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ON A GENETICS MODEL OF MORAN
EVOLVING IN RANDOM ENVIRONMENTS

WILLIAM C. TORREZ

SUMMARY. In a previous investigation [6], a model of a discrete-
time stochastic process (Z,) evolving in a random environment con-
trolled by an irreducible Markov chain (Y,) was formulated wherein
the bivariate process (Y,, Z,) is Markovian and the marginal process
(Z,) is a birth and death chain when conditioned on a fixed se-
quence of environmental states of (Y,). Conditions for the extinction
and instability of (Z,) were stated and proved. In a succeeding in-
vestigation [7] methods were obtained to calculate extinction proba-
bilities when the probability of extinction is less than one and (Y,)
has finite state space. In this paper, these methods are applied to a
genetics model of [4] to study gene fluctuations due to mutation in-
fluences subject to varying environmental conditions.

1. Introduction. Consider a bivariate stochastic process (Y,, Z,),
n=0,1, 2, --- with state space S, = {1, - -+, m} X Z, where Z, de-
notes the non-negative integers. In a previous investigation (Torrez [6]),
we formulated a mathematical model to represent a discrete-time birth
and death process evolving in a random environment in such a way
that (i) the marginal process (Y,) of (Y,, Z,) (called the environmental
process or simply environment) is an irreducible Markov chain with
state space {1, -+, m} and transition kernel K; (ii) given a realization
of (Y,), the conditional distribution of (Z,) is Markovian (but not time-
homogeneous, in general). Indeed, when a sequence of environmental
states (y,) is given, the marginal process (Z,) of (Y,, Z,) behaves like a
birth and death process with transition probabilities

Pr[Zn+1 = Z’ | (Yn’ Zn) = (yn’ zn)] =

p‘”ﬂ) ifz =2z, + 1,

Zn

(1.1) q¥?  ifz =z, — 1

2n n
Y, if 2 —
o if =z,

0 otherwise
where
0 =p), g%, rv =1,
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and
pz("u,,) + qz(nu,,) + rz(nu,,) =1

for all n. It should be noted that, since the sequence of environments is
itself a stochastic process, in general the marginal process (Z,) is not
Markovian. When no particular sequence of environmental states is
specified, we will refer to (Z,) as a birth and death process in a random
environment (BDRE). We denote the one step transition kernel of the
(Y,)-conditioned (Z,) birth and death process by P (z, 2'), i.e.,

Py(z’ Z) = PT[Zn+1 =7 (Y, Z,) = (y, 2)].

We will set P,(0, 0) = 1 for all y = 1, - - -, m thus making 0 an absorb-
ing state for (Z,).

With the formulation (i) and (ii) above, (Y,, Z,) is a temporally non-
homogeneous Markov process with transition kernel P given by

(1.2) H(y. 2), (', )] = K(y, y)P,(z 2).

Indeed (Y,, Z,) may be viewed as a “pieced-together” stochastic pro-
cess each piece of which is a birth and death process conditioned or
chosen by a fixed environmental state. Thus the evolving system (Z,)
changes its mode of evolution or mode of fluctuation due to changes in
the environment controlled by a random process (Y,). (See [1] for a for-
mulation of this type of stochastic model in a more abstract setting.) In
a subsequent work [7] we describe a method for the calculation of ex-
tinction probabilities in the framework of the BDRE model. To illus-
trate these methods, we consider a stochastic model (Z,) which repre-
sents genetic fluctuations due to mutation pressures influenced by
varying environmental conditions. Birth and death models of these phe-
nomena in constant environment have received considerable attention
in the mathematical-biological literature [8, 4, 3].

2. Calculating extinction probabilities for the BDRE. For the study of
biostochastic processes for which the BDRE model is appropriate, it is
of paramount importance to find conditions which determine instability
and almost certain extinction of the process (for the use of the word
“instability” in this context, see Harris [2]). The results obtained in the
aforementioned reference (Torrez [6]) give such conditions, and for ease
of reference we state them below as Theorem A and Theorem B.

THEOREM A (Instability of the BDRE). Suppose that for each v € {1,
2.1) max Pr{r, >n|Y, =i —0asn—oo

1=i=m
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where 7, = min{inf[n = 1:Y, = »], + oo}. Then
Pr[Z,—0or + oo|(Yy Z,) = (y, 2)] =1
where
(Y, 2) €S = Sy\N({L, ---, m} x 0).

ReEMARK. The requirement stated in the introduction that (Y,) be ir-
reducible makes (y,) a positive recurrent Markov chain on finite state
space so that (2.1) is satisfied, and moreover implies that K possesses an
invariant distribution {;}.

