion theorem established by Fox [3] for the symme-
tric G-transform.

CoOROLLARY 1. Assumptions:
@ o/2=m —p =1,
(ii) Re(a) < 1/2,j=1, ---,p,Re(c,) > — 1/2,h =1, ---, m,

Re(c;) = max[1/20(1 — o), Re(a; — 1)],
=1,

h ...,m’i:l,...,p,
(iii) min Re ¢, > maxReg, h =1, ---,m,j=1 ---,p
Condition (iii) is treated as empty if p = 0.

(iv) @ = min(Re ¢,, 0, h = 1, ---, m,

b > max{(1/2)(1/6 — 1), Re(a; — 1)] > — 1 — min Re ¢,
izl"..’p,h:]".-.’m,

min(a, b) > — Rec, — Lh=1,---,m,

(v) Fly) is the distributional G-transform of f € G, defined by

Ry) = < flx), Gg5, (xy :: - Z;) > :
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a, — a
o — ) )dy, (%) >

m’

Conclusion: For each ¢(t) in D(I), we have

m (A" oz (=
= (i) 9(0)-

An interesting special case of this corollary is a generalization of
Hankel transform to distributions, which has been studied by Zemanian
[16], Koh and Zemanian [6], Dube and Pandey (1] and others. This fol-
lows on settingm = 1, p = 0 and ¢, = »/2. In fact, the inversion the-
orems established by these authors can be deduced from the present
work by a suitable change of variables.

CoroLLARY 2. Let f € G, where a = min((1/2)Re», 0), b > —
1/4, min(a, b) > — (1/2Re v — 1, Re v = — (1/2) and let F(y) be
the distributional Hankel transform of f € G, defined by Fly) =
{fx).J,(2(xy)'/2) ). Then, for each @(t) € D(I),

im (£ Ry o) )

N-oo
= (fit), o(t))-
Settingm = 2,p=0,g=1Ln=1,b = —»/2 —ac¢ = —
v/2, ¢, = v/2 and @; = — »/2 — a in Theorem 3, we arrive at an ex-

tension of the Hardy transform [4] which has been given earlier by
Pathak and Pandey [11].

CoroLLARy 3. Let f € G, where a = —(1/2)Rev|, b > — (1/4),
min(a, b) > — (1/4)Re(r + 2a) — 1, Re(a) > — 1, Re(v + a) > —
1, —1/2 = Rev = 1/2, |Re(r + 2a)| < 3/2 and let Fy) be the distri-

butional Hardy transform of f € G, defined by
Fly) = (9, C,(2ay)?)
where
C,(x) = cos(am)],(x) + sin(am)Y (x).
Then, for each ¢(t) € D(I),

im (£ RoR@e . o0 )

N-oo
= ( ), o(®)),
where
Fv(x) = (x/z)V+2a F (1+a 14at+vs %xz)'
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Settingm = p=1,q9g=0,n=2,a, =v/2 + a,¢; =v/2 + a,
d, = v/2 and d, = — »/2 in Theorem 3 leads to the following exten-
sion of the Hardy transform which has also been studied by Pathak and
Pandey [12].

CoroLLARY 4. Let f €G,, where a = min ((1/2)Re(r + 2a), 0), b >
max[— 1/4, (1/2)Re(v + 2a) — 1], min(a, b) > (1/2)|Rev| — 1, Re(a)
> 0,Re(r + a) >0, — 1/2 = Re(r + 2a) < 3/2, — 3/2 = Rerv =
3/2, and let F(y) be the distributional Hardy transform of f defined by

Fy) = (ftx), F,(2(xy)""?)).

Then, for each @(t) € D(I),
i )1/2)
m f 2y . S )
= () o(1))
By taking a = 1/2 in Corollaries 3 and 4, we can obtain inversion

formulae for the distributional Y, — and H, — transforms respectively.

CoroLLARY 5. Let f €G,, where a = — (1/2)|Rev|, b > — 1/4,
min(a, b) > — (1/2) Re v — 3/2, — 1/2 = Re v = 1/2, and let Fy)
be the distributional Y-transform of f € G, defined by

Fy) = (flx), Y,(2(xy)%).
Then, for each @(t) € D(I).

lim < f 2y, 9l )
= (fit), o(1)).

CoroLLARY 6. Let f € G}, where a = min ((1/2)Re(v + 1), 0), b >
max[— 1/4, (1/2)Re(r — 1)], min(a, b) > (1/2)Rev| — 1, — 1/2 =
Re v = 1/2, and let F(y) be the distributional H-transform of f defined
by

Fy) = (flx), H,2(xy)""?)).

Then, for each ¢(t) € D(I),

im (" ey, o) )

N-oo

= (fit), o).
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7. In the following theorem, a structure formula for the restriction of
an element f € G, (I) to D(I) is given.

Turorem 5. Let f be an arbitrary element of G, ,(I). Then there exist
bounded measurable functions g;(x) defined for x > 0 fori = 0, 1, 2,
-+, r where r is some non-negative integer depending upon f such that
for arbitrary ¢ € D(I) we have

G = & oot [ a7 oson oow ),
where V  is the integrodifferential operator defined by (20).

Proor. The proof can be given by using standard technique [1]. For
details, see [13, p. 39].
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