Recall the notation {p,®, ¢,®, @}, 1 =i =m, k = 0, expressed in
(1.1) for the transition probabilities of the BDRE. Define u(y, z) =
Pr((Y,, Z,) € {1, ---, m} X {0} for some n|(Y,, Z)) = (y, z)] for (y,
z) € S. Then the harmonic function u(y, z) is the probability of extinc-
tion of the BDRE when the initial state (y, z) is in S. We now state

THEOREM B (Extinction of the BDRE). Assume that the quantities

g, = max g, g, = min g,

1=i=Em 1=i=m

P = max p®, p, = min p,®

1=i=m 1=i=m

are positive and that q," + 7, W = g%, for all (y, z) €S. Let
A -H" [g/p] and p, = T 1[q,/p] k=12 - and A =gy

L. If ZF_ A\, = +oo, then u(y, z) = 1 for every (y, z) € S, i.e., ex-
tinction of the BDRE is almost certain.

2. If 25 _om < +oo, then u(y, z) <1 for every (y, z) € S, i.e., ex-
tinction of the BDRE has probability less than one.

When the conditions of Theorem B.1 are not met (or at least in the
cases when the series 2, _, p, converges) so that extinction may occur
with probability <1 it is also of great interest to be able to calculate
extinction probabilities of the BDRE. We do so in the following way:
the Dirichlet equation Pu = u, where P is the transition kernel for (Y,,
Z,) defined in (1.2), holds with boundary conditions u(y, 0) = 1 and
u(y, o) = limy_ u(y, N) = 0. To approximate the probability u(y, z),
we first find the harmonic solution wuy of the Dirichlet equation
Pyuy = uy with boundary conditions
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(2.2) uyy, 0) =1
and
up(y, N) = 0.
Here Py denotes the transition kernel for (Y,, Z,) restricted to the state
space Sy = {1, -+, m} X {1, ---, N}. With this formulation, u, gives

the probability that the process (Z,) reaches state 0 before it reaches
state N and by standard Markovian potential theory (see Syski [5]),

Py((y, 2), (y', ¥)] 1 Pl(y, 2), (¢, 2)] and
upMy, z) T u(y, z) as N— oo

for (y, z), (v, ) € Sy. We give two methods for calculating the func-
tion uy(y, z).

When the probabilities {p,*, ¢, @, r®}, (y, 2) € S are homogeneous,
that is when they do not depend on the state z, an explicit solution for
uy is possible. The more general method, that is, when the transition
probabilities depend on the state z, can be described as follows:

Since 0 is absorbing for (Z,), we have r® = r® = 1. (For the sake of
convenience we will drop the subscript N from P, and u, and simply
write P and u, respectively). We first represent the transition kernel P
for (Y,, Z,). From (1.1), we see that P (z, 2') is a square matrix (which
we denote by [P,]) of dimension N + 1:

™1 o0 o o0 0 - - -0 01
g 0 p® 0 0 - - .o 0 0
0 ¢ 0 p® 0 -+ oo .- 0 0
p,] =
0
0 4, 0 Py,
lo - - - - - - . 0 1]

From the definition of P,
Py, 2), (v’ 2)] = K(y, y)P,(z 7

where 1 = y, ¢y’ = m, 0 = z, 2 = N. Thus P in block matrix form is
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K1, 1)p, --- K(1, m)P,
[P] = . .
K(m, 1)P,, --- K(m, m)P,

Thisisanm(N + 1) X m(N + 1) matrix and the equations (2.2) have matrix
formulation

ko, yp, - kLmp, | [ 1 ] [ 1 ]
u(l, 1) u(l, 1)
u(l, N — 1) ul, N — 1)
0 0
(2.3) :
1 B 1
u(m, 1) u(m, 1)
u(m, N — 1) um, N — 1)
K(m, VP, --- K(m, m)P, o | 0

The result may be stated as follows:

TueoreM C. Let (Z,) be a BDRE controlled by an environmental pro-
cess (Y,). Let the transition probabilities of the BDRE be {p,%, q,%,
r, M} (y, z) € S. Then the system (2.3) is equivalent to the vector differ-

ence equation
(2.4) Up = P*Uiyy + B *U + Qi*Upp
' k=1 -+ N-1

with boundary conditions U, =1, Uy = 0, where 1 and 0 are the
m X 1 identity and zero vectors respectively, and

K1, p,®» -+ K(1, mp,D

K(m, 1>pi(7n) e K(m, m)pi(m)
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K1, 1)g;» -+ K(1, m)g®
Q,* = : :
K(m, 1>CIi(m) <o K(m, m)q,"™
K1, A - p,P — ¢ e K1, m)(1 — p," — q;)
R*— . .
K(m, 1)(1 — p,™ — q,™) ~o K(@m, m)(1 — p,™ — q,™)
U, = (w(l, k), ---, u(m, k),
and

_{7‘1 — (_ql(l)’ e, — g™y,

(Here “'” denotes transpose).

Since there are no known methods to solve the vector difference
equation (2.4) explicitly, we must solve the system numerically. It can
be shown [7] that the equation (2.4) is equivalent to the system

R*~I P* 0 0 o0 - o | Ju~
Q,* R*—1 P* 0 N | U,
0 Q* R*—IP* 0 - 0 U,
2.5) :
0 : 0
’ Q;—z R;—z — 1 P 1’5—2 UN—2
L 0 : : : Qlt’—l R;—1 -1 Uy_e

where I is the m X m identity matrix.

Call the block matrix on the left-hand side of (2.5) A. Then A is a so-
called band matrix, i.e.,, a matrix with non-0 entries only along the
main diagonals and sub- and super-diagonals. There are powerful com-
puting algorithms for solving systems involving such matrices so that
we may calculate U, for N very large. We illustrate this method with
the example in the next section.
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3. A genetics model of Moran evolving in a random environment.  In
this section, we illustrate the result of the previous section by consid-
ering a gentics model, first proposed by Moran [4], to study the effects
of mutation influences on gene frequencies.

Consider a haploid population of fixed size N consisting of allele
types a and A. The state of the process (Z,), n =0, 1, 2, ---, repre-
sents the number of a alleles in the n'" generation. An allele is to be
replaced at the (n + 1)st generation by another chosen randomly from
the population. Let v, and y, denote, respectively, the probability that
an a-type mutates to an A-type, and that an A-type mutates to an a-
type. This simple model of gene frequency fluctuations can be formu-
lated as a discrete-time birth and death chain with a finite number of
states with transition probabilities (see Karlin and McGregor [3])

Pe =M/ + i) g =1—pp, 1=k=N—-1
where
A, = Pr[allele a population increases | Z, = k]
= (1 = k/NJ(K/N)1 = vy) + (I = k/N)y,]
and

u, = Prfallele a population decreases | Z, = k]
= (k/N)[(k/N)y; + (1 = k/N)(1 = 1,)].

Of course r, = ry = 1 thus making 0 and N absorbing states. Suppose
the population is exposed to “good” and “bad” external conditions (e.g.,
beneficial and adverse chemical, climatic, or radioactive factors) which
determine varying mutation rates. Further suppose that the selection of
these varying mutation rates, which we denote by v, 1 =4, j =2, is
controlled by an irreducible Markov chain with transition matrix

.55 45
K =
6 4
If we specify that N = 51 and
v, =.5 y,.M =.75

v, = .15 v,? = .8

then we may calculate the BDRE transition probabilities {p,®}, i = 1,
2, 1 = k =50 and obtain the results listed in Table 1. From K, it is
clear that the environmental process chooses the “good” environment
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more often (indeed, the stationary measure is 7 = (.57, .43)) and in this
environment, mutation rates favor a alleles, so that extinction of these
types becomes nearly impossible. A quick glance at Table 1 verifies

this.

z p." p.? u(l, 2) u(2, 2)

1 993 995 701 x 10-2 512 x 102
2 985 989 905 x 10~ 653 X 10~
3 977 984 182 x 10-5 128 x 10-5
4 968 979 507 x 10-7 349 x 10-7
5 959 973 183 x 10-8 123 X 10-3
6 949 968 829 x 1010 550 x 1010
7 939 962 518 x 10-11 361 x 1011
8 927 956 1 x10-1 898 x 1012
9 915 950 736 x 1012 728 x 1012
10 903 944 716 x 10-12 715 % 10-12
11 889 938 714 X 10712 714 X 1012
12 875 931 0 0

13 860 925 0 0

14 845 918 0 0

15 828 911 0 0

16 811 904 0 0

17 793 896 0 0

18 775 888 0 0

19 755 880 0 0

20 735 872 0 0

21 715 863 0 0

22 693 854 0 0

23 671 845 0 0

24 648 835 0 0

25 625 825 0 0

26 600 814 0 0

27 576 802 0 0

28 551 790 0 0

29 525 778 0 0

30 500 764 0 0

31 473 750 0 0

32 447 735 0 0

33 420 719 0 0

34 393 702 0 0

35 367 684 0 0

36 340 664 0 0
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37 313 .643 0 0
38 .286 .620 0 0
39 .260 .595 0 0
40 234 .567 0 0
41 208 .537 0 0
42 .182 .503 0 0
43 157 .466 0 0
44 133 424 0 0
45 .109 377 0 0
46 .086 232 0 0
47 .063 261 0 0
48 .041 .188 0 0
49 .023 102 0 0
50 0 0 0 0

TABLE 1
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